

A Practical Guide to

QuantumMachine Learning

and Quantum Optimization

Hands-on Approach to Modern Quantum

Algorithms

Elías F. Combarro

Samuel González-Castillo

BIRMINGHAM—MUMBAI

A Practical Guide to QuantumMachine Learning
and Quantum Optimization

Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or

transmitted in any form or by any means, without the prior written permission of the publisher,

except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information

presented. However, the information contained in this book is sold without warranty, either express

or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held

liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and

products mentioned in this book by the appropriate use of capitals. However, Packt Publishing

cannot guarantee the accuracy of this information.

Associate Group Product Manager: Gebin George

Publishing Product Manager: Kunal Sawant

Content Development Editor: Rosal Colaco

Technical Editor: Maran Fernandes

Copy Editor: Safis Editing

Project Coordinator: Manisha Singh

Proofreader: Safis Editing

Indexer: Hemangini Bari

Production Designer: Vijay Kamble

Business Development Executive: Kriti Sharma

Developer Relations Marketing Executive: Sonia Chauhan

First published: March 2023

Production reference: 1170323

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-80461-383-2

www.packtpub.com

www.packtpub.com

Contributors

About the authors
Elías F. Combarro holds degrees from the University of Oviedo (Spain) in both mathe-

matics (1997, award for second highest grades in the country) and computer science (2002,

award for highest grades in the country). After carrying out several stays as a visiting

researcher at the Novosibirsk State University (Russia), he obtained a PhD in mathematics

(Oviedo, 2001) with a dissertation on the properties of some computable predicates under

the supervision of Prof. Andrey Morozov and Prof. Consuelo Martínez.

Since 2009, Elías F. Combarro has been a tenured associate professor at the Computer

Science Department of the University of Oviedo. He has published more than 50 research

papers in international journals on topics such as quantum computing, computability theory,

machine learning, fuzzy measures, and computational algebra. His current research focuses

on the application of quantum computing to algebraic, optimization, and machine-learning

problems.

In 2020 and 2022, he was a Cooperation Associate at CERN openlab. Currently, he is Spain’s

representative on the Advisory Board of the CERN Quantum Technology Initiative.

To Adela, Paula and Sergio. You are my reason to live.

Samuel González-Castillo holds degrees from the University of Oviedo (Spain) in

both mathematics and physics (2021). He is currently a mathematics research student

at Maynooth University, where he works as a graduate teaching assistant.

He completed his physics bachelor thesis under the supervision of Prof. Elías F. Combarro,

Prof. Ignacio F. Rúa (University of Oviedo), and Dr. Sofia Vallecorsa (CERN). In it, he

worked alongside other researchers from ETH Zürich on the application of quantum

machine learning to classification problems in high energy physics. In 2021, he was a

summer student at CERN developing a benchmarking framework for quantum simulators.

He has contributed to several conferences on quantum computing and related fields.

About the reviewers
Francisco Orts is a researcher at the Institute of Data Science and Digital Technologies,

Vilnius University (Lithuania). He holds a PhD in computer science from the University of

Almería (Spain) and is a collaborator of the High-Performance Computing research group

of this university. He has worked as a computer scientist at construction, stock exchange,

and IT services companies, with more than 15 years of experience in the sector. His

research interests are multidimensional scaling, quantum computing, and high-performance

computing.

Guillermo Botella (Senior Member, IEEE) received an MSc degree in physics in 1998, an

MSc degree in electronic engineering in 2001, and a PhD degree (in computer engineering)

in 2007, all from the University of Granada, Spain. He was an EU research fellow working

with the University of Granada, Spain, and University College London, UK. He is currently

an associate professor with the Department of Computer Architecture and Automation,

Complutense University of Madrid, Spain. He has performed research stays from 2008 to

2012 with the Department of Electrical and Computer Engineering, Florida State University,

USA. His current research interests include signal processing for FPGAs, GPGPUs, and

novel computing paradigms such as analog and quantum computing.

Foreword

“I know you, you were working with Elías Combarro when he gave that course about quantum

computing at CERN. That course changed my life!”

As I welcome students and more seasoned researchers to the CERN IT Department, it is

not unusual to hear this kind of comment about Elías’ lectures. I’ve been working at CERN

for 25 years on R&D projects in computing and data science for high-energy physics and

still I have not seen this happening that often with other courses.

When I started building the CERN Quantum Technology Initiative in 2018, quantum

computing and its applications had already started growing at an accelerated pace. We

were looking for ways of understanding the potential benefits for physics and contributing

to the ongoing research in theory, computing, sensing, and communication. A daunting

task despite the incredible work that CERN has been doing since 1954 in physics and

computing for physics. Where to start? How to build knowledge? How to identify and

address realistic problems? Which tools and techniques should we focus on?

Prof. Combarro joined CERN in 2020 for a short sabbatical, and he immediately became a

reference for the team, inspiring students and researchers and helping us lay solid foun-

dations for the work we were doing with the LHC experiments and the theory groups at

CERN. Samuel González-Castillo joined the team a year later during his summer intern-

ship, building from the ground up our first prototype of a quantum systems benchmark

framework.

This book is the perfect image of how I saw them in action. It will initially guide you

across complex concepts with rare clarity, building solid foundations to work comfortably

viii Foreword

with quantum optimization methods, quantum machine learning, and hybrid architectures

without ever losing sight of the goal of providing a realistic, practical, usable approach.

Chapters 1 and 2 will introduce you to the basics of quantum computing, building a

reference of mathematical concepts and notations and a first practical overview of the

“tools of the trade,” the frameworks and platforms used to interact with quantum devices.

Once the foundations are set like a sort of teaser of what’s to come, the rest of the book

guides you through two complementary paths, quantum optimization methods in Chapters

3 to 7, and quantum machine learning, quantum neural networks, and hybrid architectures

in Chapters 8 to 12.

The authors not only provide clear formal explanations at every step, but also practical

instructions and examples on how to implement and execute algorithms and methods on

freely accessible actual quantum computers. Exercises (with detailed answers) are given

throughout the book to check the progress of the exploration and gently nudge you beyond

your comfort zone, always keeping the interest alive.

Whether you are at the beginning of your discovery of quantum computing or are looking

to understand its potential in your ongoing research, this book will be a trustworthy guide

on an exciting journey. And I’m sure that the next time I meet you, you will say “I know

you, you wrote the foreword for Elias’ and Samuel’s book. That book changed my life!”

Alberto Di Meglio, MEng, PhD

Head of Innovation — Coordinator CERN Quantum Technology Initiative

Information Technology Department

CERN — European Organization for Nuclear Research

Acknowledgements

I would maintain that thanks are the highest form of thought; and that gratitude is
happiness doubled by wonder.

— G.K. Chesterton

There are many people who we are grateful to because their support, help, knowledge, and

advice were instrumental in shaping this book. First of all, we would like to thank Tomás

Fernández Marcos. He taught both of us — albeit in different millennia! — some of the

mathematical notions that, in our future, would be indispensable for our study of quantum

computing. Then, he introduced us to each other, because he had the prescient intuition

that we would share many interesting projects. It is fair to say that, without him, this book

would not exist.

We would also like to thank Alberto Di Meglio for writing such a wonderful foreword for

us. The rest of the book can only go downhill from there!

Many parts of this book originate from courses on quantum computing taught over the

years. Those courses would not have been possible without the help and trust of Enrique

Arias, Alberto Di Meglio, Melissa Gaillard, Ester Martín Garzón and José Ranilla, among

others.

We are also indebted to all the colleagues with whom we have discussed different topics on

quantum computing and from whom we have learned a lot. We are particularly grateful

to those who gave us very useful feedback and comments on preliminary versions of our

lectures and of material for this book, including Vasilis Belis, Héctor García Morales, Miguel

x Acknowledgements

Hernández-Cáceres, Carla Rieger, Ignacio F. Rúa, Bruno Santidrián Manzanedo, Daniel

Setó, Erik Skibinsky Gitlin, and Sofia Vallecorsa. We also want to give heartfelt thanks to

Ferdous Khan. He was the first to suggest that our lectures should be collected in book

form. We cannot overstate how much we appreciate his constant encouragement and

support.

Of course, we would also like to thank our team at Packt. They believed in our ability

to write a whole book on quantum computing much more than we did ourselves! And

they provided many useful suggestions and advice, making the complicated process of

preparing a technical manuscript as smooth as possible.

We’ve been extremely lucky to have such wonderful technical reviewers as Guillermo

Botella and Francisco Orts. They went well beyond the call of duty to check that everything

was correct, they gave us invaluable feedback and suggestions, and they located quite a

number of errata and typos that would have been very embarrassing had they made it to

the print version. Obviously, all remaining errors are our sole responsibility.

And last but certainly not least, we would like to thank our friends and families. Writing a

book takes a lot of time. And when we say “a lot,” we really mean “an incredibly awful lot.”

Sadly, we had to steal part of that time from them and, moreover, they had to listen to our

complaints and worries when we went through rough spots in the writing process. If it

weren’t for them, we could not have made it. This is all because of them and dedicated to

them.

Elías F. Combarro, Samuel González-Castillo

Oviedo/Maynooth

February 2023

Table of Contents

Foreword vii

Acknowledgements ix

Preface xxi

Part 1: I, for One, Welcome our New Quantum Overlords 1

Chapter 1: Foundations of Quantum Computing 3

1.1 Quantum computing: the big picture . 4

1.2 The basics of the quantum circuit model . 7

1.3 Working with one qubit and the Bloch sphere . 9

1.3.1 What is a qubit? . 9

1.3.2 Dirac notation and inner products . 11

1.3.3 One-qubit quantum gates . 13

1.3.4 The Bloch sphere and rotations . 18

1.3.5 Hello, quantum world! . 22

1.4 Working with two qubits and entanglement . 23

1.4.1 Two-qubit states . 24

1.4.2 Two-qubit gates: tensor products . 27

1.4.3 The CNOT gate . 28

1.4.4 Entanglement . 30

xii Table of Contents

1.4.5 The no-cloning theorem . 32

1.4.6 Controlled gates . 33

1.4.7 Hello, entangled world! . 35

1.5 Working with multiple qubits and universality . 36

1.5.1 Multi-qubit systems . 36

1.5.2 Multi-qubit gates . 39

1.5.3 Universal gates in quantum computing . 40

Summary . 42

Chapter 2: The Tools of the Trade in Quantum Computing 43

2.1 Tools for quantum computing: a non-exhaustive overview . 44

2.1.1 A non-exhaustive survey of frameworks and platforms 44

2.1.2 Qiskit, PennyLane, and Ocean . 48

2.2 Working with Qiskit . 50

2.2.1 An overview of the Qiskit framework . 50

2.2.2 Using Qiskit Terra to build quantum circuits . 52

Initializing circuits . 53

Quantum gates . 54

Measurements . 57

2.2.3 Using Qiskit Aer to simulate quantum circuits . 58

2.2.4 Let’s get real: using IBM Quantum . 64

2.3 Working with PennyLane . 69

2.3.1 Circuit engineering 101 . 70

2.3.2 PennyLane’s interoperability . 77

Love is in the Aer . 78

Connecting to IBMQ . 79

Summary . 80

Table of Contents xiii

Part 2: When Time is Gold: Tools for Quantum Optimization 81

Chapter 3: Working with Quadratic Unconstrained Binary Optimization

Problems 83

3.1 The Max-Cut problem and the Ising model . 84

3.1.1 Graphs and cuts . 85

3.1.2 Formulating the problem . 86

3.1.3 The Ising model . 89

3.2 Enter quantum: formulating optimization problems the quantum way 91

3.2.1 From classical variables to qubits . 91

3.2.2 Computing expectation values with Qiskit . 97

3.3 Moving from Ising to QUBO and back . 105

3.4 Combinatorial optimization problems with the QUBO model 109

3.4.1 Binary linear programming . 110

3.4.2 The Knapsack problem . 114

3.4.3 Graph coloring . 116

3.4.4 The Traveling Salesperson Problem . 119

3.4.5 Other problems and other formulations . 122

Summary . 123

Chapter 4: Adiabatic Quantum Computing and Quantum Annealing 125

4.1 Adiabatic quantum computing . 126

4.2 Quantum annealing . 129

4.3 Using Ocean to formulate and transform optimization problems 135

4.3.1 Constrained quadratic models in Ocean . 135

4.3.2 Solving constrained quadratic models with dimod . 138

4.3.3 Running constrained problems on quantum annealers 141

4.4 Solving optimization problems on quantum annealers with Leap 146

4.4.1 The Leap annealers . 146

4.4.2 Embeddings and annealer topologies . 150

xiv Table of Contents

4.4.3 Controlling annealing parameters . 155

4.4.4 The importance of coupling strengths . 160

4.4.5 Classical and hybrid samplers . 164

Classical solvers . 165

Hybrid solvers . 167

Summary . 169

Chapter 5: QAOA: Quantum Approximate Optimization Algorithm 171

5.1 From adiabatic computing to QAOA . 172

5.1.1 Discretizing adiabatic quantum computing . 172

5.1.2 QAOA: The algorithm . 175

5.1.3 Circuits for QAOA . 178

5.1.4 Estimating the energy . 181

5.1.5 QUBO and HOBO . 183

5.2 Using QAOA with Qiskit . 188

5.2.1 Using QAOA with Hamiltonians . 188

5.2.2 Solving QUBO problems with QAOA in Qiskit . 195

5.3 Using QAOA with PennyLane . 203

Summary . 209

Chapter 6: GAS: Grover Adaptive Search 211

6.1 Grover’s algorithm . 212

6.1.1 Quantum oracles . 214

6.1.2 Grover’s circuits . 216

6.1.3 Probability of finding a marked element . 219

6.1.4 Finding minima with Grover’s algorithm . 223

6.2 Quantum oracles for combinatorial optimization . 224

6.2.1 The quantum Fourier transform . 225

6.2.2 Encoding and adding integer numbers . 227

6.2.3 Computing the whole polynomial . 232

Table of Contents xv

6.2.4 Constructing the oracle . 234

6.3 Using GAS with Qiskit . 236

Summary . 242

Chapter 7: VQE: Variational Quantum Eigensolver 245

7.1 Hamiltonians, observables, and their expectation values . 246

7.1.1 Observables . 248

7.1.2 Estimating the expectation values of observables . 253

7.2 Introducing VQE . 260

7.2.1 Getting excited with VQE . 263

7.3 Using VQE with Qiskit . 267

7.3.1 Defining a molecular problem in Qiskit . 267

7.3.2 Using VQE with Hamiltonians . 270

7.3.3 Finding excited states with Qiskit . 276

7.3.4 Using VQE with molecular problems . 278

7.3.5 Simulations with noise . 282

7.3.6 Running VQE on quantum computers . 288

7.3.7 The shape of things to come: the future of Qiskit . 291

7.4 Using VQE with PennyLane . 294

7.4.1 Defining a molecular problem in PennyLane . 294

7.4.2 Implementing and running VQE . 296

7.4.3 Running VQE on real quantum devices . 298

Summary . 300

Part 3: A Match Made in Heaven: QuantumMachine Learning 303

Chapter 8: What Is QuantumMachine Learning? 305

8.1 The basics of machine learning . 306

8.1.1 The ingredients for machine learning . 307

8.1.2 Types of machine learning . 317

xvi Table of Contents

8.2 Do you wanna train a model? . 319

8.2.1 Picking a model . 322

8.2.2 Understanding loss functions . 327

8.2.3 Gradient descent . 328

8.2.4 Getting in the (Tensor)Flow . 332

8.2.5 Training the model . 335

8.2.6 Binary classifier performance . 340

8.3 Quantum-classical models . 347

Summary . 350

Chapter 9: Quantum Support Vector Machines 351

9.1 Support vector machines . 352

9.1.1 The simplest classifier you could think of . 352

9.1.2 How to train support vector machines: the hard-margin case 356

9.1.3 Soft-margin training . 361

9.1.4 The kernel trick . 364

9.2 Going quantum . 366

9.2.1 The general idea behind quantum support vector machines 366

9.2.2 Feature maps . 368

9.3 Quantum support vector machines in PennyLane . 372

9.3.1 Setting the scene for training a QSVM . 372

9.3.2 PennyLane and scikit-learn go on their first date . 375

9.3.3 Reducing the dimensionality of a dataset . 377

9.3.4 Implementing and using custom feature maps . 380

9.4 Quantum support vector machines in Qiskit . 382

9.4.1 QSVMs on Qiskit Aer . 382

9.4.2 QSVMs on IBM quantum computers . 385

Summary . 386

Chapter 10: Quantum Neural Networks 389

Table of Contents xvii

10.1 Building and training a quantum neural network . 390

10.1.1 A journey from classical neural networks to quantum neural networks 391

10.1.2 Variational forms . 393

10.1.3 A word about measurements . 398

10.1.4 Gradient computation and the parameter shift rule . 401

10.1.5 Practical usage of quantum neural networks . 403

10.2 Quantum neural networks in PennyLane . 405

10.2.1 Preparing data for a QNN . 406

10.2.2 Building the network . 410

10.2.3 Using TensorFlow with PennyLane . 413

10.2.4 Gradient computation in PennyLane . 420

10.3 Quantum neural networks in Qiskit: a commentary . 426

Summary . 429

Chapter 11: The Best of Both Worlds: Hybrid Architectures 431

11.1 The what and why of hybrid architectures . 432

11.2 Hybrid architectures in PennyLane . 436

11.2.1 Setting things up . 436

11.2.2 A binary classification problem . 438

11.2.3 Training models in the real world . 442

11.2.4 A multi-class classification problem . 449

A general perspective on multi-class classification tasks 450

Implementing a QNN for a ternary classification problem 452

11.3 Hybrid architectures in Qiskit . 458

11.3.1 Nice to meet you, PyTorch! . 458

Setting up a model in PyTorch . 460

Training a model in PyTorch . 463

11.3.2 Building a hybrid binary classifier with Qiskit . 472

11.3.3 Training Qiskit QNNs with Runtime . 477

11.3.4 A glimpse into the future . 481

xviii Table of Contents

Summary . 482

Chapter 12: Quantum Generative Adversarial Networks 483

12.1 GANs and their quantum counterparts . 484

12.1.1 A seemingly unrelated story about money . 484

12.1.2 What actually is a GAN? . 486

12.1.3 Some technicalities about GANs . 491

12.1.4 Quantum GANs . 493

12.2 Quantum GANs in PennyLane . 495

12.2.1 Preparing a QGAN model . 497

The training process . 502

12.3 Quantum GANs in Qiskit . 510

Summary . 518

Afterword and Appendices 519

Chapter 13: Afterword: The Future of Quantum Computing 521

Appendix A: Complex Numbers 527

Appendix B: Basic Linear Algebra 531

Vector spaces . 531

Bases and coordinates . 533

Linear maps and eigenstuff . 535

Inner products and adjoint operators . 537

Matrix exponentiation . 539

A crash course in modular arithmetic . 540

Appendix C: Computational Complexity 543

A few words on Turing machines . 544

Table of Contents xix

Measuring computational time . 546

Asymptotic complexity . 547

P and NP . 549

Hardness, completeness, and reductions . 554

A very brief introduction to quantum computational complexity 558

Appendix D: Installing the Tools 565

Getting Python . 565

Installing the libraries . 568

Accessing IBM’s quantum computers . 571

Accessing D-Wave quantum annealers . 572

Using GPUs to accelerate simulations in Google Colab . 573

Appendix E: Production Notes 577

Assessments 579

Chapter 1, Foundations of Quantum Computing . 579

Chapter 2, The Tools of the Trade in Quantum Computing . 588

Chapter 3, Working with Quadratic Unconstrained Binary Optimization Problems 591

Chapter 4, Adiabatic Quantum Computing and Quantum Annealing 593

Chapter 5, QAOA: Quantum Approximate Optimization Algorithm 595

Chapter 6, GAS: Grover Adaptative Search . 598

Chapter 7, VQE: Variational Quantum Eigensolver . 600

Chapter 8, What is Quantum machine Learning? . 606

Chapter 9, Quantum Support Vector Machines . 608

Chapter 10, Quantum Neural Networks . 609

Chapter 11, The Best of Both Worlds: Hybrid Architectures . 610

Chapter 12, Quantum Generative Adversarial Networks . 614

Bibliography 617

xx Table of Contents

Index 627

Other Books You Might Enjoy 642

Preface

See that the imagination of nature is far, far greater than the imagination of man.

— Richard Feynman

Many people believe that quantum computing is very difficult to learn, assuming that it

requires knowledge of arcane and obscure branches of mathematics, and that it can only

be mastered with a strong background in physics. We couldn’t disagree more. In fact, the

set of prerequisites that you need for a journey into the depths of quantum computing

is surprisingly small: just some basic linear algebra, a few notions from probability, and

some familiarity with computer programming. All of these are acquired by students of

mathematics, physics, computer science, and engineering in their first year of college.

For this reason, a few years ago, one of us started designing quantum computing courses

that focused only on the essentials, trying to demystify the subject and make it accessible

to as many students as possible. Prominent among these courses is the series of lectures

titled “A Practical Introduction to Quantum Computing: From Qubits to Quantum Machine

Learning and Beyond” taught online from CERN in 2020 (you can find the materials and

recordings at https://indico.cern.ch/event/970903/).

The seed of this book was already present in that series of lectures (and in others taught

at the University of Oviedo, the University of Castilla-La Mancha and the University of

Almería, among other places). Some of the material (greatly adapted and expanded) comes

from what was prepared for the CERN course and, more importantly, the main guiding

https://indico.cern.ch/event/970903/

xxii Preface

principles behind the design of the lectures (discussed in detail in [1]) have remained

unchanged in the preparation of the book that you are now reading.

The first of those principles is our firm belief that quantum computing should be about

computing. Let us clarify that a little bit. This means that our end goal will be to enable

you to run quantum algorithms on quantum computers and solve problems with them. To

achieve that, you will need to know how to write code that implements some quantum

algorithms. And you cannot do that if you only study quantum computing from a purely

theoretical perspective. Indeed, you need to get your hands dirty, learn (at least!) one

quantum programming language, and be able to translate abstract quantum operations

into executable instructions.

This is why a big part of this book is devoted to introducing different quantum programming

frameworks (Qiskit, PennyLane, D-Wave’s Ocean) and explaining how to run different

quantum algorithms with them. Contrary to other (excellent!) quantum computing books

out there, here you will find code. Lots of code. Code that you will be able to run straight-

away on simulators and actual quantum computers. Code that you can modify, experiment

with, and adapt to your own problems and projects.

But this is not just a quantum programming book. Our goal is not to give you recipes

for solving particular instances of particular problems. Our goal is for you to understand

quantum computing. So our second guiding principle is a commitment to discuss all the

mathematics behind every quantum algorithm covered in the book and behind each line of

code in our examples — at least in a reasonable amount of detail.

This is important for a couple of reasons. On the one hand, quantum computing is still a

young field. New, improved algorithms are proposed in scientific publications every day

and some of them will become standard in the short or medium term. Eventually, you will

want to understand and use those algorithms. But you cannot do it if you do not fully

understand the algorithms they come from.

On the other hand, successfully programming and running an algorithm is the ultimate

test to know if you really understand its principles. Computers are merciless. They do not

Preface xxiii

tolerate imprecision or ambiguities. You really need to know each and every detail of an

algorithm in order to implement it. We completely agree with Donald Knuth when he says

that “a person does not really understand something until he can teach it to a computer.”

So those are the two main pillars upon which we have built this book: code and the

mathematics behind it. Enough mathematics to understand the code and enough code

to make the mathematics clear and useful. We won’t lie to you: it was difficult to find a

balance between the two. Sometimes you may feel that our mathematical explanations

run for too long. But just be patient and we promise that it will pay off when you see the

formulas coming alive in the examples.

These two pillars were already present in the CERN lectures. But there is a difference

between the topics covered there and the ones that we have selected for this book. We

have decided not to include basic methods such as quantum teleportation [2], [3] and

quantum key distribution with the BB84 protocol [4], or canonical algorithms like the ones

by Deutsch and Jozsa [5] and Shor [6], for instance.

Fortunately, there is much more quantum computing material out there than four or five

years ago, when we started developing our introductory courses. We think that there is no

longer an urgent need to explain methods that are perfectly discussed in other books such

as the (highly recommended) one by Sutor [7].

However, we do feel that there exists a need for a unified, detailed and practice-oriented

explanation of many algorithms that are central to modern quantum computing and that

are difficult to find together in a sole source. This includes a lot of methods that have been

developed to solve optimization problems with quantum computers, and most algorithms

(especially the ones based on variational circuits) from the field of quantum machine

learning.

Many of these algorithms have been proposed fairly recently and have been designed to

run on the kind of quantum computers available today (small, not fully connected, and

susceptible to noise) as opposed to on idealized, fault-tolerant quantum processors. For

this reason, these algorithms are currently the subject of intense research, because their

xxiv Preface

true capabilities are not yet completely understood. There is some evidence that they may

surpass classical algorithms in certain tasks, but this is still not so well-established as with

other, older quantum algorithms such as Shor’s.

Does this mean that this book is advanced or only for people already experienced in

quantum computing? Not at all! It is true that, traditionally, one used to start studying

quantum computing by going through protocols with just a few qubits, and then learning

about Deutsch-Jozsa’s, Simon’s [8], and Bernstein-Vazirani’s [5] algorithms, climbing all

the way up to Shor’s and Grover’s [9] methods. If you know about those algorithms, that

knowledge will certainly be useful, but it is not, by any means, necessary or expected to

understand the topics that we will cover.

With this book, we want to provide you with a solid understanding of the principles behind

modern quantum algorithms that have been proposed for the fields of optimization and

machine learning, as well as to show you how to implement them and run them on quantum

simulators and on real quantum hardware. This will allow you to start experimenting on

problems of your own right away. We strongly believe that this is the perfect moment to

start searching for use cases with current quantum computers. The algorithms that we

present in this book are strong candidates to be among the first to be applied in practical

situations in the near future, because most of them need much fewer resources than other

earlier quantum algorithms (such as Shor’s) and do not require error correction. Moreover,

they can be understood and used without the need to know about previous developments

in the field.

In fact, we have designed this book assuming that you have had no previous experience

with quantum computing at all (we do assume that you have a working knowledge of

complex numbers and linear algebra, although we also provide a refresher of both topics

in the appendices).

The style of our exposition is mainly informal, without following the usual structure of

definition-theorem-proof-corollary of many mathematical texts, but without sacrificing

rigor at any point in the book. Whenever possible, we give detailed derivations that justify

Preface xxv

the mathematical properties that we use in our developments and analyses (or, at least,

we provide an argument that may be extended to a full proof by just adding some small

technical details). In the cases that proving a particular fact is beyond the scope of the

book, we provide references in which a full treatment can be found.

Throughout all the text, we propose exercises that will help you understand important

concepts and develop practical skills for manipulating formulas and writing your own

quantum code. They are intended to be readily solved (we try to give useful hints for those

exercises that are a lit bit more challenging), but, at the end of the book, we provide full,

detailed solutions so that you check your understanding of the subject.

Quantum computing is a field in constant evolution, so we feel that it is especially important

to give pointers to new developments, to variants of the algorithms that we present in the

book, and to alternative approaches to solve the kind of problems that we study. We do

this by including numerous boxes with the label “To learn more. . . ”. You can skip these

boxes if you wish, as they are not necessary to follow the main text. However, we strongly

recommend reading them, since they help to situate in a wider context the topics under

study. Other boxes that we use throughout the book serve to highlight important facts, to

give warnings about subtle points, or to remind you of central definitions and formulas.

These should not be skipped. They are labeled “Important note” for a reason!

We’ve had a great time writing this book and we hope that it shows. But, above all, we hope

that you find it useful. If it helps you in understanding the fascinating field of quantum

computers a little bit better, we will consider our mission to be fulfilled.

Who this book is for
This book is for professionals from a wide variety of backgrounds, including computer

scientists and programmers, engineers, physicists, chemists, and mathematicians. Basic

knowledge of linear algebra and some programming skills (for instance, in Python) are

assumed, although all mathematical prerequisites will be covered in the appendices.

xxvi Preface

What this book covers
This book is organized in three parts, an afterword, and some appendices as follows:

Part 1, I, for One, Welcome our New Quantum Overlords

Chapter 1, Foundations of Quantum Computing, briefly reviews the key ideas behind the

quantum circuit model, fixing the notation that we will use throughout the book. It explores

core ideas and notions, discussing quantum states, quantum gates and measurements; all

starting completely from scratch. It also makes the book more self-contained and accessible

for readers with different backgrounds.

Chapter 2, The Tools of the Trade in Quantum Computing, presents different quantum

programming libraries that you can use to implement and run quantum methods, focusing

especially on Qiskit and PennyLane. This chapter will guide you through the process

of implementing quantum circuits and running them on simulators and actual quantum

computers.

Part 2, When Time is Gold: Tools for Quantum Optimization

Chapter 3, Working with Quadratic Unconstrained Binary Optimization Problems, introduces

a mathematical framework that will help us formulate combinatorial optimization problems

in a way that will allow us to solve them with quantum algorithms. It also provides many

examples of how to use this formalism in practice.

Chapter 4, Adiabatic Quantum Computing and Quantum Annealing, is devoted to quantum

annealing, our first quantum optimization method. It starts by explaining all the mathe-

matical details behind this algorithm and then covers all the practical aspects of using it

to solve optimization problems. It also introduces Ocean, the library that we use to run

programs on quantum annealers.

Chapter 5, QAOA: Quantum Approximate Optimization Algorithm, shows how to adapt the

ideas behind quantum annealing to the quantum circuit model. It introduces QAOA, one of

the most popular modern quantum algorithms, and studies its mathematical properties. This

chapter also explains in detail how to use this algorithm with both Qiskit and PennyLane.

Preface xxvii

Chapter 6, GAS: Grover Adaptive Search, introduces Grover’s algorithm and explains how

to use it solve optimization problems. It focuses on designing oracles for optimization

problems and on running the method with Qiskit.

Chapter 7, VQE: Variational Quantum Eigensolver, expands the applicability of the quantum

optimization methods studied in the previous chapters to problems that are not combinato-

rial, including tasks from fields such as physics or quantum chemistry. It also shows how

to run VQE with Qiskit and PennyLane, including how to use important techniques such

as noise simulation and error mitigation.

Part 3, A Match Made in Heaven: Quantum Machine Learning

Chapter 8, What is Quantum Machine Learning?, gives a self-contained introduction to

(classical) machine learning. It also explains the ways in which quantum computing can be

used to define new machine learning methods.

Chapter 9, Quantum Support Vector Machines, studies our first quantum machine learning

model: a quantum version of the famous Support Vector Machines. It explains how they

can be derived mathematically and shows how to use them to solve classification problems

with Qiskit and PennyLane.

Chapter 10, Quantum Neural Networks, shows how to construct quantum versions of neural

networks by using variational circuits with different roles in the model. It also provides

detailed examples of how to define and run these models using PennyLane and Qiskit.

Chapter 11, The Best of Both Worlds: Hybrid Architectures, is a very practical and hands-on

chapter. It shows how to mix quantum and classical neural networks to create hybrid

models. It also guides you through all the steps needed to implement these architectures in

both PennyLane and Qiskit.

Chapter 12, Quantum Generative Adversarial Networks, shows how to create quantum gen-

erative models that are the quantum version of classical Generative Adversarial Networks

(or GANs). In addition to explaining the architecture of the model, it also provides detailed

examples, both in PennyLane and Qiskit, of how to use them in practice.

xxviii Preface

Afterword and Appendices

Chapter 13, Afterword: The Future of Quantum Computing, wraps up everything discussed

in the book and hints at some possible developments for quantum computing in the short

and medium term.

Appendix A, Complex Numbers, gives a quick recap of the most relevant properties of

complex numbers and how to operate with them.

Appendix B, Basic Linear Algebra, is a refresher on the fundamentals of linear algebra,

including vectors and matrices, important notions such as bases and eigenvalues, and even

some concepts from modular arithmetic.

Appendix C, Computational Complexity, serves as a quick introduction to measuring the

resources needed to solve problems with algorithms. It defines important concepts such as

big O notation and reductions, and complexity classes such as the famous 𝑃 and 𝑁𝑃 .

Appendix D, Installing the Tools, guides you through the process of installing the libraries

needed in order to run the source code included in this book.

Appendix E, Production Notes, gives a glimpse of the process of writing a technical book

like this one, including the software used to typeset formulas and create figures.

Assessments contains the solutions to all the exercises proposed in the main text.

Parts 2 and 3 are mostly self-contained and independent of each other (although, in the

main text, we point out the connections between them whenever they exist). They can be

used for self-study of quantum optimization and quantum machine learning, or to teach

two short, independent courses on these topics or one full course on modern quantum

algorithms. The strongest dependencies between chapters are shown in Figure 1, so you

can know which chapters you may skip without losing track of the explanation.

To get the most out of this book
The concepts explained in this book are better understood by implementing algorithms

that solve practical problems and by running them on simulators and actual quantum

Preface xxix

Figure 1: Strongest dependencies between chapters

computers. You will learn how to do all that starting from the very beginning of the book,

but in order to run the code you will need to install some tools.

We recommend that you download the Jupyter notebooks from the link provided in the

following section and that you follow the instructions given in Appendix D, Installing the

Tools, to get your environment ready to rock!

Download the example code files
The code bundle for the book is also hosted on GitHub at https://github.com/Packt

Publishing/A-Practical-Guide-to-Quantum-Machine-Learning-and-Quantum-Optim

ization. In case there’s an update to the code, it will be updated on the existing GitHub

repository.

https://github.com/PacktPublishing/A-Practical-Guide-to-Quantum-Machine-Learning-and-Quantum-Optimization
https://github.com/PacktPublishing/A-Practical-Guide-to-Quantum-Machine-Learning-and-Quantum-Optimization
https://github.com/PacktPublishing/A-Practical-Guide-to-Quantum-Machine-Learning-and-Quantum-Optimization

xxx Preface

We also have other code bundles from our rich catalog of books and videos available at

https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this

book. You can download it here: https://packt.link/FtU9t.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,

file extensions, pathnames, dummy URLs, and user input. Here is an example: “We could

create a GroverOptimizer object and directly use its solve method with qp.”

A block of code is set as follows:

import dimod

J = {(0,1):1, (0,2):1}

h = {}

problem = dimod.BinaryQuadraticModel(h, J, 0.0, dimod.SPIN)

print("The problem we are going to solve is:")

print(problem)

Any command-line input or output is written as follows:

$ python3 script.py

Important ideas are highlighted in boxes like the following:

Important note

I am a box. I feel important. That’s because I am important.

We sometimes include material for those of you who want to learn more. We format it as

follows:

https://github.com/PacktPublishing/
https://packt.link/FtU9t

Preface xxxi

To learn more. . .

You don’t have to read me if you don’t want to.

There are a few exercises in the text, which are displayed as follows:

Exercise 0.1

Prove that every even number greater than two can be written as the sum of two

prime numbers.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book

title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you have found a mistake in this book, we would be grateful if you would

report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the Internet,

we would be grateful if you would provide us with the location address or website name.

Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise

in and you are interested in either writing or contributing to a book, please visit authors.

packtpub.com.

mailto:customercare@packtpub.com
www.packtpub.com/support/errata
mailto:copyright@packtpub.com
authors.packtpub.com
authors.packtpub.com

xxxii Preface

Share your thoughts
Once you’ve read A Practical Guide to Quantum Machine Learning and Quantum Optimiza-

tion, we’d love to hear your thoughts! Please click here to go straight to the Amazon review

page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re

delivering excellent quality content.

https://packt.link/r/1-804-61383-5
https://packt.link/r/1-804-61383-5

Preface xxxiii

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere? Is your

eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at

no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite

technical books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and

great free content in your inbox daily.

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below:

https://packt.link/free-ebook/9781804613832

2. Submit your proof of purchase.

3. That’s it! We’ll send your free PDF and other benefits to your email directly.

https://packt.link/free-ebook/9781804613832

Part 1

I, for One, Welcome our New
Quantum Overlords

This part introduces the main concepts behind the quantum circuit model. You will learn

how qubits store information, how to operate on that information with quantum gates,

and how to obtain results with quantum measurements. You will also learn about some of

the most important tools currently used to program quantum computers. In particular, we

will discuss how to implement and execute quantum circuits with Qiskit and PennyLane.

This part includes the following chapters:

• Chapter 1, Foundations of Quantum Computing

• Chapter 2, The Tools of the Trade in Quantum Computing

1
Foundations of Quantum
Computing

The beginning is always today.

— Mary Shelley

You may have heard that the mathematics needed to understand quantum computing is

arcane, mysterious and difficult. . . but we utterly disagree! In fact, in this chapter, we will

introduce all the concepts that you will need in order to follow the quantum algorithms

that we will be studying in the rest of the book. Actually, you may be surprised to see that

we will only rely on some linear algebra and a bit of (extremely simple) trigonometry.

We shall start by giving a quick overview of what quantum computing is, what the current

state of the art is, and what the main applications are expected to be. After that, we will

introduce the model of quantum circuits. There are several computational models for

quantum computing, but this is the most popular one and, moreover, it’s the one that we

will be using throughout most of the book. Then, we will describe in detail what qubits are,

4 Chapter 1: Foundations of Quantum Computing

how we can operate on them by using quantum gates, and how we can retrieve results by

performing measurements. We will start with the simplest possible case — just a humble

qubit! Then, we will steadily build upon that until we learn how to work with as many

qubits as we want.

This chapter will cover the following topics:

• Quantum computing: the big picture

• The basics of the quantum circuit model

• Working with one qubit and the Bloch sphere

• Working with two qubits and entanglement

• Working with multiple qubits and universality

After reading this chapter, you will have acquired a solid understanding of the fundamentals

of quantum computing and you will be more than ready to learn how practical quantum

algorithms are developed.

1.1 Quantum computing: the big picture
In October 2019, an announcement made by a team of researchers from Google took the

scientific world by storm. For the first time ever, a practical demonstration of quantum

computational advantage had been shown. The results, published in the prestigious Nature

journal [10], reported that a quantum computer had solved, in just a few minutes, a problem

that would have taken the most powerful classical supercomputer in the world thousands

of years.

Although the task solved by the quantum computer has no direct practical applications and

it was later claimed that the computing time with classical resources had been overestimated

(see [11] and, also, [12]), this feat remains a milestone in the history of computing and has

fueled interest in quantum computing all over the world. So, what can these mysterious

quantum computers do? How do they work in order to achieve these mind-blowing

speed-ups?

Quantum computing: the big picture 5

We could define quantum computing as the study of the application of properties of

quantum systems (such as superposition, entanglement, and interference) to accelerate

some computational tasks. These properties do not manifest in our macroscopic world

and, although they are present at the fundamental level in our computing devices, they

are not explicitly used in the traditional computing models that we employ to build our

microprocessors and to design our algorithms. For this reason, quantum computers behave

in a radically different way to classical computers, making it possible to solve some tasks

much more efficiently than with traditional computing devices.

The most famous problem for which quantum algorithms offer a huge advantage over

classical methods is finding prime factors of big integers. The best known classical algorithm

for this task requires an amount of time that grows almost exponentially with the length

of the number (see Appendix C, Computational Complexity, for all the concepts referred to

computational complexity, including exponential growth). Thus, factoring numbers that are

several thousand bits long becomes infeasible with classical computers, and this inefficiency

is the basis for some widely used cryptographic protocols, such as RSA, proposed by Rivest,

Shamir, and Adleman [13].

Nevertheless, more than twenty years ago, the mathematician Peter Shor proved in a

celebrated paper [6] that a quantum computer could factor numbers taking an amount of

time that no longer grows exponentially with the size of the input, but only polynomially.

Other examples in which quantum algorithms outperform classical ones include finding

elements satisfying a given condition from an unsorted list (with Grover’s algorithm [9])

or sampling from the solutions of systems of linear equations (using the famous HHL

algorithm [14]).

Wonderful as the properties of these quantum algorithms are, they require quantum

computers that are fault tolerant and more powerful than those available today. This is

why, in the last few years, many researchers have focused on studying quantum algorithms

that try to obtain some advantage with the noisy intermediate-scale quantum computers,

also known as NISQ devices, that are at our disposal now. The NISQ name was coined by

6 Chapter 1: Foundations of Quantum Computing

John Preskill in a greatly enjoyable article [15] and has been widely adopted to describe

the evolutionary stage in which quantum hardware currently is.

Machine learning and optimization are two of the fields that are being actively explored

in this NISQ era. In these areas, many interesting algorithms have been proposed in

recent years; some examples are the Quantum Approximate Optimization Algorithm

(QAOA), the Variational Quantum Eigensolver (VQE), or different quantum flavors of

machine learning models, including Quantum Support Vector Machines (QSVMs) and

Quantum Neural Networks (QNNs).

Since these algorithms are fairly new, we still lack a complete understanding of their full

capabilities. However, some partial theoretical results show some evidence that these

approaches can offer some advantages over what is possible with classical computers,

for instance, by giving us better approximations to the solutions of hard combinatorial

optimization problems or by showing better performance when learning from particular

datasets.

Exploring the real possibilities of these NISQ computers and the algorithms designed to

take advantage of them will be crucial in the short and medium term, and it may very

likely pave the way for the first practical applications of quantum computing to real-world

problems.

We believe that you can be part of the exciting task of making quantum computing appli-

cations a reality and we would like to help you on that journey. But, for that, we need to

start by setting in place the tools that we will be using throughout the book.

If you are already familiar with the quantum circuit model, you can skip the rest of this

chapter. However, we recommend that you at least skim through the following sections so

that you can get familiar with the conventions and choices of notation that we will use in

this book.

The basics of the quantum circuit model 7

1.2 The basics of the quantum circuit model
We have mentioned that quantum computing relies on quantum phenomena such as

superposition, entanglement, and interference to perform computations. But what

does this really mean? To make this explicit, we need to define a particular computational

model that allow us to describe mathematically how to take advantage of all these properties.

There are many such models, including quantum Turing machines, measurement-

based quantum computing (also known as one-way quantum computing), or adia-

batic quantum computing, and all of them are equivalent in power. However, the most

popular one — and the one that we will be using for the most part in the book — is the

quantum circuit model.

To learn more. . .

In addition to the quantum circuit model, sometimes we will also use the adia-

batic model. All the necessary concepts will be introduced in Chapter 4, Quantum

Adiabatic Computing and Quantum Annealing.

Every computation has three elements: data, operations, and output. In the quantum

circuit model, these correspond to some concepts that you may have already heard about:

qubits, quantum gates, and measurements. Through the remainder of this chapter, we

will briefly review all of them, highlighting some special details that will be of particular

importance when talking about quantum machine learning and quantum optimization

algorithms; at the same time, we will show the notation that will be used throughout the

book. But before committing to that, let us have a quick overview of what a quantum

circuit is.

Let’s have a look at Figure 1.1. It shows a simple quantum circuit. The three horizontal

lines that you see are sometimes called wires, and they represent the qubits that we are

working with. Thus, in this case, we have three qubits. The circuit is meant to be read from

left to right, and it represents all the different operations that are performed on the qubits.

It is customary to assume that, at the very beginning, all the qubits are in state |0⟩. You do

8 Chapter 1: Foundations of Quantum Computing

not need to worry yet about what |0⟩ means, but please notice how we have indicated that

this is indeed the initial state of all the wires by writing |0⟩ to the left of each of them.

|0⟩ 𝑍 𝑋 𝑍

|0⟩ 𝐻

|0⟩ 𝑌

Figure 1.1: An example of a simple quantum circuit.

In that circuit, we start by applying an operation called a 𝑍 gate on the top qubit; we will

explain in the next section what all of these operations do, but note that we represent them

with little boxes with the name of the operation inside. After that initial 𝑍 gate, we apply

individual gates 𝑋 , 𝐻 , and 𝑌 on the top, middle, and bottom qubits and, then, a two-qubit

gate on the top and middle qubits followed by a three-qubit gate, which acts on all the

qubits at the same time. Finally, we measure the top and bottom qubits (we will get to

measurements in the next section, don’t worry), and we represent this in the circuit using

the gauge symbol. Notice that, after these measurements, the wires are represented with

double lines, to indicate that we have obtained a result — technically, we say that the state

of the qubit has collapsed to a classical value. This means that, from this point on, we

do not have quantum data anymore, only classical bits. This collapse may seem a little bit

mysterious (it is!), but don’t worry. In the next section, we will explain in detail the process

by which quantum information (qubits) is transformed into classical data (bits).

As you may have noticed, quantum circuits are somewhat similar to digital ones, in which

we have wires representing bits and different logical gates such as AND, OR, and NOT

acting on them. However, our qubits, quantum gates, and measurements obey the rules of

quantum mechanics and show some properties that are not found in classical circuits. The

rest of this chapter is devoted to explaining all of this in detail, starting with the simplest

Working with one qubit and the Bloch sphere 9

of cases, that of a single qubit, but growing all the way up to fully-fledged quantum circuits

that can use as many qubits and gates as desired.

Ready? Let’s start, then!

1.3 Working with one qubit and the Bloch
sphere

One of the advantages of using a computational model is that you can forget about the

particularities of the physical implementation of your computer and focus instead on the

properties of the elements on which you store information and the operations you can

perform on them. For instance, we could define a qubit as a (physical) quantum system

that is capable of being in two different states. In practice, it could be a photon with two

possible polarizations, a particle with two possible values for its spin, or a superconducting

circuit, whose current can be flowing in one of two directions. When using the quantum

circuit model, we can forget about those implementation details and just define a qubit. . . as

a mathematical vector!

1.3.1 What is a qubit?
In fact, a qubit (short for quantum bit, sometimes also written as qbit, Qbit or even

q-bit) is the minimal information unit in quantum computing. In the same way that a

bit (short for binary digit) can be in state 0 or in state 1, a qubit can be in state |0⟩ or in

state |1⟩. Here, we are using the so-called Dirac notation, where these funny-looking

symbols surrounding 0 and 1 are called kets and are used to indicate that we are dealing

with vectors instead of regular numbers. In fact, |0⟩ and |1⟩ are not the only possibilities

for the state of a qubit and, in general, it could be in a superposition of the form

𝑎 |0⟩ + 𝑏 |1⟩ ,

10 Chapter 1: Foundations of Quantum Computing

where 𝑎 and 𝑏 are complex numbers, called amplitudes, such that |𝑎|2 + |𝑏|2 = 1. The

quantity

√
|𝑎|2 + |𝑏|2 is called the norm or length of the state and, when it is equal to 1,

we say that the state is normalized.

To learn more. . .

If you need a refresher on complex numbers or vector spaces, please check Ap-

pendix A, Complex Numbers, and Appendix B, Basic Linear Algebra.

All these possible values for the state of a single qubit are vectors that live in a complex

vector space of dimension 2 (in fact, they live in what is called a Hilbert space, but since

we will be working only with finite dimensions, there is no real difference). Thus we shall

fix the vectors |0⟩ and |1⟩ as elements of a special basis, which we will refer to as the

computational basis. We will represent these vectors, constituents of the computational

basis, as the column vectors

|0⟩ =
(
1

0)
, |1⟩ =

(
0

1)

and hence

𝑎 |0⟩ + 𝑏 |1⟩ = 𝑎
(
1

0)
+ 𝑏

(
0

1)
=

(
𝑎

𝑏)
.

If we are given a qubit and we want to determine or, rather, estimate its state, all we

can do is perform a measurement and get one of two possible results: 0 or 1. We have

nonetheless seen how a qubit can be in infinitely many states, so how does the state of a

qubit determine the outcome of a measurement? As you likely already know, in quantum

physics, these measurements are not deterministic, but probabilistic. In particular, given

any qubit 𝑎 |0⟩ + 𝑏 |1⟩, the probability of getting 0 upon a measurement is |𝑎|2, while that of

getting 1 is |𝑏|2. Naturally, these two probabilities must add up to 1, hence the need for the

normalization condition |𝑎|2 + |𝑏|2 = 1.

Working with one qubit and the Bloch sphere 11

If upon measuring a qubit we get, let’s say, 0, we then know that, after the measurement,

the state of the qubit is |0⟩, and we say that the qubit has collapsed into that state. If we

obtain 1, the state collapses to |1⟩. Since we are obtaining results that correspond to |0⟩ and

|1⟩, we say that we are measuring in the computational basis.

Exercise 1.1

What is the probability of measuring 0 if the state of a qubit is

√
1/2 |0⟩ +

√
1/2 |1⟩?

And the probability of measuring 1? What if the state of the qubit is

√
1/3 |0⟩ +

√
2/3 |1⟩? And if it is

√
1/2 |0⟩ −

√
1/2 |1⟩?

So a qubit is, mathematically, just a 2-dimensional vector that satisfies a normalization

condition. Who could have known? But the surprises do not end here. In the next subsection,

we will see how we can use those funny-looking kets to compute inner products in a very

easy way.

1.3.2 Dirac notation and inner products
Dirac notation can not only be used for column vectors, but also for row vectors. In that

case, we talk of bras, which, together with kets, can be used to form bra-kets. This name

is a pun, because, as we are about to show, bra-kets are, in fact, inner products that are

written — you guessed it — between brackets. To be more mathematically precise, with

each ket we can associate a bra that is its adjoint or conjugate transpose or Hermitian

transpose. In order to obtain this adjoint, we take the ket’s column vector, we transpose it

and conjugate each of its coordinates (which are, as we already know, complex numbers).

We use ⟨0| to denote the bra associated with |0⟩ and ⟨1| to denote the bra associated with

|1⟩, so we have

⟨0| = |0⟩† =
(
1

0)

†

= (1 0) , ⟨1| = |1⟩† =
(
0

1)

†

= (0 1)

12 Chapter 1: Foundations of Quantum Computing

and, in general,

𝑎 ⟨0| + 𝑏 ⟨1| = 𝑎 |0⟩† + 𝑏 |1⟩† = 𝑎(1 0) + 𝑏(0 1) = (𝑎 𝑏) ,

where, as it is customary, we use the dagger symbol (†) for the adjoint.

Important note

When finding the adjoint, do not forget to conjugate the complex numbers! For

instance, it holds that

(

1−𝑖
2
𝑖√
2
)

†

= (
1+𝑖
2

−𝑖√
2) .

One of the reasons why Dirac notation is so popular for working with quantum systems is

that, by using it, we can easily compute the inner products of kets and bras. For instance,

we can readily show that

⟨0|0⟩ = (1 0)(
1

0)
= 1, ⟨0|1⟩ = (1 0)(

0

1)
= 0,

⟨1|0⟩ = (0 1)(
1

0)
= 0, ⟨1|1⟩ = (0 1)(

0

1)
= 1.

This proves that |0⟩ and |1⟩ are not just elements of any basis but of an orthonormal one,

since |0⟩ and |1⟩ are orthogonal and of length 1. Thus, we can compute the inner product

of two states |𝜓1⟩ = 𝑎 |0⟩ + 𝑏 |1⟩ and |𝜓2⟩ = 𝑐 |0⟩ + 𝑑 |1⟩ using Dirac notation by noting that

⟨𝜓1|𝜓2⟩ = (𝑎∗ ⟨0| + 𝑏∗ ⟨1|) (𝑐 |0⟩ + 𝑑 |1⟩)

= 𝑎∗𝑐 ⟨0|0⟩ + 𝑎∗𝑑 ⟨0|1⟩ + 𝑏∗𝑐 ⟨1|0⟩ + 𝑏∗𝑑 ⟨1|1⟩

= 𝑎∗𝑐 + 𝑏∗𝑑,

where 𝑎∗ and 𝑏∗ are the complex conjugates of 𝑎 and 𝑏.

Working with one qubit and the Bloch sphere 13

Exercise 1.2

What is the inner product of

√
1/2 |0⟩ +

√
1/2 |1⟩ and

√
1/3 |0⟩ +

√
2/3 |1⟩? And the

inner product of

√
1/2 |0⟩ +

√
1/2 |1⟩ and

√
1/2 |0⟩ −

√
1/2 |1⟩?

To learn more. . .

Notice that, if |𝜓⟩ = 𝑎 |0⟩ + 𝑏 |1⟩, then |⟨0|𝜓⟩|2 = |𝑎|2, which is the probability of

measuring 0 if the state is |𝜓⟩. This is not accidental. In Chapter 7, VQE: Variational

Quantum Eigensolver, for example, we will use measurements in orthonormal bases

other than the computational one, and we will see how, in that case, the probability

of measuring the result associated to an element |𝜑⟩ of a given orthonormal basis is

exactly |⟨𝜑|𝜓⟩|2.

We now know what qubits are, how to measure them, and even how to benefit from Dirac

notation for some useful computations. The only thing remaining is to study how to

operate on qubits. Are you ready? It is time for us to get you introduced to the mighty

quantum gates!

1.3.3 One-qubit quantum gates
So far, we have focused on how a qubit stores information in its state and on how we

can access (part of) that information with measurements. But in order to develop use-

ful algorithms, we also need some way of manipulating the state of qubits to perform

computations.

Since a qubit is, fundamentally, a quantum system, its evolution follows the laws of quantum

mechanics. More precisely, if we suppose that our system is isolated from its environment,

it obeys the famous Schrödinger equation.

14 Chapter 1: Foundations of Quantum Computing

To learn more. . .

The time-independent Schrödinger equation can be written as

𝐻 |𝜓(𝑡)⟩ = 𝑖ℏ
𝜕
𝜕𝑡

|𝜓(𝑡)⟩ ,

where 𝐻 is the Hamiltonian of the system, |𝜓(𝑡)⟩ is the state vector of the system

at time 𝑡, 𝑖 is the imaginary unit, and ℏ is the reduced Planck constant.

We will talk more about Hamiltonians in Chapter 3, QUBO: Quadratic Unconstrained

Binary Optimization, Chapter 4, Quantum Adiabatic Computing and Quantum An-

nealing, and Chapter 7, VQE: Variational Quantum Eigensolver.

Don’t panic! To program a quantum computer, you don’t need to know how to solve

Schrödinger’s equation. In fact, the only thing that you need to know is that its solutions

are always a special type of linear transformations. For the purposes of the quantum circuit

model, since we are working in finite-dimensional spaces and we have fixed a basis, the

operations can be described by matrices that are applied to the vectors that represent the

states of the qubits.

But not any kind of matrix does the trick. According to quantum mechanics, the only

matrices that we can use are the so-called unitary matrices, which are the matrices 𝑈 such

that

𝑈†𝑈 = 𝑈𝑈† = 𝐼 ,

where 𝐼 is the identity matrix and 𝑈†
is the adjoint of 𝑈 , that is, the matrix obtained by

transposing 𝑈 and replacing each element by its complex conjugate. This means that any

unitary matrix 𝑈 is invertible and its inverse is given by 𝑈†
. In the context of the quantum

circuit model, the operations represented by these matrices are called quantum gates.

Working with one qubit and the Bloch sphere 15

To learn more. . .

It is relatively easy to check that unitary matrices preserve vector lengths (see, for

instance, Section 5.7.5 in Dancing with Qubits, by Robert Sutor [7]). That is, if 𝑈 is a

unitary matrix and |𝜓⟩ is a quantum state (and, hence, its norm is 1, as we already

know) then 𝑈 |𝜓⟩ also is a valid quantum state because its norm is still 1. For this

reason, we can safely apply unitary matrices to our quantum states and rest assured

that the resulting states will satisfy the normalization condition.

When we have just one qubit, our unitary matrices need to be of size 2 × 2 because the state

vector is of dimension 2. Thus, the simplest example of a quantum gate is the identity matrix

of dimension 2, which transforms the state of the qubit by... well, by not transforming it at

all. A less boring example is the 𝑋 gate, whose matrix is given by

𝑋 =
(
0 1

1 0)
.

The 𝑋 gate is also called the NOT gate, because its action on the elements of the computa-

tional basis is

𝑋 |0⟩ =
(
0 1

1 0)(
1

0)
=

(
0

1)
= |1⟩ , 𝑋 |1⟩ =

(
0 1

1 0)(
0

1)
=

(
1

0)
= |0⟩ ,

which is exactly what the NOT gate does in classical digital circuits.

Exercise 1.3

Check that the gate 𝑋 matrix is, indeed, unitary. What is the inverse of 𝑋? What is

the action of 𝑋 on a general qubit in a state of the form 𝑎 |0⟩ + 𝑏 |1⟩?

16 Chapter 1: Foundations of Quantum Computing

A quantum gate with no classical analog is the Hadamard or 𝐻 gate, given by

𝐻 =
(

1√
2

1√
2

1√
2 − 1√

2
)

=
1√
2 (

1 1

1 −1)
.

This gate is extremely useful in quantum computing, for it can create superposition. To be

precise, if we apply the 𝐻 gate on a qubit in state |0⟩, we obtain

𝐻 |0⟩ =
1√
2
|0⟩ +

1√
2
|1⟩ =

1√
2
(|0⟩ + |1⟩) .

This state is so important that it has its own name and symbol. It is called the plus state

and it is denoted by |+⟩. In a similar way, we have that

𝐻 |1⟩ =
1√
2
(|0⟩ − |1⟩)

and, as you probably guessed, this state is called the minus state and it is denoted by |−⟩.

Exercise 1.4

Check that the gate 𝐻 matrix is, indeed, unitary. What is the action of 𝐻 on |+⟩ and

|−⟩? What is the action of 𝑋 on |+⟩ and |−⟩?

Of course, we can apply several gates to the same qubit one after the other. For instance,

consider the following circuit:

𝐻 𝑋 𝐻

We read gates from left to right, so in the preceding circuit we would first apply an 𝐻 gate,

then an 𝑋 gate and, finally, another 𝐻 gate. You can easily check that, if the initial state

of the qubit is |0⟩, it would end up again in state |0⟩. But were its initial state |1⟩, the final

state would become − |1⟩.

Working with one qubit and the Bloch sphere 17

It turns out that this operation is also very important, and, of course, it has its own name:

we call it the 𝑍 gate. From its action on |0⟩ and |1⟩, we can tell that its matrix will be

𝑍 =
(
1 0

0 −1)
,

something that we could have also deduced by multiplying the matrices of the gates 𝐻 , 𝑋 ,

and 𝐻 one after the other.

Exercise 1.5

Check that 𝑍 |0⟩ = |0⟩ and that 𝑍 |1⟩ = − |1⟩ in two different ways. First, use Dirac

notation and the actions of 𝐻 and 𝑋 (remember that we have defined 𝑍 as 𝐻𝑋𝐻).

Then, derive the same result by performing the matrix multiplication

(

1√
2

1√
2

1√
2 − 1√

2
)(

0 1

1 0)(

1√
2

1√
2

1√
2 − 1√

2
)
.

Since there are 𝑋 and 𝑍 gates, you may be wondering if there is also a 𝑌 gate. Indeed, there

is one, given by matrix

𝑌 =
(
0 −𝑖

𝑖 0)
.

To learn more. . .

The set {𝐼 , 𝑋 , 𝑌 , 𝑍}, known as the set of Pauli matrices, is of great importance in

quantum computing. One of its many interesting properties is that it constitutes a

basis of the vector space of 2 × 2 complex matrices. We will work with it in Chapter

7, VQE: Variational Quantum Eigensolver, for instance.

18 Chapter 1: Foundations of Quantum Computing

Other important one-qubit gates include the 𝑆 and 𝑇 gates, whose matrices are

𝑆 =
(
1 0

0 𝑒𝑖
𝜋
2)

, 𝑇 =
(
1 0

0 𝑒𝑖
𝜋
4)

.

But, of course, there is an (uncountably!) infinite number of 2-dimensional unitary matrices

and we cannot just list them all here. What we will do instead is introduce a beautiful

geometrical representation of single-qubit states, and, with it, we will explain how all

one-qubit quantum gates can, in fact, be understood as certain kinds of rotations. Enter

the Bloch sphere!

Exercise 1.6

Check that 𝑇 2 = 𝑆. Then, use the most beautiful formula ever (i.e., Euler’s identity

𝑒𝑖𝜋 + 1 = 0) to check that 𝑆2 = 𝑍 . Check also that 𝑆 and 𝑇 are unitary. Express 𝑆†

and 𝑇 † as powers of 𝑆 and 𝑇 .

1.3.4 The Bloch sphere and rotations
The general state of a qubit is described with two complex numbers. Since each of those

numbers has two real components, it would be natural to think that we would need a

four-dimensional real space in order to represent the state of a qubit. Surprisingly enough,

all the possible states of a qubit can be drawn on the surface of an old-school sphere, which

is a two-dimensional object!

To show how it can be accomplished, we need to remember that a complex number 𝑧 can

be written in polar coordinates as

𝑧 = 𝑟𝑒𝑖𝛼 ,

where 𝑟 = |𝑧| is a non-negative real number and 𝛼 is an angle in [0, 2𝜋]. Consider, then, a

qubit in a state |𝜓⟩ = 𝑎 |0⟩ + 𝑏 |1⟩ and write 𝑎 and 𝑏 in polar coordinates as

𝑎 = 𝑟1𝑒𝑖𝛼1 , 𝑏 = 𝑟2𝑒𝑖𝛼2 .

Working with one qubit and the Bloch sphere 19

We know that 𝑟21 + 𝑟22 = |𝑎|2 + |𝑏|2 = 1 and, since 0 ≤ 𝑟1, 𝑟2 ≤ 1, there must exist an angle 𝜃

in [0, 𝜋] such that cos(𝜃/2) = 𝑟1 and sin(𝜃/2) = 𝑟2. The reason for considering 𝜃/2 instead

of 𝜃 in the cosine and sine will be apparent in a moment. Notice that, by now, we have

|𝜓⟩ = cos
𝜃
2
𝑒𝑖𝛼1 |0⟩ + sin

𝜃
2
𝑒𝑖𝛼2 |1⟩ .

Another crucial observation is that we can multiply |𝜓⟩ by a complex number 𝑐 with

absolute value 1 without changing its state. Indeed, it is easy to see that 𝑐 does not affect

the probabilities of obtaining 0 and 1 when measuring in the computational basis (check it!)

and, by linearity, it comes out when applying a quantum gate 𝑈 (that is, 𝑈 (𝑐 |𝜓⟩) = 𝑐𝑈 |𝜓⟩).

Thus, there is no operation — either unitary transformation or measurement — that allows

us to distinguish |𝜓⟩ from 𝑐 |𝜓⟩. We call 𝑐 a global phase and we have just shown that it is

physically irrelevant.

Important note

Notice, however, that relative phases are, unlike global ones, really relevant! For

instance, |+⟩ = 1√
2 (|0⟩ + |1⟩) and |−⟩ = 1√

2 (|0⟩ − |1⟩) differ just in the phase of |1⟩,

but we can easily distinguish between them by first applying 𝐻 to those states and

then measuring them in the computational basis.

We can, thus, multiply |𝜓⟩ by 𝑒−𝑖𝛼1 to obtain an equivalent representation

|𝜓⟩ = cos
𝜃
2
|0⟩ + sin

𝜃
2
𝑒𝑖𝜑 |1⟩ ,

where we have defined 𝜑 = 𝛼2 − 𝛼1.

In this way, we can describe the state of any qubit with just two numbers 𝜃 ∈ [0, 𝜋] and

𝜑 ∈ [0, 2𝜋] that we can interpret as a polar angle and an azimuthal angle, respectively

(that is, we are using what are known as spherical coordinates). This gives us a three-

dimensional point

(sin 𝜃 cos 𝜑, sin 𝜃 sin 𝜑, cos 𝜃)

20 Chapter 1: Foundations of Quantum Computing

that locates the state of the qubit on the surface of a sphere, called the Bloch sphere (see

Figure 1.2).

Figure 1.2: Qubit state |𝜓⟩ represented on the Bloch sphere.

Notice that 𝜃 runs from 0 to 𝜋 to cover the whole range from the top to the bottom of the

sphere. This is why we used 𝜃/2 in the representation of our preceding qubit. We only

needed to get up to 𝜋/2 for our angles in the sines and cosines!

In the Bloch sphere, |0⟩ is mapped to the North pole and |1⟩ to the South pole. In general,

states that are orthogonal with respect to the inner product are antipodal on the sphere.

For instance, |+⟩ and |−⟩ both lie on the equator, but on opposite points of the sphere. As

we already know, the 𝑋 gate takes |0⟩ to |1⟩ and |1⟩ to |0⟩, but leaves |+⟩ and |−⟩ unchanged,

at least up to an irrelevant global phase. In fact, this means that the 𝑋 gate acts like a

rotation of 𝜋 radians around the 𝑋 axis of the Bloch sphere. . . , so now you know why we

use that name for the gate! In the same manner, 𝑍 and 𝑌 are rotations of 𝜋 radians around

the 𝑍 and 𝑌 axes, respectively.

We can generalize this behavior to obtain rotations of any angle around any axis of the

Bloch sphere. For instance, for the 𝑋 , 𝑌 , and 𝑍 axes we may define

𝑅𝑋 (𝜃) = 𝑒−𝑖
𝜃
2𝑋 = cos

𝜃
2
𝐼 − 𝑖 sin

𝜃
2
𝑋 =

(
cos 𝜃

2 −𝑖 sin 𝜃
2

−𝑖 sin 𝜃
2 cos 𝜃

2
)
,

Working with one qubit and the Bloch sphere 21

𝑅𝑌 (𝜃) = 𝑒−𝑖
𝜃
2 𝑌 = cos

𝜃
2
𝐼 − 𝑖 sin

𝜃
2
𝑌 =

(
cos 𝜃

2 − sin 𝜃
2

sin 𝜃
2 cos 𝜃

2
)
,

𝑅𝑍(𝜃) = 𝑒−𝑖
𝜃
2𝑍 = cos

𝜃
2
𝐼 − 𝑖 sin

𝜃
2
𝑍 =

(
𝑒−𝑖

𝜃
2 0

0 𝑒𝑖
𝜃
2)

≡
(
1 0

0 𝑒𝑖𝜃)
,

where we use the ≡ symbol for equivalent action up to a global phase. Notice that 𝑅𝑋 (𝜋) ≡

𝑋 , 𝑅𝑌 (𝜋) ≡ 𝑌 , 𝑅𝑍(𝜋) ≡ 𝑍 , 𝑅𝑍(𝜋2) ≡ 𝑆, and 𝑅𝑍(𝜋4) ≡ 𝑇 .

Exercise 1.7

Check these equivalences by substituting the angles in the definitions of 𝑅𝑋 , 𝑅𝑌 ,

and 𝑅𝑍 .

In fact, it can be proved (see, for instance, the book by Nielsen and Chuang [16]) that for

any one-qubit gate 𝑈 there exists a unit vector 𝑟 = (𝑟𝑥 , 𝑟𝑦 , 𝑟𝑧) and an angle 𝜃 such that

𝑈 ≡ cos
𝜃
2
𝐼 − 𝑖 sin

𝜃
2
(𝑟𝑥𝑋 + 𝑟𝑦𝑌 + 𝑟𝑧𝑍).

For example, choosing 𝜃 = 𝜋 and 𝑟 = (1/
√
2, 0, 1/

√
2) we can obtain the Hadamard gate,

for it holds that

𝐻 ≡ −𝑖
1√
2
(𝑋 + 𝑍).

Additionally, it can also be proved that, again for any one-qubit gate 𝑈 , there exist three

angles 𝛼, 𝛽, and 𝛾 such that

𝑈 ≡ 𝑅𝑍(𝛼)𝑅𝑌 (𝛽)𝑅𝑍(𝛾).

In fact, you can obtain such a decomposition for any two rotation axes as long as they are

not parallel, not just for 𝑌 and 𝑍 .

Moreover, in some quantum computing architectures (including the ones used by companies

such as IBM), it is common to use a universal one-qubit gate, called the 𝑈 -gate, that

22 Chapter 1: Foundations of Quantum Computing

depends on three angles and is able to generate any other one-qubit gate. Its matrix is

𝑈 (𝜃, 𝜑, 𝜆) =
(

cos 𝜃
2 −𝑒𝑖𝜆 sin 𝜃

2

𝑒𝑖𝜑 sin 𝜃
2 𝑒𝑖(𝜑+𝜆) cos 𝜃

2
)
.

Exercise 1.8

Show that 𝑈 (𝜃, 𝜑, 𝜆) is unitary. Check that 𝑅𝑋 (𝜃) = 𝑈 (𝜃,−𝜋/2, 𝜋/2), that 𝑅𝑌 (𝜃) =

𝑈 (𝜃, 0, 0) and that, up to a global phase, 𝑈 (𝜃) = 𝑅𝑍(0, 0, 𝜃).

All these observations about how to construct one-qubit gates from rotations and parametrized

families will be very important when we talk about variational forms and feature maps in

Chapter 9, Quantum Support Vector Machines, and Chapter 10, Quantum Neural Networks,

and also to construct controlled gates later in this chapter.

1.3.5 Hello, quantum world!
To put together everything that we have learned, we are going to create our very first

complete quantum circuit. It looks like this:

𝐻

It doesn’t seem very impressive, but let’s analyze it part by part. As you know, following

convention, the initial state of our qubit is assumed to be |0⟩, so that’s what we have before

we do anything. Then we apply the 𝐻 gate, so the state changes to

√
1/2 |0⟩ +

√
1/2 |1⟩.

Finally, we measure the qubit. The probability of obtaining 0 will be
|||
√
1/2|||

2
= 1/2, and

that of getting 1 will also be 1/2, so we have created a circuit that — at least in theory —

generates random bits following a perfectly uniform distribution.

To learn more. . .

Unbiased uniform bit distributions are of great relevance for multiple applications

in simulation, cryptography, and even online gambling games. As we will learn

in Chapter 2, The Tools of the Trade, current quantum computers deviate from this

Working with two qubits and entanglement 23

equilibrium because they are affected by noise and gate and measurement errors.

However, protocols to extract perfect random bits even with noisy quantum com-

puters have been proposed and could become one of the first practical applications

of quantum computing (see, for instance, the paper by Acín and Masanes [17]).

We can modify the previous circuit to obtain any distribution over 0 and 1 that we desire.

If we want the probability of measuring 0 to be 𝑝 ∈ [0, 1], we just need to consider

𝜃 = 2 arccos√𝑝 and the following circuit:

𝑅𝑌 (𝜃)

Exercise 1.9

Check that, with the preceding circuit, the state before measurement is

√𝑝 |0⟩ +
√
1 − 𝑝 |1⟩ and, hence, the probability of measuring 0 is 𝑝 and that of measuring 1 is

1 − 𝑝.

For now, this is all that we need to know about one-qubit states, gates, and measurements.

Let us move on to two-qubit systems, where the mysteries of entanglement are awaiting to

be revealed!

1.4 Working with two qubits and entanglement
Now that we have mastered the inner workings of solitary qubits, we are ready to up the

ante. In this section, we will learn about systems of two qubits and how they can become

entangled. We will first define the mathematical representation of two-qubit systems and

how we can measure them. After that, we will study different quantum gates that can

act on two qubits at once and we will have a look at some of their very interesting and

slightly puzzling properties. We will conclude with a simple but enlightening example of a

two-qubit circuit. We promise that the ride is going to be amazing!

24 Chapter 1: Foundations of Quantum Computing

1.4.1 Two-qubit states
So far, we have worked with qubits in isolation. But the real power of quantum computing

cannot be unleashed unless qubits can talk to each other. We will start by considering the

simplest case of quantum systems in which there is qubit interaction: two-qubit systems.

Of course, in a two-qubit system, each of the qubits can be in state |0⟩ or in state |1⟩. Thus,

for the two qubits, we have four possible combinations: both are in state |0⟩, the first one

is in state |0⟩ and the second one in state |1⟩, the first one is in state |1⟩ and the second

one in state |0⟩, or both are in state |1⟩. These four possibilities form a basis (called the

computational basis) of a 4-dimensional space and we denote them, respectively, by

|0⟩ ⊗ |0⟩ , |0⟩ ⊗ |1⟩ , |1⟩ ⊗ |0⟩ , |1⟩ ⊗ |1⟩ .

Here, ⊗ is the symbol for the tensor product. The tensor product of two column vectors

is defined by

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑎1
𝑎2
⋮

𝑎𝑛

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⊗

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑏1
𝑏2
⋮

𝑏𝑚

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑎1

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑏1
𝑏2
⋮

𝑏𝑚

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

𝑎2

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑏1
𝑏2
⋮

𝑏𝑚

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⋮

𝑎𝑛

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑏1
𝑏2
⋮

𝑏𝑚

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑎1𝑏1
𝑎1𝑏2
⋮

𝑎1𝑏𝑚
𝑎2𝑏1
𝑎2𝑏2
⋮

𝑎2𝑏𝑚
⋮

𝑎𝑛𝑏1
𝑎𝑛𝑏2
⋮

𝑎𝑛𝑏𝑚

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Working with two qubits and entanglement 25

Hence, the four basis states can be represented by four-dimensional column vectors given

by

|0⟩ ⊗ |0⟩ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

0

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, |0⟩ ⊗ |1⟩ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

1

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, |1⟩ ⊗ |0⟩ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

1

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, |1⟩ ⊗ |1⟩ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

0

1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Usually, we omit the ⊗ symbol and just write

|0⟩ |0⟩ , |0⟩ |1⟩ , |1⟩ |0⟩ , |1⟩ |1⟩

or

|00⟩ , |01⟩ , |10⟩ , |11⟩

or even

|0⟩ , |1⟩ , |2⟩ , |3⟩ .

Obviously, in this last case, the number of qubits that we are using must be clear from the

context in order not to mistake the state |0⟩ of a one-qubit system with the state |0⟩ of a

two-qubit system — or, as we will see soon, any other multi-qubit system!

As we have mentioned, these four states constitute a basis of the vector space of possible

states for a two-qubit system. The general expression for the state of such a system is

|𝜓⟩ = 𝑎00 |00⟩ + 𝑎01 |01⟩ + 𝑎10 |10⟩ + 𝑎11 |11⟩

where 𝑎00, 𝑎01, 𝑎10, and 𝑎11 are complex numbers (called amplitudes, remember?) such that

∑1
𝑥,𝑦=0

||𝑎𝑥𝑦 ||
2 = 1.

If we measure in the computational basis both qubits at this generic state that we are

considering, we will obtain 00 with probability |𝑎00|2, 01 with probability |𝑎01|2, 10 with

probability |𝑎10|2, and 11 with probability |𝑎11|2. In all those cases, the state will collapse to

the state corresponding to the outcome of the measurement, just as with one-qubit systems.

26 Chapter 1: Foundations of Quantum Computing

Let’s now say that we only measure one of the qubits. What happens then? Suppose that

we measure the first qubit. Then, the probability of obtaining 0 will be |𝑎00|2 + |𝑎01|2, which

is the sum of the probabilities of all the outcomes in which the first qubit can be 0. If

we measure the first qubit and the result turns out to be 0, the system will not collapse

completely, but it will remain in the state

𝑎00 |00⟩ + 𝑎01 |01⟩√
|𝑎00|2 + |𝑎01|2

,

where we have divided by

√
|𝑎00|2 + |𝑎01|2 to keep the state normalized. The situation in

which the result of the measurement is 1 is analogous.

Exercise 1.10

Derive the formulas for the probability of measuring 1 on the first qubit in a general

two-qubit state and for the state of the system after the measurement.

Dirac notation is also useful to compute inner products of two-qubit states. We only need

to notice that

(⟨𝜓1| ⊗ ⟨𝜓2|) (|𝜑1⟩ ⊗ |𝜑2⟩) = ⟨𝜓1|𝜑1⟩ ⟨𝜓2|𝜑2⟩ ,

apply distributivity and remember to conjugate the complex coefficients when obtaining a

bra from a ket.

Then, for instance, we can notice that the inner product of
4
5 |01⟩+

3𝑖
5 |11⟩ and

1√
2 |00⟩+

1√
2 |11⟩

is

(
4
5
⟨01| −

3𝑖
5
⟨11|)(

1√
2
|00⟩ +

1√
2
|11⟩) =

4
5
√
2
⟨01|00⟩ +

4
5
√
2
⟨01|11⟩ −

3𝑖
5
√
2
⟨11|00⟩ −

3𝑖
5
√
2
⟨11|11⟩ =

4
5
√
2
⟨0|0⟩ ⟨1|0⟩ +

4
5
√
2
⟨0|1⟩ ⟨1|1⟩ −

3𝑖
5
√
2
⟨1|0⟩ ⟨1|0⟩ −

3𝑖
5
√
2
⟨1|1⟩ ⟨1|1⟩ = −

3𝑖
5
√
2
,

since ⟨0|1⟩ = ⟨1|0⟩ = 0 and ⟨0|0⟩ = ⟨1|1⟩ = 1.

Working with two qubits and entanglement 27

1.4.2 Two-qubit gates: tensor products
Of course, the operations that we can conduct on two-qubit systems need to be unitary.

Thus, two-qubit quantum gates are 4 × 4 unitary matrices that act on 4-dimensional column

vectors. The simplest way to construct such matrices is by taking the tensor product of two

one-qubit quantum gates. Namely, if we consider two one-qubit gates 𝑈1 and 𝑈2 and two

one-qubit states |𝜓1⟩ and |𝜓2⟩, we can form a two-qubit gate 𝑈1 ⊗𝑈2 that acts on |𝜓1⟩⊗ |𝜓2⟩

as

(𝑈1 ⊗ 𝑈2) (|𝜓1⟩ ⊗ |𝜓2⟩) = (𝑈1 |𝜓1⟩) ⊗ (𝑈2 |𝜓2⟩) .

By linearity, we can extend 𝑈1 ⊗ 𝑈2 to any combination of two-qubit states and we can

associate a matrix to 𝑈1 ⊗ 𝑈2. In fact, said matrix is given by the tensor product of the

matrices associated to 𝑈1 and 𝑈2. More concretely, the expression for the tensor product,

𝐴 ⊗ 𝐵, of the 2 × 2 matrices 𝐴 and 𝐵 is

(
𝑎11 𝑎12
𝑎21 𝑎22)

⊗
(
𝑏11 𝑏12
𝑏21 𝑏22)

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑎11 (
𝑏11 𝑏12
𝑏21 𝑏22)

𝑎12 (
𝑏11 𝑏12
𝑏21 𝑏22)

𝑎21 (
𝑏11 𝑏12
𝑏21 𝑏22)

𝑎22 (
𝑏11 𝑏12
𝑏21 𝑏22)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑎11𝑏11 𝑎11𝑏12 𝑎12𝑏11 𝑎12𝑏12
𝑎11𝑏21 𝑎11𝑏22 𝑎12𝑏21 𝑎12𝑏22
𝑎21𝑏11 𝑎21𝑏12 𝑎22𝑏11 𝑎22𝑏12
𝑎21𝑏21 𝑎21𝑏22 𝑎22𝑏21 𝑎22𝑏22

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Now it is easy to verify that this operation is indeed unitary and, hence, deserves the name

of quantum gate.

Exercise 1.11

Check that, given any pair of unitary matrices 𝑈1 and 𝑈2, the inverse of 𝑈1 ⊗ 𝑈2 is

𝑈†
1 ⊗ 𝑈†

2 and that (𝑈1 ⊗ 𝑈2)† = 𝑈†
1 ⊗ 𝑈†

2 .

28 Chapter 1: Foundations of Quantum Computing

Tensor products of gates occur naturally when we have circuits with two qubits and pairs

of individual one-qubit gates are acting on each of them. For instance, in the following

circuit, the gate 𝑋 ⊗ 𝑋 acts on the two qubits and then it is followed by the gate 𝐻 ⊗ 𝐼 ,

where 𝐼 is the identity gate:

𝑋 𝐻

𝑋

Exercise 1.12

Explicitly compute the matrices for the gates 𝑋 ⊗ 𝑋 and 𝐻 ⊗ 𝐼 .

You may complain that we haven’t done anything new so far. And you would be right! In

fact, quantum gates that are obtained as the tensor product of one-qubit gates can be seen

as operations on isolated qubits that just happen to be applied at the same time. But wait

and see! In the next subsection, we will introduce a completely different way of acting on

two-qubit systems.

1.4.3 The CNOT gate
By taking tensor products of one-qubit gates, we can only obtain operations that act on

each qubit individually. But this just leaves us with a (rather boring) subset of all the

possible two-qubit gates. There are many unitary matrices that cannot be written as the

tensor product of other simple matrices. In the two-qubit case, probably the most important

one is the controlled-NOT (or controlled-𝑿) gate, usually called the CNOT gate, given

by the unitary matrix

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Working with two qubits and entanglement 29

It is illuminating to see how this gate acts on the elements of the two-qubit computational

basis. As you can easily check, we get

CNOT |00⟩ = |00⟩ , CNOT |01⟩ = |01⟩ , CNOT |10⟩ = |11⟩ , CNOT |11⟩ = |10⟩ .

This means that the value of the second qubit is flipped if and only if the value of the first

qubit is 1. Or, to put it in other words, the application of a NOT gate on the second qubit

(that we call the target) is controlled by the first qubit. Now the name of this gate makes

much more sense, doesn’t it?

In a quantum circuit, the CNOT gate is represented as follows:

Notice that the control qubit is indicated by a solid black circle and the target qubit is

indicated by the ⊕ symbol (the symbol for an 𝑋 gate can also be used instead of ⊕).

Sometimes, technical difficulties restrict the number of CNOT gates that can be actually

implemented on a quantum computer. For instance, on a certain quantum chip you may

have the possibility of applying a CNOT gate targeting qubit 1 and controlled by qubit 0,

but not the other way around. If you find yourself in such a situation, there’s no need to

panic. If you use the circuit

𝐻 𝐻

𝐻 𝐻

you are effectively applying a CNOT gate with target in the top qubit and control in the

bottom one. And that’s how you can save the day!

The CNOT gate can also be used to interchange or swap the states of two qubits, by using

the following circuit:

30 Chapter 1: Foundations of Quantum Computing

Exercise 1.13

Check these equivalences in two different ways: by computing the matrices of the

circuits and by obtaining the result of using them with qubits in states |00⟩, |01⟩,

|10⟩, and |11⟩.

In any case, the most prominent use of the CNOT gate is, without a doubt, the ability to

create entanglement, an intriguing property of quantum systems that we will study next.

1.4.4 Entanglement
Oddly enough, in order to define when a quantum system is entangled, we first need to

define when it is not entangled. We say that a state |𝜓⟩ is a product state if it can be

written as the tensor product of two other states |𝜓1⟩ and |𝜓2⟩, each of at least one qubit,

as in

|𝜓⟩ = |𝜓1⟩ ⊗ |𝜓2⟩ .

If |𝜓⟩ is not a product state, we say that it is entangled.

For example, |01⟩ is a product state, because we know that it is just another way of writing

|0⟩⊗ |1⟩. Also,

√
1/2(|00⟩ + |10⟩) is a product state, because we can factor |0⟩ on the second

qubit to obtain

1√
2
(|00⟩ + |10⟩) = (

1√
2
(|0⟩ + |1⟩)) |0⟩ .

On the other hand,

√
1/2 (|00⟩ + |11⟩) is an entangled state. No matter how hard you try,

it is impossible to write it as a product of two one-qubit states. Suppose, for sake of

Working with two qubits and entanglement 31

contradiction, that it were possible. Then, you would have

1√
2
(|00⟩ + |11⟩) = (𝑎 |0⟩ + 𝑏 |1⟩) (𝑐 |0⟩ + 𝑑 |1⟩)

= 𝑎𝑐 |00⟩ + 𝑎𝑑 |01⟩ + 𝑏𝑐 |01⟩ + 𝑏𝑑 |11⟩ .

But this forces 𝑎𝑑 to be 0, because we have no |01⟩ component in

√
1/2(|00⟩ + |11⟩). Then,

either 𝑎 = 0, in which case 𝑎𝑐 is 0, or 𝑑 = 0, from which 𝑏𝑑 = 0 follows. In both cases, it is

impossible to reach the equality that we needed. Thus, it follows that the state is entangled.

Exercise 1.14

Is

√
1/3(|00⟩ + |01⟩ + |11⟩) entangled? And what about

1
2 (|00⟩ + |01⟩ + |10⟩ + |11⟩)?

When measured, entangled states can show correlations that go beyond what can be ex-

plained with classical physics. For instance, if we have the entangled state

√
1/2 (|00⟩ + |11⟩)

and we measure the first qubit, we can obtain 0 or 1, each with probability 1/2. However,

if we measure the second qubit afterwards, the result will be completely determined by

the value obtained when measuring the first qubit and, in fact, will be exactly the same.

If we invert the order and measure first the second qubit, then the result will be 0 or 1,

with equal probability. But, in this case, the result of a subsequent measurement of the first

qubit will be completely determined!

This still happens even if we separate the two qubits thousands of light years apart, as if one

qubit could somehow know what the result of measuring the other qubit was. This curious

behavior haunted many physicists during the 20th century, including Albert Einstein, who

called it a “spooky action at a distance” (see [18]). Nevertheless, the effects of entanglement

have been repeatedly demonstrated in uncountable experiments (in fact, the Nobel Prize in

Physics 2022 was awarded to Alain Aspect, John F. Clauser, and Anton Zeilinger, pioneers

in studying and testing this phenomenon in practice [3], [19]–[21]). And, very importantly

for us, entanglement is one of the most powerful resources available in quantum computing.

32 Chapter 1: Foundations of Quantum Computing

But entanglement is, by no means, the only puzzling feature of qubit systems. In the next

subsection, we are going to mathematically prove that copying quantum information, an

operation that you may have taken for granted, is not possible in general. These qubits are,

indeed, full of surprises!

1.4.5 The no-cloning theorem
Another peculiar property of quantum systems is that, in general, they don’t allow us to

copy information. Surprising as this may seem, it is just an easy consequence of the

linearity of quantum gates. To show why, let us be more precise about what we would

need in order to copy information, for instance with just two qubits. We would like to have

a two-qubit quantum gate 𝑈 that will be able to copy the first qubit into the second. That

is, for any given quantum state |𝜓⟩, we would need

𝑈 |𝜓⟩ |0⟩ = |𝜓⟩ |𝜓⟩ .

Then, 𝑈 |00⟩ = |00⟩ and 𝑈 |10⟩ = |11⟩ and, by linearity,

𝑈 (
1√
2
(|00⟩ + |10⟩)) =

1√
2
(𝑈 |00⟩ + 𝑈 |10⟩) =

1√
2
(|00⟩ + |11⟩) .

We should highlight that the state that we have obtained is entangled, as we proved in the

previous subsection.

Nevertheless, notice that, in our original state, we can factor the second |0⟩ out to obtain

1√
2
(|00⟩ + |10⟩) = (

|0⟩ + |1⟩√
2) |0⟩ .

Then, in virtue of the action of 𝑈 , we should have

𝑈 (
1√
2
(|00⟩ + |10⟩)) = 𝑈 ((

|0⟩ + |1⟩√
2) |0⟩) =

(|0⟩ + |1⟩)√
2

(|0⟩ + |1⟩)√
2

,

Working with two qubits and entanglement 33

which is a product state. However, we had obtained earlier that 𝑈 (
√
1/2(|00⟩ + |10⟩)) =

√
1/2(|00⟩ + |11⟩), which is entangled! This contradiction implies that, alas, no such 𝑈

exists.

This remarkable result is called the no-cloning theorem and we should explain its meaning

in a little more detail. On the one hand, notice that this does not imply that we cannot copy

classical information. In fact, if |𝜓⟩ is just |0⟩ or |1⟩, we can easily achieve 𝑈 |𝜓⟩ |0⟩ = |𝜓⟩ |𝜓⟩

by taking 𝑈 to be the CNOT gate. On the other hand, the theorem applies to unknown

states |𝜓⟩. If we know what |𝜓⟩ is — that is, if we know a circuit that prepares |𝜓⟩ starting

from |0⟩ — then, of course, we can create as many independent copies of it as we want.

However, if |𝜓⟩ is handed to us without any additional information about its state, the

no-cloning theorem shows that we cannot replicate its state in general.

To learn more. . .

The no-cloning theorem plays an important role in the security of quantum key

distribution protocols such as the famous BB84, introduced in 1984 by Bennett and

Brassard [4].

After this brief detour, let’s return to our study of two-qubit quantum gates. In the next

subsection, we will show how to construct many interesting two-qubit unitary operations

whose action is controlled by one of their inputs.

1.4.6 Controlled gates
You may be wondering if, in addition to a controlled-𝑋 (or CNOT) gate, there are also

controlled-𝒀 , controlled-𝒁 , or controlled-𝑯 gates. The answer is a resounding yes and,

in fact, for any quantum gate 𝑈 , it is possible to define a controlled-𝑈 (or, simply, C𝑼)

gate whose action on the computational basis is

C𝑈 |00⟩ = |00⟩ , C𝑈 |01⟩ = |01⟩ , C𝑈 |10⟩ = |1⟩𝑈 |0⟩ , C𝑈 |11⟩ = |1⟩𝑈 |1⟩ .

34 Chapter 1: Foundations of Quantum Computing

Exercise 1.15

Check that the matrix of C𝑈 is

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0

0 1 0 0

0 0 𝑢11 𝑢12
0 0 𝑢21 𝑢22

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where (𝑢𝑖𝑗)2𝑖,𝑗=1 is the matrix of 𝑈 . Check also that C𝑈 is unitary. What is the adjoint

of C𝑈?

The circuit representation of a C𝑈 gate is similar to the one that we use for the CNOT gate,

namely

𝑈 ,

where the solid black circle indicates the control and the box with 𝑈 inside indicates the

target.

Constructing a controlled gate is simpler than it seems, provided your quantum computer

already implements rotation gates and the two-qubit CNOT gate. In fact, from the decom-

position in rotations that we mentioned at the end of Section 1.3.4, it can be proved (see the

book by Nielsen and Chuang [16, Corollary 4.2]) that any one-qubit quantum gate 𝑈 can

be written in the form

𝑈 = 𝑒𝑖𝜃𝐴𝑋𝐵𝑋𝐶

for some angle 𝜃 and gates 𝐴, 𝐵, and 𝐶 such that 𝐴𝐵𝐶 = 𝐼 . Then, the following circuit

implements C𝑈 :

Working with two qubits and entanglement 35

𝑅𝑍(𝜃)

𝐶 𝐵 𝐴

Sometimes, though, constructing a controlled gate is much easier. For instance, it can be

shown that a controlled-𝑍 gate can be obtained from a controlled-𝑋 and two 𝐻 gates, as

shown in the identity of the following circuits:

𝑍 = 𝐻 𝐻

Exercise 1.16

Prove the preceding equivalence.

We now have everything we need in order to construct our first two-qubit quantum circuit.

Let’s get those qubits entangled!

1.4.7 Hello, entangled world!
To finish up with our study of two-qubit systems, let us show how to create entangled

states with the help of the CNOT gate. Consider the following circuit:

|0⟩ 𝐻

|0⟩

Initially, the state of the system is |00⟩. After we apply the 𝐻 gate, we get into the state

√
1/2(|00⟩+ |10⟩). Finally, when we apply the CNOT gate, the state changes to

√
1/2(|00⟩+

|11⟩), which, as we proved in Section 1.4.4, is indeed an entangled state.

The state

√
1/2 (|00⟩ + |11⟩) is known as a Bell state, of which there are four. The other

three are

√
1/2 (|00⟩ − |11⟩),

√
1/2(|10⟩ + |01⟩), and

√
1/2(|10⟩ − |01⟩). All of them are

entangled, and they can be prepared with circuits similar to the preceding one.

36 Chapter 1: Foundations of Quantum Computing

Exercise 1.17

Show that all four Bell states are entangled. Obtain circuits to prepare them. Hint:

you can use 𝑍 and 𝑋 gates after the CNOT in the preceding circuit.

We are now ready for the big moment. In the next section, we will finally learn how to

work with not just one or two qubits, but with as many as we can get in our quantum

computers.

1.5 Working with multiple qubits and
universality

Now that we have mastered working with two-qubit systems, it will be fairly straightfor-

ward to generalize all the notions that we have been studying to the case in which the

number of qubits in our circuits is arbitrarily big. You know the drill: we will start by

defining, mathematically, what a multi-qubit system is, we will then learn how to measure

it and, finally, we will introduce quantum gates that act on many qubits at the same time.

1.5.1 Multi-qubit systems
With all that we have learned so far, it will now be very easy to understand how to work

with multi-qubit systems.

As you may have already deduced, if we have 𝑛 qubits, the states that constitute the

computational basis are

|0⟩ ⊗ |0⟩ ⊗⋯ ⊗ |0⟩ ,

|0⟩ ⊗ |0⟩ ⊗⋯ ⊗ |1⟩ ,

⋮

|1⟩ ⊗ |1⟩ ⊗⋯ ⊗ |1⟩ .

Working with multiple qubits and universality 37

We usually omit the ⊗ symbol to write

|0⟩ |0⟩⋯ |0⟩ ,

|0⟩ |0⟩⋯ |1⟩ ,

|1⟩ |1⟩⋯ |1⟩

or

|00⋯ 0⟩ , |00⋯ 1⟩ ,… , |11⋯ 1⟩

or simply

|0⟩ , |1⟩ ,… , |2𝑛 − 1⟩ .

Important note

When using the |0⟩ , |1⟩ ,… , |2𝑛 − 1⟩ notation for basis states, the total number of

qubits must be clear from context. Otherwise, a state like, for example, |2⟩ might

mean either |10⟩, |010⟩, |0010⟩, or any string with leading zeroes and ending in

10. . . and that would be an intolerable ambiguity!

Of course, a generic state of the system will then be of the form

|𝜓⟩ = 𝑎0 |0⟩ + 𝑎1 |1⟩ + … + 𝑎2𝑛−1 |2𝑛 − 1⟩

subject to the only condition that the amplitudes 𝑎𝑖 should be complex numbers such that

∑2𝑛−1
𝑙=0 |𝑎𝑙 |2 = 1. Our dear old friend, the normalization condition!

To learn more. . .

Notice that the number of parameters describing the general state of an 𝑛-qubit

system is exponential in 𝑛. For highly entangled states, we do not know how to

represent all this information in a more succinct way and it is strongly suspected

that it is not possible. Part of the power of quantum computing comes from this

38 Chapter 1: Foundations of Quantum Computing

possibility of implicitly working with 2𝑛 complex numbers by manipulating just 𝑛

qubits.

Exercise 1.18

Check that the basis state |𝑗⟩ is represented by a 2𝑛-dimensional column vector whose

𝑗-th component is 1, while the rest are 0 (Hint: Use, repeatedly, the expression for

the tensor product of column vectors that we discussed in Section 1.4.1 and the

fact that the tensor product is associative). Deduce that any 𝑛-qubit state can be

represented by a 2𝑛-dimensional column vector with unit length.

If we decide to measure all the qubits of the system in the computational basis, we will

obtain 𝑚 with probability |𝑎𝑚|2. If that is the case, then the state will collapse to |𝑚⟩. But if

we only measure one of the qubits, say the 𝑗-th one, then we will obtain 0 with probability

∑
𝑙∈𝐽0

|𝑎𝑙 |2,

where 𝐽0 is the set of numbers whose 𝑗-th bit is 0. In this scenario, the state of the system

after measuring 0 would be

∑𝑙∈𝐽0 𝑎𝑙 |𝑙⟩√
∑𝑙∈𝐽0 |𝑎𝑖|

2
.

Exercise 1.19

Derive the formulas for the case in which the result of the measurement is 1.

Exercise 1.20

What is the probability of getting 0 when we measure the second qubit of

(1/2) |100⟩+ (1/2) |010⟩+
√
1/2 |001⟩? What will the state be after the measurement

if we indeed get 0?

Working with multiple qubits and universality 39

Computing inner products of 𝑛-qubit systems in Dirac notation is very similar to doing it

with two-qubit systems. The procedure is analogous to the one we showed in Section 1.4.1,

but taking into account that

(⟨𝜓1| ⊗… ⊗ ⟨𝜓𝑛|) (|𝜑1⟩ ⊗… ⊗ |𝜑𝑛⟩) = ⟨𝜓1|𝜑1⟩… ⟨𝜓𝑛|𝜑𝑛⟩ .

Exercise 1.21

Compute the inner product of |𝑥⟩ and |𝑦⟩, where 𝑥 and 𝑦 are both binary strings of

length 𝑛. Use your result to prove that {|𝑥⟩}𝑥∈{0,1}𝑛 is, indeed, an orthonormal basis.

Exercise 1.22

Compute the inner product of the states

√
1/2 (|000⟩ + |111⟩) and

1/2 (|000⟩ + |011⟩ + |101⟩ + |110⟩).

We can now turn to the question of how to operate on many qubits at once. Let’s define

multi-qubit gates!

1.5.2 Multi-qubit gates
Since 𝑛-qubit states are represented by 2𝑛-dimensional column vectors, 𝑛-qubit gates can

be identified with 2𝑛 × 2𝑛 unitary matrices. Similar to the two-qubit case, we can construct

𝑛-qubit gates by taking the tensor product of gates on a smaller number of qubits. Namely,

if 𝑈1 is an 𝑛1-qubit gate and 𝑈2 is an 𝑛2-qubit gate, then 𝑈1 ⊗ 𝑈2 is an (𝑛1 + 𝑛2)-qubit gate

and its matrix is given by the tensor product of the matrices 𝑈1 and 𝑈2.

To learn more. . .

The expression for the tensor product of two matrices 𝐴 and 𝐵 is

⎛
⎜
⎜
⎜
⎜
⎝

𝑎11 … 𝑎1𝑞
⋮ ⋱ ⋮

𝑎𝑝1 … 𝑎𝑝𝑞

⎞
⎟
⎟
⎟
⎟
⎠

⊗ 𝐵 =

⎛
⎜
⎜
⎜
⎜
⎝

𝑎11𝐵 … 𝑎1𝑞𝐵

⋮ ⋱ ⋮

𝑎𝑝1𝐵 … 𝑎𝑝𝑞𝐵

⎞
⎟
⎟
⎟
⎟
⎠

.

40 Chapter 1: Foundations of Quantum Computing

However, there are 𝑛-qubit gates that cannot be constructed as tensor products of smaller

gates. One such example is the Toffoli or CCNOT gate, a three-qubit gate that acts on the

computational basis as

CCNOT |𝑥⟩ |𝑦⟩ |𝑧⟩ = |𝑥⟩ |𝑦⟩ |𝑧 ⊕ (𝑥 ∧ 𝑦)⟩ ,

where ⊕ is the XOR function and ∧ is the symbol for the AND Boolean function. Thus,

CCNOT applies a doubly controlled (in this case, by the first two qubits) NOT gate to the

third qubit — hence the name!

Exercise 1.23

Obtain the matrix for the CCNOT gate and verify that it is unitary.

The Toffoli gate is important because, using it and with the help of auxiliary qubits, we

can construct any classical Boolean operator. For instance, CCNOT |1⟩ |1⟩ |𝑧⟩ = |1⟩ |1⟩ |¬𝑧⟩

(where ¬𝑧 is the negation of 𝑧) and CCNOT |𝑥⟩ |𝑦⟩ |0⟩ = |𝑥⟩ |𝑦⟩ |𝑥 ∧ 𝑦⟩. This shows that,

with quantum circuits, we can simulate the behavior of any classical digital circuit at the

cost of using some additional ancillary qubits, since any Boolean function can be built with

just negations and conjunctions. This is somewhat surprising, because we know that all

quantum gates are invertible, while not all Boolean functions are. It then follows that we

could make all of our digital circuits reversible just by implementing a classical version of

the Toffoli gate!

We will not be studying any other concrete examples of gates that act on three (or more!)

qubits because, in fact, we can simulate their behavior with circuits that only use one- and

two-qubit gates. Keep on reading to know how!

1.5.3 Universal gates in quantum computing
Current quantum computers can’t implement every possible quantum gate. Instead, they

rely on universality results that show how any unitary operation can be decomposed as

a circuit that uses a reduced set of primitive gates. In previous sections, we mentioned,

Working with multiple qubits and universality 41

for instance, that any one-qubit gate can be obtained by using just 𝑅𝑍 and 𝑅𝑌 rotations. It

turns out that similar results exist for the general case of 𝑛-qubit quantum gates.

To us, it will be important to know that, for any unitary operation, we can construct a

circuit that implements it using only one-qubit gates and the CNOT gate. For this reason,

we say that those gates are universal — in the same sense that, for example, negation

and conjunction are universal for Boolean logic. This fact will be crucial for our study of

feature maps and variational forms in connection to quantum neural networks and

other quantum machine learning models.

To learn more. . .

In addition to one-qubit gates plus CNOT, there are many other sets of universal

gates. For instance, it can be shown that the three gates 𝐻 , 𝑇 , and CNOT can be

used to approximate any unitary operation to any desired accuracy — and they are

universal in that sense. See Section 4.5 of the book by Nielsen and Chuang [16] for

proofs of these facts and for more examples of universal gate sets.

To illustrate how CNOT and one-qubit gates can be used to implement any other quantum

gate, the following circuit shows a possible decomposition of the Toffoli gate targeting the

top qubit:

𝐻 𝑇 † 𝑇 𝑇 † 𝑇 𝐻

𝑇 𝑇 †

𝑇

.

Exercise 1.24

Verify that the preceding circuit implements the Toffoli gate by checking its action

on the states of the computational basis.

42 Chapter 1: Foundations of Quantum Computing

This concludes our review of the fundamentals of quantum computing. We’ve come a long

way since the beginning of this chapter, but by now we have mastered all the mathematics

that we will need in order to study quantum machine learning and quantum optimization

algorithms. Soon, we will see all these concepts in action!

Summary
In this chapter, we have introduced the quantum circuit model and the main concepts that

it relies on: qubits, gates, and measurements. We have started by studying the most humble

circuits, those that only have one or two qubits, but we have used our experience with

them to grow all the way up to multi-qubit systems. In the process, we have discovered

some powerful properties, such as superposition and entanglement, and we have mastered

the mathematics — mainly some linear algebra — needed to work with them.

These notions will be extremely valuable to us, because they make up the language in

which we will be describing the quantum algorithms for machine learning and optimization

that we will study in the rest of the book. Soon, all the pieces will come together to form a

beautiful structure. And we will be able to appreciate it and understand it fully because of

the solid foundations that we have acquired by now.

In the next chapter, we will start applying all that we have learned by implementing and

running quantum circuits on quantum simulators and on actual quantum computers. We

don’t know about you, but we are pretty excited!

2
The Tools of the Trade in
Quantum Computing

Give us the tools, and we will finish the job.

— Winston Churchill

We are all very much looking forward to having a “Q1 Pro” quantum chip in our laptops,

but — much to our regret — the technology is not there just yet. Nevertheless, we do have

some actual quantum computers that, with their limitations, are able to execute quantum

algorithms. And, furthermore, our good old classical computers can actually do a very

decent job at simulating ideal quantum computers, at least for a low number of qubits.

In this chapter, we will explore the tools that allow us to implement quantum algorithms

using the quantum circuit model and run them on simulators or on real quantum hardware.

We will begin by going through some of the most widely-used quantum software frame-

works and platforms out there. Then, we will see how to work with the two software

44 Chapter 2: The Tools of the Trade in Quantum Computing

frameworks that we are going to use more extensively throughout this book: Qiskit and

PennyLane.

We’ll cover the following topics in this chapter:

• Tools for quantum computing: a non-exhaustive overview

• Working with Qiskit

• Working with PennyLane

After reading this chapter, you will have a broad perspective on the range of software

tools and platforms available for quantum computing. Moreover, you will know how

to implement and execute quantum algorithms — both on simulators and real quantum

hardware — using Qiskit and PennyLane.

2.1 Tools for quantum computing: a
non-exhaustive overview

In this book, we will work mostly with two quantum frameworks: Qiskit and PennyLane.

These frameworks are powerful, very widely used, and are backed by strong user commu-

nities, but they are by no means the only interesting options available. There is currently a

plethora of wonderful software frameworks for quantum computing, so much so that it

can sometimes feel overwhelming!

2.1.1 A non-exhaustive survey of frameworks and
platforms

In this section, we will briefly go through some of the most popular frameworks out there.

Most of these frameworks are free, both as in free beer and as in free speech.

• Quirk: We can begin with a simple yet powerful simulator of quantum circuits:

Quirk (https://algassert.com/quirk). Unlike all the other frameworks that we

will discuss, this one does not work with code, but with a graphical user interface

that runs as a web application. This makes it ideal for running demonstrations of

algorithms or for quick prototyping.

https://algassert.com/quirk

Tools for quantum computing: a non-exhaustive overview 45

Figure 2.1: Quirk demonstrating the Grover search algorithm

With Quirk, you can build quantum circuits arranging gates with a drag-and-drop

interface. It includes the most common quantum gates, in addition to a handful of

custom gates that are used for the demonstration of some algorithms. You can have

a look at Figure 2.1 to see Quirk in action.

• Q# and Microsoft’s QDK: Most quantum software frameworks rely on a host

classical programming language (usually Python). Q# (read as “Q sharp”) is an

exception to this rule: it is a purpose-built programming language for quantum

computing developed at Microsoft. This language is used in Microsoft’s Quantum

Development Kit (QDK) (https://azure.microsoft.com/en-us/resources/

development-kit/quantum-computing/), which includes several simulators for

running quantum algorithms and assessing their performance. With the QDK, you

can also send your quantum algorithms to real quantum computers using Azure

Quantum.

https://azure.microsoft.com/en-us/resources/development-kit/quantum-computing/
https://azure.microsoft.com/en-us/resources/development-kit/quantum-computing/

46 Chapter 2: The Tools of the Trade in Quantum Computing

In addition to this, Microsoft provides solutions that enable Q# to run interactively and

to be inter-operable with other programming languages such as Python. Moreover,

the Azure Quantum service, which allows you to run quantum algorithms on real

hardware, also works with other quantum software frameworks.

• QuEST. The Quantum Exact Simulation Toolkit (QuEST) (https://quest.qtec

htheory.org/) is a simulation framework written in C++ and built with performance

in mind. With it, you can write a single implementation of a quantum algorithm

that can be compiled into binary code, yielding a program that will simulate the

algorithm. Using this framework, you can be closer to the metal and make sure that

all the hardware resources available are used in an optimal way. This makes QuEST

a very interesting choice for hardware-intensive simulations with a large number of

qubits. In other words, if you ever wanted to test how many qubits your computer

was able to handle, QuEST might be the way to go (you might want to have a fire

extinguisher at hand though, just in case things get hot!).

The source code for QuEST is freely available online: (https://github.com/quest

-kit/QuEST). It is mostly C and C++ code that you can use on any device.

• Cirq (https://quantumai.google/cirq) is a quantum software framework de-

veloped at Google that uses Python as a host language. It can be used to design

quantum algorithms and to simulate them on a classical device or send them to

real quantum hardware. Furthermore, Cirq is integrated in TensorFlow Quantum

(https://www.tensorflow.org/quantum), Google’s framework for quantum ma-

chine learning.

• Qiskit (https://qiskit.org/) is IBM’s quantum framework. It relies on Python

as a host language and provides a wide range of simulators as well as allowing the

submission of algorithms to IBM’s real quantum hardware. In addition to this, Qiskit

provides an extensive library of quantum circuits and algorithms, many of which we

will use in this book!

https://quest.qtechtheory.org/
https://quest.qtechtheory.org/
https://github.com/quest-kit/QuEST
https://github.com/quest-kit/QuEST
https://quantumai.google/cirq
https://www.tensorflow.org/quantum
https://www.tensorflow.org/quantum
https://qiskit.org/

Tools for quantum computing: a non-exhaustive overview 47

In particular, when it comes to machine learning, Qiskit includes some interesting

models with the tools necessary to train and execute them; and it also provides a

PyTorch interface for the training of quantum machine learning models (we will

explore Qiskit and all its secrets in detail in the following section).

• PennyLane (https://pennylane.ai/) is a quantum framework built specifically

for quantum machine learning, but it can perfectly be used as a general-purpose

quantum computing framework. It is quite a newcomer to the quantum programming

scene and it is being developed at Xanadu. Like Qiskit, it uses Python as a host

language. Any quantum algorithms written in PennyLane can be sent to real quantum

computers and executed in a broad collection of simulators.

PennyLane is one of the best frameworks out there when it comes to inter-operability.

Thanks to a wide collection of plugins, you can export PennyLane circuits to other

frameworks and execute them there — taking advantage of some of the features that

these other frameworks may have.

When it comes to machine learning, PennyLane provides some built-in tools, but

it is also highly inter-operable with classical machine learning frameworks such as

scikit-learn, Keras, TensorFlow, and PyTorch. We will discuss this framework in

detail later in this chapter.

• Ocean (https://docs.ocean.dwavesys.com/en/stable/) is a Python library

developed by the Canadian company D-Wave. In contrast with the other software

packages that we have mentioned so far, Ocean’s goal is not the implementation

and execution of quantum circuits. Instead, this library allows you to define in-

stances of combinatorial optimization problems of different types and to solve them

both with classical algorithms and on D-Wave’s quantum annealers (special quan-

tum computers that are not general-purpose but oriented to solving optimization

problems).

Starting in Chapter 3, QUBO: Quadratic Unconstrained Binary Optimization, we will

introduce the concepts that we will need in order to understand how to define prob-

https://pennylane.ai/
https://docs.ocean.dwavesys.com/en/stable/

48 Chapter 2: The Tools of the Trade in Quantum Computing

lems with Ocean. And in Chapter 4, Quantum Adiabatic Computing and Quantum

Annealing, we will learn how to use Ocean in all its glory, both to solve these opti-

mization problems with classical algorithms and, of course, with quantum algorithms

in actual quantum computers!

To learn more. . .

The source code (and binaries, if any) for these frameworks can be downloaded from

their official websites. For detailed installation instructions for Qiskit, Pennylane,

and Ocean, you can refer to Appendix D, Installing the Tools.

• Amazon Braket: Amazon Web Services offers Amazon Braket (https://aws.

amazon.com/braket/), a paid cloud service that makes it possible to use a wide

range of implementations of real quantum computers. In order to execute code on

these computers, they provide their own device-agnostic SDK, but they also fully

support PennyLane and Qiskit, and there are even plugins to work with Ocean

(https://amazon-braket-ocean-plugin-python.readthedocs.io/).

2.1.2 Qiskit, PennyLane, and Ocean
As we have just seen, there is an abundant range of choices when it comes to software

frameworks for quantum computing, and this might make you wonder why we are going

to stick with Qiskit, PennyLane, and Ocean. Of course, this is not a choice made at random;

we have a bunch of good reasons!

Regarding Qiskit, it is just massive: the level of built-in algorithms and functionalities that

it includes is simply unmatched. And not only that, but it also has a very strong community

of users and it is supported by most quantum hardware providers out there. In other words,

Qiskit could easily be considered a lingua franca of quantum computing.

PennyLane, on the contrary, is not as widely used a framework as Qiskit (at least for now),

but we believe that it is one of the most promising newcomers to the world of quantum

computing.

https://aws.amazon.com/braket/
https://aws.amazon.com/braket/
https://amazon-braket-ocean-plugin-python.readthedocs.io/

Tools for quantum computing: a non-exhaustive overview 49

In particular, when it comes to quantum machine learning, it is very hard to say that there is

anything better than PennyLane. On the one hand, PennyLane simply runs very smoothly

and is beautifully documented and, on the other, its interoperability with other quantum

and Machine Learning (ML) frameworks knows no rival.

This is why we believe that Qiskit and PennyLane are better choices than, for instance,

Q# or Cirq (which, of course, are also great frameworks on their own). Regarding QuEST,

it is true that the performance of the simulators provided by Qiskit and PennyLane may

not be as good as the performance that QuEST would yield. But we should also take into

account that QuEST is not nearly as user-friendly as Qiskit or PennyLane, and it lacks

many of their features; for instance, QuEST does not have any built-in tools or interfaces

for training quantum machine learning models. In any case, we should remark that while

running circuits on the simulators bundled in Qiskit and PennyLane may not be as efficient

as running them in QuEST, for our purposes, the performance that we can get with them

is more than good enough! Nevertheless, if you are still eager to get the performance boost

that QuEST could give you, you should know that there is a community plugin that allows

PennyLane to work with the QuEST simulator.

Finally, we have chosen Ocean because it is completely unique in that it probably is the only

software package that lets you work with quantum annealers, both to define problems

and to run them on actual quantum hardware. It is also very easy to learn. . . at least

once you understand how to define combinatorial optimization problems in the Ising and

QUBO models. But don’t worry; we will extensively study those frameworks in Chapter 3,

QUBO: Quadratic Unconstrained Binary Optimization, and, by Chapter 4, Quantum Adiabatic

Computing and Quantum Annealing, we will be more than ready to write our very first

programs using Ocean.

At this point, we have a good global understanding of the current landscape of tools for

quantum computing. In the upcoming sections, we will take our first steps in using them,

and we shall begin with Qiskit.

50 Chapter 2: The Tools of the Trade in Quantum Computing

2.2 Working with Qiskit
In this section, we will learn how to work with the Qiskit framework. We will first discuss

the general structure of Qiskit, and then we will study how to implement quantum circuits

in Qiskit using quantum gates and measurements. Then, we will explore how to run these

circuits using the simulators provided by Qiksit and also real quantum computers available

for free thanks to IBM. This section is key, for we will use Qiskit extensively in this book.

Important note

Quantum computing is a rapidly-evolving field. . . and so are its software frameworks!

We are going to work with version 0.39.2 of Qiskit. Keep in mind that, if you are

using a different version, things may have changed. In case of doubt, you should

always refer to the documentation (https://qiskit.org/documentation/).

2.2.1 An overview of the Qiskit framework
The Qiskit framework [22] consists of the components depicted in Figure 2.2. At the very

foundation of Qiskit lies Qiskit Terra. This package is responsible for handling quantum

circuits and providing the necessary tools for constructing them. It also includes a basic

Python-based simulator (BasicAer) and it can work with the IBM Quantum provider to

execute circuits on IBM’s quantum hardware.

Qiskit Aer is built on top of Qiskit Terra, and it provides a suite of high-performance

quantum simulators written in C++ and designed to use hardware resources more efficiently.

We can think of Qiskit Aer and Terra as the core of the Qiskit framework; they are included

when you do a simple installation of Qiskit. In addition to these components, however,

there are still a few more:

• Qiskit Machine Learning implements some well-known quantum machine learning

algorithms that are suitable for NISQ devices. We will extensively work with this

package in Part 3, A Match Made in Heaven: Quantum Machine Learning, of this book.

https://qiskit.org/documentation/

Working with Qiskit 51

Qiskit Terra

Qiskit Aer

Qiskit

Machine Learning

Qiskit

Optimization

Qiskit

Nature

Qiskit

Experiments

Qiskit

Finance

Qiskit

Metal

Qiskit

Dynamics

Figure 2.2: Components of the Qiskit framework

This package also provides an optional interface with PyTorch that can be utilized

in the training of quantum machine learning models.

• Qiskit Optimization implements some quantum optimization algorithms. We will

work with them in Part 2, When Time is Gold: Tools for Quantum Optimization, of

this book.

• This book focuses on quantum machine learning and quantum optimization, but

quantum computing has more exciting applications in other specific fields. Two good

examples are the natural sciences, in particular, quantum physics and chemistry, and

finance. You can find some algorithms related to problems in these fields in the Qiskit

Nature and Qiskit Finance packages. As an interesting fact, you should know that

the possibility of doing more efficient computations for quantum-mechanical systems

was one of the initial motivations for exploring the idea of quantum computing in

the first place. We will briefly explore some of these applications in Chapter 7, VQE:

Variational Quantum Eigensolver.

• Qiskit Experiments provides a range of tools for working with noisy quantum

computers, that is, current quantum devices that are subject to different types of

errors and external noise, to characterize, benchmark, and calibrate them.

52 Chapter 2: The Tools of the Trade in Quantum Computing

• Lastly, Qiskit Metal and Qiskit Dynamics are the most recent additions to Qiskit.

Qiskit Metal can be used to design real quantum devices, while Qiskit Dynamics

provides tools to work with models of quantum systems.

Exercise 2.1

Follow the instructions in Appendix D, Installing the Tools, to do a full installation of

version 0.39.2 of the Qiskit package.

Once you have installed Qiskit, you can load it in Python running import qiskit. If you

want to check the version of Qiskit that you are running, you might be tempted to look for

it in qiskit.__version__, but that would give you the version of the Qiskit Terra package,

not that of Qiskit itself! If you want to find the version of the Qiskit framework, you

will have to access qiskit.__qiskit_version__. That will give you a dictionary with the

versions of all the components of Qiskit (including Qiskit itself). Hence, the version of

Qiskit will be qiskit.__qiskit_version__['qiskit'].

To learn more. . .

Qiskit is updated quite frequently. To stay up to date with the new features, we

recommend you visit https://qiskit.org/documentation/release_notes.html.

Now that we are all set up, it is time for us to build some circuits with our feet on the Terra!

2.2.2 Using Qiskit Terra to build quantum circuits
In order to get started, let us, first of all, import Qiskit as follows:

from qiskit import *

Notice how in the preceding subsection we imported Qiskit with import qiskit to be able

to check its version number. For the remainder of this chapter, we will assume that Qiskit

has been imported as from qiskit import *.

We will now explore how to implement quantum algorithms (in the form of quantum

circuits) using Qiskit.

https://qiskit.org/documentation/release_notes.html

Working with Qiskit 53

Initializing circuits

In Qiskit, circuits are represented as objects of the QuantumCircuit class. When we initialize

such an object, we may give some optional arguments depending on how many qubits

and bits we want our circuit to have. For example, if we want our circuit to have n qubits,

we may invoke QuantumCircuit(n). If we also want it to have m classical bits to store

the results of measuring our qubits, we can run QuantumCircuit(n, m). Once we have a

quantum circuit object, we can get an ASCII representation of it in the terminal by calling

the draw method. For instance, if we executed QuantumCircuit(2,2).draw(), we would

get the following:

q_0:

q_1:

c_0:

c_1:

Of course, in this representation we can only see the names of the qubits and the bits that

we have created, for that is all that we have in our circuit so far.

These ASCII representations are fine, but we can all agree that they are not necessarily very

stylish. If you want to get something more fancy, you can pass the optional argument 'mpl'

(short for matplotlib) to draw. Keep in mind that, if you use Python on your terminal

rather than in a Jupyter notebook (old school for the win!), you might also have to use

draw('mpl', interactive = True). However, this might not work if your environment

doesn’t support graphical user interfaces.

Qubits and classical bits in Qiskit are grouped in quantum and classical registers. By

default, when you create a circuit QuantumCircuit(n, m), Qiskit groups your qubits in

a quantum register q and your bits in a classical register c. You may however want

to have a different arrangement of registers or you may want to give them different

54 Chapter 2: The Tools of the Trade in Quantum Computing

names. In order to do this, you can create your own registers, which will be objects of the

QuantumRegister and ClassicalRegister classes. When initializing these registers, you

are free to specify some size and name parameters. Once you have created some quantum

and classical registers reg_1,. . . ,reg_n, you can stack them in a circuit with a call of the

form QuantumCircuit(reg_1,...,reg_n). In this way, we could execute the following

code:

qreg1 = QuantumRegister(size = 2, name = "qrg1")

qreg2 = QuantumRegister(1, "qrg2")

creg = ClassicalRegister(1, "oldschool")

qc = QuantumCircuit(qreg1, creg, qreg2)

And we would get the following result if we ran qc.draw():

qrg1_0:

qrg1_1:

qrg2:

oldschool:

Quantum gates

We now have a circuit with a bunch of qubits — not a bad way to get started! By default,

all those qubits will be initialized to a state, |0⟩, but, of course, if we want to get some

computing done, we better be able to bring some quantum gates to the table.

The way you add quantum gates to a circuit qc is by executing methods of that circuit. For

instance, if you want to apply an 𝑋 gate on the first qubit of the circuit qc, you can just

run qc.x(0).

Working with Qiskit 55

Important note

As is often the case in Python, quantum bits in a circuit are 0-indexed! This means

that the first qubit will be labeled as 0, the second as 1, and so on.

When we have different quantum registers in a circuit, we can still refer to qubits by

their indices. The qubits of the first register that we added will have the first indices, the

subsequent indices will correspond to the qubits of the second register, and so on and so

forth. Classical registers and quantum registers are fully independent in this matter.

This, however, can be somewhat inconvenient if we have many registers, but don’t worry,

Qiskit has got you covered. While referring to gates by their index can be convenient, we

can also refer to them directly! Let us say that we have a setup like the previous one, with

the circuit qc with quantum registers qreg1 and qreg2. Running qc.x(2) would have the

same effect as executing qc.x(qreg2[0]). Moreover, if we called qc.x(qreg1), that would

be the same as applying both qc.x(0) and qc.x(1) one after the other.

The following are the Qiskit methods for applying some of the most common one-qubit

gates (the ones that we studied in Sections 1.3.3 and 1.3.4) on a qubit q0:

• In order to apply one of the Pauli gates, 𝑋 , 𝑌 , or 𝑍 , we can call x(q0), y(q0), or

z(q0) respectively.

• The method h(q0) can be used to apply a Hadamard gate.

• We can apply rotation gates𝑅𝑋 , 𝑅𝑌 , or𝑅𝑍 parametrized by thetawith the rx(theta,q0),

ry(theta,q0), or rz(theta,q0) methods respectively.

• We can apply the universal one-qubit gate 𝑈 (𝜃, 𝜑, 𝜆) parametrized by theta, phi, and

lambd as u(theta, phi, lambd, q0).

Of course, we also have methods for multi-qubit gates. Most notably, a controlled 𝑋 , 𝑌 ,

𝑍 , or 𝐻 gate with control qubit q0 on a target qt can be applied with the cx(q0, qt),

cy(q0, qt), cz(q0, qt), and ch(q0, qt) methods respectively. In full analogy, a con-

trolled rotation gate 𝑅𝑋 , 𝑅𝑌 , or 𝑅𝑍 parametrized by a value theta can be added with the

56 Chapter 2: The Tools of the Trade in Quantum Computing

crx(theta, q0, qt), cry(theta, q0, qt), and crz(theta, q0, qt) methods, where, as

before, q0 represents the control qubit and qt the target one.

Important note

Remember that the controlled 𝑋 gate is the famous CNOT. We love entangling

qubits, so we will certainly be using that cx method a lot!

|0⟩ 𝑋 𝑈 (𝜋3 , 0, 𝜋)

|0⟩ 𝑅𝑋 (𝜋4)

(a)

|0⟩ 𝑍 𝑈 (𝜋4 , 𝜋, 0)

|0⟩ 𝑌 𝑅𝑌 (𝜋2) 𝑅𝑍(𝜋4)

(b)

Figure 2.3: Sample quantum circuits that we can construct in Qiskit.

Now might be a good moment to step back for a second and see all that we have done

come alive. For example, let us try to construct the circuit depicted in Figure 2.3a. Using all

that we have learned, we could implement this circuit in Qiskit as follows:

import numpy as np

qc = QuantumCircuit(2) # Initialise the circuit.

We can now apply the gates sequentially.

qc.x(0)

qc.rx(np.pi/4, 1)

qc.cx(0, 1)

qc.u(np.pi/3, 0, np.pi, 0)

And now if we run qc.draw("mpl") to verify that our implementation is correct, we will

get the output shown in Figure 2.4.

Working with Qiskit 57

q0

q1

X

/4
RX

/3, 0,
U

Figure 2.4: Qiskit output for the circuit in Figure 2.3a.

Exercise 2.2

Construct the circuit in Figure 2.3b. Draw the result and use the output to verify

whether your circuit implementation is correct.

Measurements

We now know how to add quantum gates to a circuit, so there is only one ingredient that

we are missing: measurement operators. It turns out that this couldn’t be easier. If you

want to perform a measurement (in the computational basis) at any point in a circuit, you

can do so by calling the measure(qbits,bits) method, where qbits should be a list with

all the qubits that you want to measure and bits should be a list with all the classical bits

on which you want the measurements to be stored. Of course, the lists must be of the same

length.

If you just want to measure all the qubits and do not want to bother with creating a classical

register of the appropriate size, you can just call the measure_all method. This will add

as many bits to your circuit as qubits it has, and it will measure each qubit and send the

results to these bits. If you have already added classical bits to store the measurement

results, you can still use them with the measure_all method: all you have to do is set the

add_bits parameter to False.

Exercise 2.3

Implement your own version of the measure_all method. You may need to use

the add_register method of the QuantumCircuit class, which takes some register

objects as arguments and appends them to the circuit.

58 Chapter 2: The Tools of the Trade in Quantum Computing

So now we can construct our own quantum circuits, but we still need to find a way to run

them using Qiskit. We will do that in the next subsection. Let’s fly in the Aer!

2.2.3 Using Qiskit Aer to simulate quantum circuits
As we mentioned when we introduced the Qiskit framework, the Terra package includes

a Python-based simulator, BasicAer. While this simulator is good enough for most basic

tasks, it is largely out-powered by the simulators included in the Aer package, so we will

only discuss these here.

If we want to use the Aer simulator, it will not suffice to import Qiskit. This time, we will

also have to run the following:

from qiskit.providers.aer import AerSimulator

Once we have done the necessary imports, we can create an Aer simulator object in one of

the following ways, depending on whether or not we have configured our system to use a

GPU:

sim = AerSimulator()

sim_GPU = AerSimulator(device = 'GPU')

If you have a GPU and have configured your Qiskit installation properly (see Appendix D,

Installing the Tools, for some instructions), using the GPU-powered simulator will yield

much better results for demanding simulation tasks. Nevertheless, you should keep in mind

that for less resource-intensive simulations, using the GPU may actually lead to worse

performance because of the communication overhead. For the remainder of this section,

we will use the simulator without a GPU. If we were to use sim_GPU, everything would be

fully analogous.

To learn more. . .

To simulate circuits using a GPU, you will need the qiskit-aer-gpu package. This

package is written using CUDA. For this reason, it only supports NVIDIA GPUs.

Working with Qiskit 59

As we already know, when we measure a quantum state the result is probabilistic. For that

reason, we usually run several executions or shots of a given circuit and then compute

some statistics on the results. If we wanted to simulate the execution of nshots shots of

a circuit qc, we would have to run job = execute(qc, sim, shots = nshots), and we

could retrieve a result object by calling result = job.result(); by the way, the default

value for shots is 1024. With this result object, we could get the simulated frequency

counts using result.get_counts(), which would give us a dictionary with the absolute

frequencies of each outcome.

Let’s try to make this more clear with an example. We will consider a very simple two-qubit

circuit with a single Hadamard gate in the top qubit. We will then measure both qubits in

the circuit and simulate 1024 shots:

qc = QuantumCircuit(2, 2)

qc.h(0)

qc.measure(range(2), range(2))

job = execute(qc, sim, shots = 1024)

result = job.result()

counts = result.get_counts()

print(counts)

To learn more. . .

If you have a job running, in an object called job, and you want to check its

status, you can import job_monitor from qiskit.providers.ibmq.job and run

job_monitor(job).

Important note

When getting results for measurements in Qiskit, you need to keep in mind that the

top qubit becomes the least significant bit, and so on. This is, if you have two qubits

60 Chapter 2: The Tools of the Trade in Quantum Computing

and, when measured, the top one (qubit 0) has value 0 and the bottom one (qubit 1)

has value 1, the result will be interpreted as 10, not as 01.

This is the opposite of what we have been doing so far — and also the opposite of

what most of the world agrees on. Thus, what we call state 10, Qiskit will call 01.

For most practical purposes, we can simply ignore this issue and assume that when

we have to access qubit 𝑞 in a circuit with 𝑛 qubits, we need to use the index 𝑛−𝑞−1

(remember that we start counting qubits at 0). This is what we will do implicitly

when we use Qiskit in practice.

Theoretically, we know that the state before the measurement is

√
1/2(|00⟩ + |10⟩), so we

would expect an even distribution of frequencies for the (Qiskit) outcomes 01 and 00, and

we should not see any occurrences of other results. Indeed, when we ran the code, we got

the following:

{'01': 519, '00': 505}

Needless to say, you will not get the same results! But you will certainly get something

with the same flavor.

Notice that, in the preceding measurement, we have labeled as 10 the state with 1 in the first

qubit (qubit 0) (which is consistent with the notation that we have been using). Nonetheless,

Qiskit, being consistent with its own notation, has labeled its corresponding outcome as 01.

To learn more. . .

If you want to obtain reproducible results when executing circuits in Qiskit, you need

to use two parameters of the execute function: seed_transpiler and seed_simulator.

They are used to set the initial values for the pseudo-random number generators

that are used in the process of transpiling the circuit — we will talk about this later

in this section — and when sampling from the results of the measurements. If you

Working with Qiskit 61

use some fixed seeds, you will always get the same results. This can be useful, for

instance, for debugging purposes.

All these numbers are good, but we all know that a picture is worth a thousand words.

Thankfully, the folks at IBM agree, and they have been thoughtful enough to bundle some

fancy visualization tools right into Qiskit. For instance, we could run these instructions:

from qiskit.visualization import *

plot_histogram(counts)

And we would get the plot shown in Figure 2.5. This function admits the optional argument

filename, which, if provided, will lead to the figure being saved with the given string as

the filename.

00 01

0.00

0.15

0.30

0.45

0.60

Pr
ob

ab
ilit

ie
s

0.493 0.507

Figure 2.5: Histogram generated by Qiskit

As an interesting fact, you should know that the Aer simulator can simulate the execution

of circuits using different methods. Nevertheless, unless we ask otherwise, our circuits

will always be simulated using the statevector method, which — as the name suggests

— computes the exact quantum state (or state vector) of the system through the circuit in

order to generate results.

Now, if the simulator does compute the quantum state of the system, why settle for some

simulated samples when we could be getting the actual state? Of course, the state of a

62 Chapter 2: The Tools of the Trade in Quantum Computing

circuit is something we don’t have access to when working with real quantum computers

(we can only obtain results by performing measurements), but, hey, simulating circuits

should have its own perks too!

If we want to access the state vector at any point in a quantum circuit qc, all we have to

do is call qc.save_statevector(), just as if we were adding another gate. Then, once the

circuit has been simulated and we have gotten our results from the execution job, we can

get the state vector using the get_statevector method, just as we would use get_counts.

Actually, if our circuit also has measurements, we could do both at the same time. For

instance, we can consider this example:

qc = QuantumCircuit(2, 2)

qc.h(0)

qc.save_statevector()

qc.measure(0,0)

qc.measure(1,1)

result = execute(qc, sim, shots = 1024).result()

sv = result.get_statevector()

print(sv)

counts = result.get_counts()

print(counts)

Notice how, in this piece of code, we have measured the two qubits in the circuit using two

individual instructions instead of just calling qc.measure(range(2), range(2). When we

run that, we get the following output:

Statevector([0.70710678+0.j, 0.70710678+0.j, 0. +0.j,

0. +0.j],

dims=(2, 2))

{'00': 486, '01': 538}

Working with Qiskit 63

That is exactly what we should have expected. We just need to remember that 1/
√
2 ≈

0.7071…! In the output given by Qiskit, the first element of the state vector array is the

amplitude of the basis state |00⟩, the second element is the amplitude of |10⟩ (remember the

Qiskit convention for naming basis states, so for Qiskit, the label of this state would be 01),

and the following ones are the amplitudes of |01⟩ and |11⟩ respectively.

To learn more. . .

It is possible to save multiple state vectors in order to retrieve them later. For this,

one needs to pass the optional argument label to save_statevector, specifying a

label that uniquely identifies the state vector in the circuit. Then, the state vectors

can be extracted as a dictionary from the results object result using result.data().

Another possibility that the Aer simulator offers us is computing the unitary matrix that

would represent, up to any given point, the transformations that have been performed by

the circuit. In order to get this matrix, we could use the save_unitary and get_unitary

methods, which would work in full analogy to save_statevector and get_statevector.

As wonderful as this may seem, there is a small caveat, which is that these matrices cannot

be computed with the statevector method; instead, one needs to use the unitary method,

which does not support measurements and does not allow access to the state vector of the

circuit. In any case, this is not a big deal, for one can always combine different methods of

simulation provided the simulated circuits are tweaked accordingly.

To see this in action, let us run the following example:

sim_u = AerSimulator(method = 'unitary')

qc = QuantumCircuit(1)

qc.h(0)

qc.save_unitary()

result = execute(qc, sim_u).result()

U = result.get_unitary(decimals = 4)

print(U)

64 Chapter 2: The Tools of the Trade in Quantum Computing

When we execute this code, this is the output that we get:

Operator([[0.7071+0.j, 0.7071-0.j],

[0.7071+0.j, -0.7071+0.j]],

input_dims=(2,), output_dims=(2,))

That is, just as it should be, the matrix of the Hadamard gate.

Notice, by the way, how we have used the optional argument decimals to limit the precision

of the output. This can also be used in the get_statevector method.

We are now able to use Qiskit to construct and simulate circuits, but there’s something we

are missing: how to actually run them on real quantum hardware. That’s what the next

subsection is all about.

2.2.4 Let’s get real: using IBM Quantum
Now we know how to use the tools provided by Qiskit Aer in order to perform ideal

simulations of quantum circuits, but we know that real quantum computers, even if with

limitations, exist and are actually accessible, so why not give them a shot (pun intended)?

IBM provides, for free, access to some of its real quantum computers. In order to gain

access, all you have to do is sign up for a free IBM ID account. With it, you can log into the

IBM Quantum website (https://quantum-computing.ibm.com/) and get your API token

(refer to Appendix D, Installing the Tools, for more details).

Once you have your token, the next thing you should do is head to your local environment

and execute the instruction IBMQ.save_account("TOKEN"), where, of course, you should

replace TOKEN with your actual token. With that out of the way, we may run the following

piece of code:

provider = IBMQ.load_account()

print(provider.backends(simulator = False))

https://quantum-computing.ibm.com/

Working with Qiskit 65

This will allow us to load our account details and get a list of all the available real quantum

devices. If you have an ordinary free account, you could expect to get something like this

as output:

[<IBMQBackend('ibmq_lima') from IBMQ(hub='ibm-q',

group='open', project='main')>,

<IBMQBackend('ibmq_belem') from IBMQ(hub='ibm-q',

group='open', project='main')>,

<IBMQBackend('ibmq_quito') from IBMQ(hub='ibm-q',

group='open', project='main')>,

<IBMQBackend('ibmq_manila') from IBMQ(hub='ibm-q',

group='open', project='main')>,

<IBMQBackend('ibm_nairobi') from IBMQ(hub='ibm-q',

group='open', project='main')>,

<IBMQBackend('ibm_oslo') from IBMQ(hub='ibm-q',

group='open', project='main')>]

If we used the argument simulator = True, we would get a list of all the available cloud

simulators. Their main advantage is that some of them are capable of running circuits with

many more qubits than an ordinary computer can handle.

A naive way of picking any of these providers would be just choosing one element in the list,

for instance, taking dev = provider.backends(simulator = False)[0]. Alternatively, if

you knew the name of the device that you want to use (let it be ibmq_lima, for instance), you

could simply run dev = provider.get_backend('ibmq_lima'). Once you have chosen a

device, that is, a backend object, you can get some of its configuration details by calling the

configuration method (with no arguments). This will return an object with information

about the device. For instance, in order to know how many qubits a provider dev has, we

could just access dev.configuration().n_qubits.

Nevertheless, rather than picking a device at random or by a fancy location name, we can

try to do some filtering first. When calling get_backend, we can pass an optional filters

66 Chapter 2: The Tools of the Trade in Quantum Computing

parameter. This should be a one-argument function that would only return True for the

devices that we want to pick. For instance, if we wanted to get a list of all the real devices

with at least 5 qubits, we could use the following:

dev_list = provider.backends(

filters = lambda x: x.configuration().n_qubits >= 5,

simulator = False)

Out of all of these devices, maybe it is wise to just use the one that is the least busy. For

this, we can simply execute the following:

from qiskit.providers.ibmq import *

dev = least_busy(dev_list)

To learn more. . .

The least_busy accepts an optional parameter called reservation_lookahead. This

is the number of minutes for which a device needs to be free of reservations to be

considered as a candidate for being the least busy one. The default value of the

parameter is 60. So if it ever happens to you that least_busy does not return a suit-

able device, you may set reservation_lookahead=None to also consider computers

that are under reservation.

And now, running a circuit on the device that we have selected with a certain number of

shots will be completely analogous to running it on a simulator. Actually, we can run it on

both and compare the results!

from qiskit.providers.ibmq.job import job_monitor

Let us set up a simple circuit.

qc = QuantumCircuit(2)

qc.h(0)

qc.cx(0,1)

qc.measure_all()

Working with Qiskit 67

First, we run the circuit using the statevector simulator.

sim = AerSimulator()

result = execute(qc, sim, shots = 1024).result()

counts_sim = result.get_counts()

Now we run it on the real device that we selected before.

job = execute(qc, dev, shots = 1024)

job_monitor(job)

result = job.result()

counts_dev = result.get_counts()

It will probably take a while to get the results (you will get status updates thanks to the

job_monitor(job) instruction). In fact, sometimes, you can experience quite long waiting

times because many users are submitting jobs at the same time. But with a little bit of

patience, the results will eventually come! Once the execution has finished, we can print

the results, and we could get something like this:

print(counts_sim)

print(counts_dev)

{'11': 506, '00': 518}

{'00': 431, '01': 48, '10': 26, '11': 519}

That is close, but far from ideal! We can see how in the execution on real hardware, we

get some outputs — namely, 10 and 01 — that should not even be allowed in the first place.

This is the effect of the noise of real quantum computers, which makes them deviate from

perfect mathematical simulations.

68 Chapter 2: The Tools of the Trade in Quantum Computing

To learn more. . .

Here, we have only worked with ideal simulations. You can also perform noisy

simulations in Qiskit, which can more faithfully resemble the behavior of the quan-

tum computers that are at our disposal today. Moreover, you could configure these

simulations to use the same noise parameters as those measured in the real quantum

devices owned by IBM. We will learn how to do this in Chapter 7, VQE: Variational

Quantum Eigensolver.

Important note

When executing quantum circuits on actual quantum hardware, you have to be

aware of the fact that real quantum systems only implement certain gates, and thus

some of the gates that make up the circuit may have to be decomposed using the

gates available. For instance, it is typical to decompose multi-qubit gates into qubits

that act on just one or two qubits or to simulate CNOT gates between qubits that

are not directly connected in the quantum computer by first swapping the qubits,

then applying an actually existing CNOT gate, and then swapping back the qubits.

This process is called transpilation, and, using the code that we have considered,

we have let Qiskit take care of all its details automatically. However, it is possible to

dive deeper into this and to hack it as much as one could want! For instance, you

can use the transpile method to manually define a transpilation, specifying the

gates that are present in the computer or the qubits that are actually connected,

among other things. See the documentation at https://qiskit.org/documentati

on/stubs/qiskit.compiler.transpile.html for more details.

In this section, we have gained a good understanding of the general structure of the Qiskit

framework, we have learned how to implement circuits in it, and how to simulate them

and run them on real hardware through IBM Quantum. In the following section, we will

do the same for another very interesting framework: PennyLane. Let’s get to it!

https://qiskit.org/documentation/stubs/qiskit.compiler.transpile.html
https://qiskit.org/documentation/stubs/qiskit.compiler.transpile.html

Working with PennyLane 69

2.3 Working with PennyLane
The structure of PennyLane [23] is more simple than that of Qiskit. PennyLane mainly

consists of a core software package, which comes with all the features that you would

expect: it allows you to implement quantum circuits, it comes with some wonderful built-in

simulators, and it also allows you to train quantum machine learning models (both with

native tools and with a TensorFlow interface).

In addition to this core package, PennyLane can be extended with a wide selection of

plugins that provide interfaces to other quantum computing frameworks and platforms. At

the time of writing, these include Qiskit, Amazon Braket, the Microsoft QDK, and Cirq,

among many others that we have not mentioned in our introduction. In addition, there

is a community plugin, PyQuest, that makes PennyLane interoperable with the QuEST

simulator (https://github.com/johannesjmeyer/pennylane-pyquest).

In short, with PennyLane, it’s not that you get the best of both worlds. You truly can get

the best of any world!

Important note

We are going to work with version 0.26 of PennyLane. If you are using a different

version, some things may be different. If in doubt, you should always check the

documentation (https://pennylane.readthedocs.io/en/stable/).

Exercise 2.4

Follow the instructions in Appendix D, Installing the Tools, to install version 0.26 of

PennyLane and its Qiskit plugin.

Once you have installed PennyLane, you can import it. Following the conventions set out

in PennyLane’s documentation, we will do it as follows:

import pennylane as qml

https://github.com/johannesjmeyer/pennylane-pyquest
https://pennylane.readthedocs.io/en/stable/

70 Chapter 2: The Tools of the Trade in Quantum Computing

After running this instruction, you can check which version of PennyLane you are running

by printing the string qml.__version__.

Now that we are all set up, let’s build our first circuit, shall we?

2.3.1 Circuit engineering 101
The way quantum circuits are built in PennyLane is fundamentally different to the way

they are constructed in Qiskit.

In Qiskit, if we wanted to implement a quantum circuit, we would initialize a QuantumCircuit

object and manipulate it with some methods; some of these methods would be used to add

gates to the circuit, some to perform measurements, and some to specify where we wanted

to extract information about the state of the circuit.

In PennyLane, on the other hand, if you want to run a circuit, you need two elements: a

Device object and a function that specifies the circuit.

To put it in simple terms, a Device object is PennyLane’s virtual analog of a quantum

device. It is an object with methods that allow it to run any circuit that it is given (through a

simulator, through an interface with other platforms, or however it may be!). For example,

if we have a circuit and we want to run it on the default.qubit simulator (more on that

later in this section) using two qubits, we will need to use this device:

dev = qml.device('default.qubit', wires = 2)

Notice, by the way, how the number of qubits available is a property of the device object

itself.

Now that we have a device, we need to define the specification of our circuit. As we

mentioned earlier, that is as easy as defining a function. In this function, we will execute

instructions that will correspond to the actions of the quantum gates that we want to use.

Lastly, the output of the function will be whichever information we want to get out of the

circuit — whether it be the state of the circuit, some measurement samples, or whatever it

may be. Of course, the output that we can get will depend on the device that we are using.

Working with PennyLane 71

Let us illustrate this with an example:

def qc():

qml.PauliX(wires = 0)

qml.Hadamard(wires = 0)

return qml.state()

Here we have a very basic circuit specification. In this circuit, we get the state vector

(with qml.state()), after we first apply an 𝑋 gate on the first qubit and then an 𝐻 gate

on the first qubit too. We do this by calling, in sequence, qml.PauliX and qml.Hadamard,

specifying the wires on which we want the gates to act. In most non-parametrized gates,

wires is the first positional argument, and it does not have a default value, so you need to

provide one. In the case of single-qubit gates, this value must be an integer representing

the qubit on which the gate is meant to act. Analogously, for multi-qubit gates, wires must

be a list of integers.

You may have noticed that the naming conventions for gate classes in PennyLane differ

from those for gate methods in Qiskit. The functions for the 𝑋 , 𝑌 , and 𝑍 Pauli gates are,

respectively, qml.PauliX, qml.PauliY, and qml.PauliZ. Also, as we have just seen, the

function for the Hadamard gate is qml.Hadamard.

In regard to rotation gates, we can apply 𝑅𝑋 , 𝑅𝑌 , and 𝑅𝑍 parametrized by theta on a wire w

using the instructions qml.RX(phi=theta, wires=w), qml.RY(phi=theta, wires=w), and

qml.RZ(phi=theta, wires=w) respectively. In addition, the universal single-qubit gate

𝑈 (𝜃, 𝜑, 𝜆) can be applied on a wire w calling qml.U3(theta, phi, lambd, w).

Lastly, the controlled Pauli gates can be applied on a pair of qubits w = [w0, w1] using the

instructions qml.CNOT(w), qml.CY(w) and qml.CZ(w). The first wire, w0, is meant to be the

control qubit, while the second one must be the target. Controlled 𝑋 , 𝑌 , and 𝑍 rotations

parametrized by an angle theta can be added with the instructions qml.CRX(theta, w),

qml.CRY(theta, w), and qml.CRZ(theta, w) respectively.

72 Chapter 2: The Tools of the Trade in Quantum Computing

In any case, we now have a two-qubit device dev and we have a circuit function qc. How

do we assemble these two together and run the circuit? Easy, all we have to do is execute

the following:

qcirc = qml.QNode(qc, dev) # Assemble the circuit & the device.

qcirc() # Run it!

If we run this, we will get the following result,

tensor([0.70710678+0.j, 0. +0.j, -0.70710678+0.j,

0. +0.j], requires_grad=True)

which makes perfect sense, for we know that

(𝐻𝑋 ⊗ 𝐼) |00⟩ = (𝐻 ⊗ 𝐼) |10⟩ =
1√
2
(|00⟩ − |10⟩) ≈ (0.7071…) (|00⟩ − |10⟩) .

As a fun fact, the result of assembling a circuit function and a device is known, in PennyLane

jargon, as a Quantum Node (or QNode, for short).

Important note

PennyLane, unlike Qiskit, labels state like most people do: assigning to the first

qubit the most significant bit. Thus, a PennyLane output of 10 corresponds to the

state |10⟩.

Notice how, consistent with PennyLane’s convention for labeling states, the state vector is

returned as a list with the amplitudes of the states in the computational basis. The first

element corresponds to the amplitude state |0⋯ 0⟩, the second one to that of |0⋯ 01⟩, and

so on.

In the preceding example, we should remark that at no point in the definition of the function

qc did we specify the number of qubits of the circuit — we left that to the device. When

we create a QNode, PennyLane assumes that the device has enough qubits to execute the

circuit specification. If that isn’t the case, we will encounter a WireError exception when

executing the corresponding QNode.

Working with PennyLane 73

If you — like most of us! — are lazy, all this process of defining a function and assembling it

with a device might seem overwhelmingly exhausting. Thankfully, the folks at PennyLane

were kind enough to provide a shortcut. If you have a device dev and want to define a

circuit for it, you could just do the following:

@qml.qnode(dev) # We add this decorator to use the device dev.

def qcirc():

qml.PauliX(wires = 0)

qml.Hadamard(wires = 0)

return qml.state()

Now qcirc is already a QNode. We can just run it!

qcirc()

Now that is much cuter! By placing the @qml.qnode(dev) decorator before the definition

of our circuit function, it automatically became a QNode without us having to do anything

else.

We have seen how circuits in PennyLane are implemented as simple functions, and this

begs the question: are we allowed then to use parameters in these functions? The answer

is a resounding yes. Let us say that we want to construct a one-qubit circuit, parametrized

by a certain theta, which performs an 𝑋 -rotation by this parameter. Doing so is as easy as

this:

dev = qml.device('default.qubit', wires = 1)

@qml.qnode(dev)

def qcirc(theta):

qml.RX(theta, wires = 0)

return qml.state()

And, with this, for any value theta of our choice, we can run qcirc(theta) and get our

result. This way of handling parameters is very handy and convenient. Of course, you

74 Chapter 2: The Tools of the Trade in Quantum Computing

can use loops and conditionals dependent on circuit parameters within the definition of a

circuit. The possibilities are endless!

If at any point you need to draw a circuit in PennyLane, that is not an issue: it is fairly

straightforward. Once you have a quantum node qcirc, you can pass this node to the

qml.draw function. This will itself return a function, qml.draw(qcirc), which will take

the same arguments as qcirc and will give you a string that draws the circuit for each

choice of those arguments. We may see this more clearly with an example. Let us execute

the following piece of code to draw the qcirc circuit that we’ve just considered for 𝜃 = 2:

print(qml.draw(qcirc)(theta = 2))

Upon running that, we get the following representation of the circuit:

0: --RX(2.00)--| State

So far, we have only performed simulations that return the state vector of the circuit at the

end of its executions, but, naturally, that is just one of the many options that PennyLane

provides. These are some, but not all, of the return values that we can have in a circuit

function:

• If we want to get the state of the circuit at the end of its execution, we can, as we

have seen, return qml.state().

• If we wish to get a list with the probabilities of each state in the computational basis

of a list of wires w, we can return qml.probs(wires = w).

• We can get a sample of measurements in the computational basis of some wires w

by returning qml.sample(wires = w); the wires argument is optional (if no value

is provided, all qubits are measured). When we get a sample, we have to specify its

size by either setting a shots argument when invoking the device or by setting it

when calling the QNode.

Working with PennyLane 75

We will explore some additional possibilities for return values in Chapter 10, Quantum

Neural Networks. We already know how to get the state of the circuit. In order to illustrate

the other return values that we may use, let us execute the following piece of code:

dev = qml.device('default.qubit', wires = 3)

Get probabilities

@qml.qnode(dev)

def qcirc():

qml.Hadamard(wires = 1)

return qml.probs(wires = [1, 2]) # Only the last 2 wires.

prob = qcirc()

print("Probs. wires [1, 2] with H in wire 1:", prob)

Get a sample, not having specified shots in the device.

@qml.qnode(dev)

def qcirc():

qml.Hadamard(wires = 0)

return qml.sample(wires = 0) # Only the first wire.

s1 = qcirc(shots = 4) # We specify the shots here.

print("Sample 1 after H:", s1)

Get a sample with shots in the device.

dev = qml.device('default.qubit', wires = 2, shots = 4)

@qml.qnode(dev)

def qcirc():

qml.Hadamard(wires=0)

return qml.sample() # Will sample all wires.

s2 = qcirc()

print("Sample 2 after H x I:", s2)

76 Chapter 2: The Tools of the Trade in Quantum Computing

The output we got with this execution is the following (the samples returned in your case

will probably be different):

Probs. wires [1, 2] with H in wire 1: [0.5 0. 0.5 0.]

Sample 1 after H: [0 1 0 0]

Sample 2 after H x I: [[1 0], [0 0], [0 0], [1 0]]

There might be a bit to unpack here. So, first of all, we are returned a list of probabilities;

these are, in accordance with PennyLane’s conventions, the probabilities of getting 00, 01,

10, and 11. In these possible outcomes, the first (leftmost) bit represents the outcome of

the first measured qubit: in our case, since we are measuring wires [1, 2], the second

wire of the circuit, wire 1. The second (rightmost) bit represents the outcome of the second

measured qubit: in our case, the third wire of the circuit. For example, the first number

in the list of probabilities represents the probability of getting 00 (that is, 0 in both wires).

The second number in the list would be the probability of getting 01 (0 in wire 1 and 1 in

wire 2). And so on.

Lastly, in the next two examples, we are getting some measurement samples. In the first

case, we specify that we want to measure only the first qubit (wire 0), and, when we call

the QNode, we ask for 4 shots; since we hadn’t specified a default number of shots when

defining the device, we need to do it in the execution. And with that, we have a sample of

the first qubit. In our case, the results were first 0, then 1, and then two more zeros.

In the last example, we define a two-qubit circuit and we measure all the wires. We already

specified a default number of shots (4) when we defined the device, so we don’t need to do

it when calling the QNode. And, upon execution, we are given a sample of measurements.

Each item in the list corresponds to a sample. Within each sample, the first element gives

the result of measuring the first qubit of the circuit, the second element the result of

measuring the second qubit, and so on it would go. For example, in our case, we see that in

the first measurement we obtained 1 on the first qubit and 0 on the second one.

Working with PennyLane 77

Exercise 2.5

Implement the circuits in Figure 2.3 and verify that you get the same state vector

that we get when simulating with Qiskit Aer.

Keep in mind that, as we have mentioned before, Qiskit and PennyLane use different

conventions when naming basis states. Be careful with that!

To learn more. . .

If you want to get reproducible results using PennyLane’s simulator, you can set a

seed s using the instruction np.random.seed(s) after importing the numpy package

as np.

So far, we have been working with devices based on the default.qubit simulator, which

is a Python-based simulator with some basic functionalities. We will introduce more

simulators when we dive into the world of quantum machine learning. For now, however,

you should at least know about the existence of the lightning.qubit simulator, which

relies on a C++ backend and provides a significant boost in performance, especially for

circuits with a large number of qubits. Its usage is analogous to that of the default.qubit

simulator. Furthermore, there is a lightning.gpu simulator that can enable the Lightning

simulator to rely on your GPU. It can be installed as a plugin. As in the case of Qiskit, at the

time of writing this book, it only supports NVIDIA GPUs (and mainly just quite modern

ones!).

2.3.2 PennyLane’s interoperability
We have mentioned plenty of times how one of PennyLane’s virtues is its ability to com-

municate with other quantum frameworks. We will now try to demonstrate this with

PennyLane’s Qiskit interface. Parlez-vous Qiskit?

When you install the Qiskit plugin for PennyLane, you gain access to a new set of devices:

most notably, a qiskit.aer device that allows you to use the Aer simulator directly from

78 Chapter 2: The Tools of the Trade in Quantum Computing

PennyLane, and a qiskit.ibmq device that enables you to run circuits on the real quantum

computers available from IBM Quantum.

Love is in the Aer

If we want to simulate a circuit in PennyLane using Aer, all we have to do is use a device

with the qiskit.aer simulator — and, of course, having installed the appropriate plugin

(refer to Appendix D, Installing the Tools). This will allow us to get measurement samples

and also measurement probabilities (through qml.sample and qml.probs respectively).

Actually, the measurement probabilities returned by these Aer devices are approximations

of the exact probabilities: they are obtained by sampling and returning the empirical

probabilities. By default, in an Aer device, the number of shots is fixed at 1024, following

Qiskit’s conventions. Of course, the number of shots can be adjusted as with any other

PennyLane device.

We can see a qiskit.aer device in action with the following code sample:

dev = qml.device('qiskit.aer', wires = 2)

@qml.qnode(dev)

def qcirc():

qml.Hadamard(wires = 0)

return qml.probs(wires = 0)

s = qcirc()

print("The probabilities are", s)

When we run this, we can get something like the following output:

The probabilities are [0.48535156 0.51464844]

This shows that, indeed, the result is not analytical, but empirical and extracted from a

sample. If you want to obtain the state vector, you need to use the following instruction

when creating the device:

dev = qml.device('qiskit.aer', wires = 2,

backend='aer_simulator_statevector', shots = None)

Working with PennyLane 79

This will allow you to use qml.state() to retrieve the state amplitudes, as we did with the

PennyLane devices. Moreover, if you try to get probabilities using qml.probs with this

device object, you will now get analytical results. For example, if you run the previous

example on this device, you will always obtain [0.5, 0.5].

Connecting to IBMQ

The ability to (partially) use the Aer simulator is probably not the most appealing feature

of PennyLane’s Qiskit interface. Nevertheless, being able to connect to IBM’s quantum

computers is a more exciting possibility.

In order to connect to an IBM Quantum device, we will first load Qiskit and get the name

of the least busy hardware backend, just as we did in the previous section:

from qiskit import *

from qiskit.providers.ibmq import *

Save our token if we haven't already.

IBMQ.save_account('TOKEN')

Load the account and get the name of the least busy backend.

prov = IBMQ.load_account()

bck = least_busy(prov.backends(simulator = False)).name()

Invoke the PennyLane IBMQ device.

dev = qml.device('qiskit.ibmq', wires = 1,

backend = bck, provider = prov)

Send a circuit and get some results!

@qml.qnode(dev)

def qcirc():

qml.Hadamard(wires = 0)

return qml.probs(wires = 0)

print(qcirc())

80 Chapter 2: The Tools of the Trade in Quantum Computing

Upon executing the preceding code, we get our desired result:

[0.51660156 0.48339844]

And that’s how you can send jobs to IBM Quantum using PennyLane!

To learn more. . .

Of course, you can use any quantum device that is accessible with your IBM account,

not just the least busy one. You only need to replace the definition of the backend

in the previous code with a direct specification of a particular computer as we did

in the previous section.

With this introduction to the workings of Qiskit and PennyLane and all the mathematical

concepts that we studied in Chapter 1, Foundations of Quantum Computing, we are now

ready to begin solving problems with actual quantum algorithms. And that is exactly what

we will do, starting in the next chapter. Let the quantum games begin — and may the shots

be ever in your favor!

Summary
In this chapter, we have explored some of the frameworks and platforms that can enable

us to implement, simulate, and run quantum algorithms. We have also learned how to

work with two of these frameworks: Qiskit and PennyLane, which are very widely used.

In addition to this, we have learned how to use the IBM Quantum platform to execute

quantum circuits on real hardware, sending them from either Qiskit or PennyLane.

With the skills that you have gained in this chapter, you are now able to implement and

execute your own circuits. Moreover, you are now well-prepared to read the rest of the

book, since we will be using Qiskit and PennyLane extensively.

In the next chapter, we will take our first steps in putting all this knowledge into practice.

We shall dive into the world of quantum optimization!

Part 2

When Time is Gold: Tools for
Quantum Optimization

This part focuses on the use of quantum algorithms to solve optimization problems. You

will learn about Quadratic Unconstrained Binary Optimization (QUBO) problems

and how to solve them with quantum annealers and digital quantum computers. You will

also learn about more general optimization problems and about the Variational Quantum

Eigensolver.

The chapters included in this part are the following:

• Chapter 3, Working with Quadratic Unconstrained Binary Optimization Problems

• Chapter 4, Adiabatic Quantum Computing and Quantum Annealing

• Chapter 5, QAOA: Quantum Approximate Optimization Algorithm

• Chapter 6, GAS: Grover Adaptive Search

• Chapter 7, VQE: Variational Quantum Eigensolver,

3
Working with Quadratic
Unconstrained Binary
Optimization Problems

The universe cannot be read until we have learned the language and become familiar
with the characters in which it is written.

— Galileo Galilei

Starting with this chapter, we will be studying different algorithms that have been proposed

to solve optimization problems with quantum computers. We will work both with quantum

annealers and with computers that implement the quantum circuit model. We will

use methods such as the Quantum Approximate Optimization Algorithm (QAOA),

Grover’s Adaptive Search (GAS), and the Variational Quantum Eigensolver (VQE).

We will also learn how to adapt these algorithms to different types of problems, and how

to run them on simulators and actual quantum computers.

84 Chapter 3: Working with Quadratic Unconstrained Binary Optimization Problems

But before we can do all that, we need a language in which we can state problems in a

manner that makes it possible for a quantum computer to solve them. In this regard, with the

Quadratic Unconstrained Binary Optimization (QUBO) framework, we can formulate

many different optimization problems in a way that maps directly into the quantum setting,

allowing us to use a plethora of quantum algorithms to try to find solutions that are optimal

or, at least, close to optimal.

This chapter will introduce all the tools that we need to work with QUBO formulations.

We will start by studying the maximum cut (or Max-Cut) problem in graphs, probably

the simplest problem that can be formulated in the QUBO framework, and we will work

our way up from there.

We’ll cover the following topics in this chapter:

• The Max-Cut problem and the Ising model

• Enter quantum: formulating optimization problems the quantum way

• Moving from Ising to QUBO and back

• Combinatorial optimization problems with the QUBO model

After reading this chapter, you will be ready to write your own optimization problems in a

format that will allow you to solve them using quantum computers.

3.1 The Max-Cut problem and the Ising model
In order for us to understand how to use quantum computers to solve optimization problems,

we need to get used to some abstractions and techniques that we will develop throughout

this chapter. To get started, we will consider the problem of finding what we call maximum

cuts in a mathematical structure called a graph. This is possibly the simplest problem

that can be written in the formalism that we will be using in the following chapters. It will

help us in gaining intuition and it will provide a solid foundation for formulating more

complicated problems later on.

The Max-Cut problem and the Ising model 85

3.1.1 Graphs and cuts
When you are given a graph, you are essentially given some elements, which we will refer

to as vertices, and some connections between pairs of these vertices, which we will call

edges. See Figure 3.1 for an example of a graph with five vertices and six edges.

1

0

2

3

4

Figure 3.1: Example of a graph

Given a graph, the Max-Cut problem consists in finding a maximum cut of it. That is,

we want to divide the vertices of the graph into two sets — that’s what we call cutting

the graph into two parts — such that the number of edges with extremes in different sets

of the cut is the maximum possible. We call the number of such edges the size of the

cut, and we say that these edges are cut. You can imagine that, for instance, the vertices

represent workers of a company, edges have been added between people who don’t get

along that well, and you need to form two teams trying to minimize the number of conflicts

by putting potential enemies in different teams.

Figure 3.2 presents two different cuts for the graph in Figure 3.1, using different colors for

vertices that go in different sets and using dashed lines for edges that have extremes in

different parts of the cut. As you can see, the cut in Figure 3.2a has size 5, while the cut

in Figure 3.2b is of size 4. In fact, it is easy to check that no cut of this graph can have

86 Chapter 3: Working with Quadratic Unconstrained Binary Optimization Problems

a size bigger than 5 since vertices 0, 1, and 2 can’t all go in different sets and, hence, at

least one of the edges (0, 1), (0, 2), or (1, 2) will not be cut. The cut in Figure 3.2a is, then, a

maximum or optimal cut.

1

0

2

3

4

(a) Optimal cut.

1

0

2

3

4

(b) Non-optimal cut.

Figure 3.2: Two different cuts of the same graph

Exercise 3.1

The maximum cut in a graph doesn’t need to be unique. Find a maximum cut for

the graph in Figure 3.1 in which vertices 0 and 1 are in the same set.

So now we know what the Max-Cut problem is about. But how do we formulate it

mathematically? We will learn exactly that in the next subsection.

3.1.2 Formulating the problem
Surprisingly enough, we can formulate the Max-Cut problem as a combinatorial optimiza-

tion problem with no reference whatsoever to graphs, edges, or vertices. In order to do that,

we associate a variable 𝑧𝑖 to each vertex 𝑖 = 0,… , 𝑛 − 1 of the graph. Variables 𝑧𝑖 will take

value 1 or −1. Each assignment of values to the variables determines a cut: vertices whose

variables take value 1 will be in one set and vertices whose variables take value −1 will be

in the other one. For instance, for the cut of Figure 3.2a we could have 𝑧0 = 𝑧2 = 𝑧3 = 1

and 𝑧1 = 𝑧4 = −1. Notice that, for our purposes, we could also represent that cut with the

assignment 𝑧0 = 𝑧2 = 𝑧3 = −1, 𝑧1 = 𝑧4 = 1.

The Max-Cut problem and the Ising model 87

The key observation to formulate Max-Cut as a combinatorial optimization problem is

to notice that, if there is an edge between two vertices 𝑗 and 𝑘, then that edge is cut if

and only if 𝑧𝑗𝑧𝑘 = −1. This is because if the two vertices are in the same set, then either

𝑧𝑗 = 𝑧𝑘 = 1 or 𝑧𝑗 = 𝑧𝑘 = −1 and, consequently, 𝑧𝑗𝑧𝑘 = 1. However, if they are in different

sets, then either 𝑧𝑗 = 1 and 𝑧𝑘 = −1, or 𝑧𝑗 = −1 and 𝑧𝑘 = 1, yielding 𝑧𝑗𝑧𝑘 = −1.

Thus, our problem can be written as

Minimize ∑
(𝑗 ,𝑘)∈𝐸

𝑧𝑗𝑧𝑘

subject to 𝑧𝑗 ∈ {−1, 1}, 𝑗 = 0,… , 𝑛 − 1

where 𝐸 is the set of edges in the graph and the vertices are {0,… , 𝑛 − 1}. For instance, for

the graph in Figure 3.1, we would have the following formulation:

Minimize 𝑧0𝑧1 + 𝑧0𝑧2 + 𝑧1𝑧2 + 𝑧1𝑧3 + 𝑧2𝑧4 + 𝑧3𝑧4

subject to 𝑧𝑗 ∈ {−1, 1}, 𝑗 = 0,… , 4.

Note that the cut 𝑧0 = 𝑧2 = 𝑧3 = 1, 𝑧1 = 𝑧4 = −1 (which is the one in Figure 3.2a), attains

a value of −4 in the function to be minimized, which is the minimum possible value for

this particular case — but notice that it does not coincide with the number of edges that

are cut! The cut 𝑧0 = 𝑧3 = −1, 𝑧1 = 𝑧2 = 𝑧4 = 1, on the other hand, achieves a value of −2,

showing once again that the cut on Figure 3.2b is not optimal.

Exercise 3.2

Write the Max-Cut problem for the graph in Figure 3.3 as an optimization problem.

What is the value of the function to be minimized when 𝑧0 = 𝑧1 = 𝑧2 = 1 and

𝑧3 = 𝑧4 = 𝑧5 = −1. Is it an optimal cut?

At first sight, solving the Max-Cut problem might seem easy enough. However, it is an

NP-hard problem (refer to Appendix C, Computational Complexity, for more details on this

88 Chapter 3: Working with Quadratic Unconstrained Binary Optimization Problems

0

1

2

3

4

5

Figure 3.3: Another example of a graph

kind of problem). That means that if we were able to solve it efficiently with a classical

algorithm, we would have 𝑃 = 𝑁𝑃 , something the scientific community strongly believes

not to be true. This would be the case even if we could find a classical algorithm that

approximates the optimal cut within a factor of 16/17, as was proved by Håstad in a paper

published in 2001 [24]. So, even if we resort to looking for precise enough approximations,

the problem is indeed hard!

To learn more. . .

If you want to learn more about 𝑃 , 𝑁𝑃 , and 𝑁𝑃-hard problems, please check Ap-

pendix C, Computational Complexity. We will be discussing the ratio of approxi-

mation that quantum algorithms can achieve for the Max-Cut problem in Chapter 5,

QAOA: Quantum Approximate Optimization Algorithm.

We are now able to formulate Max-Cut as a minimization problem in which the variables

take values 1 and −1. Is this just accidental or are there more problems that can be written

in a similar way? Keep on reading and you will learn the answer in the next subsection.

The Max-Cut problem and the Ising model 89

3.1.3 The Ising model
The Max-Cut problem, as formulated in the previous pages, can be seen as just a particular

case of a seemingly unrelated problem in statistical physics: finding the state of minimum

energy of an instance of the Ising model. For the physics geeks out there, this is a

mathematical model for the ferromagnetic interaction of particles with spin, usually

arranged in a lattice (see Figure 3.4 and refer to the book by Gallavotti [25] for more details).

The particle spins are represented by variables 𝑧𝑗 that can take values 1 (spin up) or −1

(spin down) — sounds familiar, doesn’t it?

0 1

-1

2

3

4

2

3

-1

5

-1

-1

-1

6 7

3

8

-1

-1

9 10

-1

11

2

3 3

-1 2 -1

Figure 3.4: Example of the Ising model

The total energy of the system is given by a quantity called the Hamiltonian function

(more about this later in this chapter) defined by

−∑
𝑗 ,𝑘

𝐽𝑗𝑘𝑧𝑗𝑧𝑘 −∑
𝑗
ℎ𝑗𝑧𝑗

where the coefficients 𝐽𝑗𝑘 represent the interaction between particles 𝑗 and 𝑘 (usually, only

non-zero for adjacent particles) and the coefficients ℎ𝑗 represent the influence of an external

magnetic field on particle 𝑗 .

90 Chapter 3: Working with Quadratic Unconstrained Binary Optimization Problems

Finding the state of minimum energy of the system consists in obtaining a spin configuration

for which the Hamiltonian function attains its minimum value. As you can easily check

yourself, when all the 𝐽𝑗𝑘 coefficients are −1 and all the ℎ𝑗 coefficients are 0, the problem

is exactly the same as getting the maximum cut in a graph — although in a completely

different context! Of course, this makes the problem of finding the state of minimum energy

of a given Ising model an 𝑁𝑃-hard problem.

To learn more. . .

The quantum annealers that we will be using in Chapter 4, Quantum Adiabatic

Computing and Quantum Annealing, are quantum computers constructed with the

specific purpose of sampling from states of low energy of systems whose behavior

can be described with the Ising model. We will use this property to try to approximate

solutions to Max-Cut and many other related problems.

Let’s give an example of the problem of finding the minimum energy state of an Ising

model. Imagine that we have particles arranged as in Figure 3.4, where the numbers on

the edges represent the coefficients 𝐽𝑗𝑘 and we assume that the external magnetic field

is homogeneous and that all coefficients ℎ𝑗 are equal to 1. Then, the problem can be

formulated as follows:

Minimize 𝑧0𝑧1 − 2𝑧1𝑧2 + 𝑧2𝑧3 − 3𝑧0𝑧4 + 𝑧1𝑧5 + 𝑧2𝑧6 − 3𝑧3𝑧7

+ 𝑧4𝑧5 − 2𝑧5𝑧6 + 𝑧6𝑧7 − 3𝑧4𝑧8 + 𝑧5𝑧9 + 𝑧6𝑧10 − 3𝑧7𝑧11

+ 𝑧8𝑧9 − 2𝑧9𝑧10 + 𝑧10𝑧11 − 𝑧0 − 𝑧1 − 𝑧2 − 𝑧3 − 𝑧4 − 𝑧5

− 𝑧6 − 𝑧7 − 𝑧8 − 𝑧9 − 𝑧10 − 𝑧11

subject to 𝑧𝑗 ∈ {−1, 1}, 𝑗 = 0,… , 11.

This seems a little more involved than the formulations of the Max-Cut problem that we

have seen so far, but it clearly follows the same pattern. However, you could be wondering

what all this has to with quantum computing, since all these formulas only involve classical

Enter quantum: formulating optimization problems the quantum way 91

variables. Fair point! It is now time to use our knowledge of qubits and quantum gates to

try to see all these problems under a different, quantum light.

3.2 Enter quantum: formulating optimization
problems the quantum way

In this section, we will unveil how all the work that we have done so far in this chapter has

followed a secret plan! Was the choice of 𝑧 as the name for the variables in our problems

completely arbitrary? Of course not! If it made you think of those lovely 𝑍 quantum gates

and matrices that we introduced back in Chapter 1, Foundations of Quantum Computing,

you were on the right track. It will be the key to introducing the quantum factor into our

problems, as we will begin to see in the next subsection.

3.2.1 From classical variables to qubits
So far, the formulations that we have considered for the Max-Cut problem and for the Ising

model are purely classical. They do not mention quantum elements such as qubits, quantum

gates, or measurements. But we are closer than you might think to being able to give a

quantum formulation for these problems. We will start with a very simple instance of the

Max-Cut problem and show how we can easily transform it into quantum form. Consider

the graph in Figure 3.5. We already know that the corresponding Max-Cut problem can be

written as follows:

Minimize 𝑧0𝑧1 + 𝑧0𝑧2

subject to 𝑧𝑗 ∈ {−1, 1}, 𝑗 = 0, 1, 2.

The crucial observation that we need to make in order to transform this formulation into a

quantum one is that our beloved 𝑍 matrix can be used to evaluate the different terms in

92 Chapter 3: Working with Quadratic Unconstrained Binary Optimization Problems

0

1 2

Figure 3.5: A very simple Max-Cut problem

the function that we need to minimize. Namely, it is easy to check that

⟨0|𝑍 |0⟩ = (1 0)(
1 0

0 −1)(
1

0)
= 1, ⟨1|𝑍 |1⟩ = (0 1)(

1 0

0 −1)(
0

1)
= −1.

Now, consider the tensor product 𝑍⊗𝑍⊗𝐼 and basis state |010⟩. We know from Section 1.5.1

that

⟨010|𝑍 ⊗ 𝑍 ⊗ 𝐼 |010⟩ = ⟨010| (𝑍 |0⟩ ⊗ 𝑍 |1⟩ ⊗ 𝐼 |0⟩)

= ⟨0|𝑍 |0⟩ ⟨1|𝑍 |1⟩ ⟨0| 𝐼 |0⟩ = 1 ⋅ (−1) ⋅ 1 = −1.

We interpret |010⟩ as representing a cut in which vertices 0 and 2 are assigned to one set

(because the value of qubits 0 and 2 in |010⟩ is 0) and vertex 1 is assigned to the other

(because qubit 1 has value 1 in |010⟩). Then, the fact that the product ⟨010|𝑍 ⊗ 𝑍 ⊗ 𝐼 |010⟩

evaluates to −1 means that edge (0, 1) has extremes in different sets of the cut; that is

because we have used 𝑍 ⊗𝑍 ⊗𝐼 , having 𝑍 operators acting on qubits 0 and 1. This behavior

is analogous to the one that we had with term 𝑧0𝑧1 in the function to minimize our classical

formulation of the problem.

In fact, 𝑍 ⊗ 𝑍 ⊗ 𝐼 is usually denoted by just 𝑍0𝑍1 (the subindices indicate the positions

of each 𝑍 gate; the other positions are assumed to be the identity) and, following this

Enter quantum: formulating optimization problems the quantum way 93

convention, we would have, for instance,

⟨010|𝑍0𝑍2 |010⟩ = ⟨0|𝑍 |0⟩ ⟨1| 𝐼 |1⟩ ⟨0|𝑍 |0⟩ = 1 ⋅ 1 ⋅ 1 = 1

because the edge (0, 2) is not cut with this particular assignment.

Of course, this is analogous for any basis state |𝑥⟩ with 𝑥 ∈ {000, 001,… , 111}, so ⟨𝑥 |𝑍𝑗𝑍𝑘 |𝑥⟩

will be −1 if the edge (𝑗 , 𝑘) is cut under an assignment 𝑥 and it will be 1 otherwise. We

only need to notice that if 𝑗 and 𝑘 are in different parts of the cut, then their qubits will

have different values and the product will be −1.

Furthermore, by linearity it holds that

⟨𝑥 | (𝑍0𝑍1 + 𝑍0𝑍2) |𝑥⟩ = ⟨𝑥 |𝑍0𝑍1 |𝑥⟩ + ⟨𝑥 |𝑍0𝑍2 |𝑥⟩ .

Thus, we can rewrite our problem as finding a basis state |𝑥⟩ for which ⟨𝑥 | (𝑍0𝑍1 + 𝑍0𝑍2) |𝑥⟩

attains a minimum.

Exercise 3.3

Compute ⟨010| (𝑍0𝑍1 + 𝑍0𝑍2) |010⟩ and ⟨100| (𝑍0𝑍1 + 𝑍0𝑍2) |100⟩. Does any of those

states minimize ⟨𝑥 | (𝑍0𝑍1 + 𝑍0𝑍2) |𝑥⟩?

But that is not the end of the story. For any basis state |𝑥⟩, it holds that either 𝑍𝑗𝑍𝑘 |𝑥⟩ = |𝑥⟩

or 𝑍𝑗𝑍𝑘 |𝑥⟩ = − |𝑥⟩, as you can easily check. Notice that this proves that each |𝑥⟩ is an

eigenvector of 𝑍𝑗𝑍𝑘 with eigenvalue either 1 or −1 (refer to Appendix B, Basic Linear

Algebra, for more information about eigenvectors and eigenvalues). Thus, for 𝑥 ≠ 𝑦 we

will have

⟨𝑦 |𝑍𝑗𝑍𝑘 |𝑥⟩ = ± ⟨𝑦 |𝑥⟩ = 0,

because ⟨𝑦 |𝑥⟩ = 0 whenever 𝑥 ≠ 𝑦, as we proved in Section 1.5.1.

94 Chapter 3: Working with Quadratic Unconstrained Binary Optimization Problems

Consequently, since a general state |𝜓⟩ can always be written as |𝜓⟩ = ∑𝑥 𝑎𝑥 |𝑥⟩, it follows

by linearity that

⟨𝜓|𝑍𝑗𝑍𝑘 |𝜓⟩ = (
∑
𝑦
𝑎∗𝑦 ⟨𝑦 |)

𝑍𝑗𝑍𝑘 (
∑
𝑥
𝑎𝑥 |𝑥⟩)

= ∑
𝑦

∑
𝑥
𝑎∗𝑦𝑎𝑥 ⟨𝑦 |𝑍𝑗𝑍𝑘 |𝑥⟩

= ∑
𝑥

|𝑎𝑥 |2 ⟨𝑥 |𝑍𝑗𝑍𝑘 |𝑥⟩ ,

where we have used 𝑎∗𝑥𝑎𝑥 = |𝑎𝑥 |2.

Hence, again by linearity, it is true that

⟨𝜓| (𝑍0𝑍1 + 𝑍0𝑍2) |𝜓⟩ = ⟨𝜓|𝑍0𝑍1 |𝜓⟩ + ⟨𝜓|𝑍0𝑍2 |𝜓⟩

= ∑
𝑥

|𝑎𝑥 |2 ⟨𝑥 |𝑍0𝑍1 |𝑥⟩ +∑
𝑥

|𝑎𝑥 |2 ⟨𝑥 |𝑍0𝑍2 |𝑥⟩

= ∑
𝑥

|𝑎𝑥 |2 ⟨𝑥 | (𝑍0𝑍1 + 𝑍0𝑍2) |𝑥⟩ .

We know that ∑𝑥 |𝑎𝑥 |
2 = 1 and that every |𝑎𝑥 |2 is non-negative, so it holds that

∑
𝑥

|𝑎𝑥 |2 ⟨𝑥 | (𝑍0𝑍1 + 𝑍0𝑍2) |𝑥⟩ ≥ ∑
𝑥

|𝑎𝑥 |2 ⟨𝑥min| (𝑍0𝑍1 + 𝑍0𝑍2) |𝑥min⟩

= ⟨𝑥min| (𝑍0𝑍1 + 𝑍0𝑍2) |𝑥min⟩∑
𝑥

|𝑎𝑥 |2

= ⟨𝑥min| (𝑍0𝑍1 + 𝑍0𝑍2) |𝑥min⟩ ,

where |𝑥min⟩ is a basis state (there could be more than one) for which ⟨𝑥 | (𝑍0𝑍1 + 𝑍0𝑍2) |𝑥⟩

is minimum and, hence, 𝑥min represents a maximum cut.

This may all seem a little bit too abstract. But what we have proved is simply that the

minimum over all possible quantum states is always reached on one of the basis states —

which are the only ones that we can directly interpret as representing cuts. Then, we can

Enter quantum: formulating optimization problems the quantum way 95

rewrite the problem of finding a maximum cut for the graph of Figure 3.5 as follows:

Minimize ⟨𝜓| (𝑍0𝑍1 + 𝑍0𝑍2) |𝜓⟩ = ⟨𝜓|𝑍0𝑍1 |𝜓⟩ + ⟨𝜓|𝑍0𝑍2 |𝜓⟩ ,

where |𝜓⟩ is taken from the set of quantum states on 3 qubits.

Notice the change that we have introduced. In our previous formulation, we were only

minimizing over basis states, but now that we know that the minimum over all possible

states is reached on a basis state, we are minimizing over all possible quantum states. This

will make our life easier in future chapters when we introduce quantum algorithms to

solve this kind of problem, because we will be justified in using any quantum state instead

of just constraining ourselves to those that come from the basis.

Important note

Although the minimum energy is always achieved on one basis state, it could also

be the case that it is also achieved on a non-basis state. In fact, if two different basis

states |𝑥⟩ and |𝑦⟩ achieve the minimum energy, then any superposition 𝑎 |𝑥⟩ + 𝑏 |𝑦⟩

is of minimum energy as well. That is the case, for example, for 𝑍0𝑍1 for which both

|01⟩ and |10⟩ have energy −1. Then, any superposition 𝑎 |01⟩ + 𝑏 |10⟩ also achieves

energy −1, which is the minimum possible for 𝑍0𝑍1.

It can be easily checked that our preceding argument holds for any number of qubits and

any sum of tensor products 𝑍𝑗𝑍𝑘 , so if we have a graph with set of vertices 𝑉 , of size 𝑛,

and set of edges 𝐸, we can rewrite the Max-Cut problem for the graph as follows:

Minimize ∑
(𝑗 ,𝑘)∈𝐸

⟨𝜓|𝑍𝑗𝑍𝑘 |𝜓⟩ ,

where |𝜓⟩ is taken from the set of quantum states on 𝑛 qubits.

96 Chapter 3: Working with Quadratic Unconstrained Binary Optimization Problems

Important note

Let’s take a step back and examine what we have proved. First, notice that matrices

such as

∑
(𝑗 ,𝑘)∈𝐸

𝑍𝑗𝑍𝑘

are Hermitian or self-adjoint. This means that they are equal to their conjugate

transposes, as you can easily verify, and they have particular properties such as

having real eigenvalues and being able to form an orthonormal basis with their

eigenvectors (refer to Appendix B, Basic Linear Algebra, for more details). In our

case, we have proved that the computational basis is such an orthonormal basis of

eigenvectors. Furthermore, the quantity

⟨𝜓|
(

∑
(𝑗 ,𝑘)∈𝐸

𝑍𝑗𝑍𝑘)
|𝜓⟩ = ∑

(𝑗 ,𝑘)∈𝐸
⟨𝜓|𝑍𝑗𝑍𝑘 |𝜓⟩ ,

which is usually called the expectation value of ∑(𝑗 ,𝑘)∈𝐸 𝑍𝑗𝑍𝑘 , attains its minimum

value on one of those eigenvectors, called the ground state.

This result is known as the variational principle, and we will revisit it in a more

general form in Chapter 7, VQE: Variational Quantum Eigensolver.

For the Ising model, the situation is exactly the same. We can go through an analogous

reasoning, only this time also involving terms of the form 𝑍𝑗 . Each 𝑍𝑗 is a tensor product

with all the factors equal to the identity matrix except for the one in the 𝑗-th position,

which is 𝑍 . Then, finding the state of minimum energy of an Ising model with 𝑛 particles

and coefficients 𝐽𝑗𝑘 and ℎ𝑗 is equivalent to the following problem:

Minimize − ∑
(𝑗 ,𝑘)∈𝐸

𝐽𝑗𝑘 ⟨𝜓|𝑍𝑗𝑍𝑘 |𝜓⟩ −∑
𝑗
ℎ𝑗 ⟨𝜓|𝑍𝑗 |𝜓⟩ ,

where |𝜓⟩ is taken from the set of quantum states on 𝑛 qubits.

Enter quantum: formulating optimization problems the quantum way 97

So, we have been able to cast several combinatorial optimization problems into a quantum

form. More concretely, we have rewritten our problems as instances of finding the ground

state of a self-adjoint matrix called the Hamiltonian of the system. Notice, however, that

we do not really need to obtain the exact ground state. If we can prepare a state |𝜓⟩ such that

the amplitude 𝑎𝑥min = ⟨𝑥min|𝜓⟩ is big in absolute value, then we will have a high probability

of finding 𝑥min when we measure |𝜓⟩. This approach will be behind the algorithms that we

will introduce in Chapters 4 through 7.

In the following sections, we will see that the possibility of rewriting combinatorial opti-

mization problems as instances of ground state problems is not just a happy coincidence,

but rather the norm, and we will show how to write many other important problems in

this form. But, before we turn to that, let us write some code to work with those tensor

products of 𝑍 matrices and to compute their expectation values.

3.2.2 Computing expectation values with Qiskit
In Chapter 2, The Tools of the Trade in Quantum Computing, we introduced the main ways in

which Qiskit can be used to work with quantum circuits and to execute them on simulators

and real quantum computers. But Qiskit also allows us to work with quantum states and

Hamiltonians, combining them with tensor products and computing their expectation

values, something that can be useful when dealing with optimization problems, as we have

just seen. Learning how to perform these computations will help make the concepts that

we have introduced more concrete. Moreover, in Chapter 5, QAOA: Quantum Approximate

Optimization Algorithm, we will be working extensively with Hamiltonians in Qiskit, so

we will need to know how to initialize and manipulate them.

Let’s start by showing, for example, how to define in Qiskit a basis state of three qubits

such as |100⟩. We can do this in several different ways. For instance, we can first define

one-qubit states |0⟩ and |1⟩ and compute their tensor products. There are several possible

approaches to achieve this. The first one is to directly use the amplitudes to initialize a

Statevector object. To do that, we need to import the class and then call its constructor

with input [1,0] (the amplitudes of |0⟩) as shown in the following fragment of code:

98 Chapter 3: Working with Quadratic Unconstrained Binary Optimization Problems

from qiskit.quantum_info import Statevector

zero = Statevector([1,0])

print("zero is", zero)

The output that you will get if you run this code is

zero is Statevector([1.+0.j, 0.+0.j],

dims=(2,))

which shows that, indeed, we have created a quantum state and set it to |0⟩. Of course, to

initialize a quantum state to |1⟩, we can run

one = Statevector([0,1])

print("one is",one)

obtaining this output:

one is Statevector([0.+0.j, 1.+0.j],

dims=(2,))

An alternative, probably more convenient way of achieving the same result is to initialize

the Statevector object from an integer such as 0 or 1. We will use the from_int method

and it is important to also use the dims parameter to indicate the size of the statevector.

Otherwise, 0 could be interpreted to be |0⟩ or |00⟩ or |000⟩ or... (as we mentioned in

Section 1.4.1). In our case, we set dims = 2, but in general, we will have to set dims to 2𝑛,

where 𝑛 is the number of qubits, because that is the number of amplitudes on an 𝑛-qubit

system. Then, we can run

zero = Statevector.from_int(0, dims = 2)

one = Statevector.from_int(1, dims = 2)

print("zero is",zero)

print("one is",one)

which results in the following output, as expected:

Enter quantum: formulating optimization problems the quantum way 99

zero is Statevector([1.+0.j, 0.+0.j],

dims=(2,))

one is Statevector([0.+0.j, 1.+0.j],

dims=(2,))

In either case, we can now construct states with a higher number of qubits by computing

tensor products with the tensor method, as shown in the following lines:

psi = one.tensor(zero.tensor(zero))

print("psi is",psi)

After running them, we will get the following output:

psi is Statevector([0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j,

0.+0.j, 0.+0.j],

dims=(2, 2, 2))

Notice that the amplitude whose value is 1 is in the fifth position. It corresponds to |100⟩,

because, in binary, 100 is 4 and we start counting on 0.

As you can imagine, both the way in which we compute the tensor product and the

representation as an amplitude vector can become difficult to parse when we are working

with many qubits. The following lines show a more concise way of using tensor products

and a much more beautiful way of presenting states, but they achieve exactly the same

result as the code shown previously:

psi = one^zero^zero

psi.draw("latex")

In this case, the output will be just |100⟩. More readable, right?

A faster way of constructing the |100⟩ state is using, again, the from_int method, as in

psi = Statevector.from_int(4, dims = 8)

100 Chapter 3: Working with Quadratic Unconstrained Binary Optimization Problems

where we specify that we are working with three qubits by setting dims = 8 (because we

need 8 amplitudes to define a three-qubit state).

So, we now know a bunch of ways of creating basis states. What about states that are in

superposition? Well, it couldn’t be easier, because, in Qiskit, you can simply multiply basis

states by amplitudes and then add them together. For instance, the instructions

from numpy import sqrt

ghz = 1/sqrt(2)*(zero^zero^zero) + 1/sqrt(2)*(one^one^one)

create the state 1/
√
2 |000⟩ + 1/

√
2 |111⟩.

Important note

It may seem that we have included some unnecessary parenthesis in the previous

code. However, if you remove them, you will not get the expected result. Qiskit

overloads the ^ operator to be used as the tensor product operation. But, in Python,

^ has a lower precedence than +, so we need the parenthesis for the operations to

be performed in the desired order.

To learn more. . .

An additional, indirect way of setting the values of a quantum state is creating a

quantum circuit that prepares the state and running it to obtain the state vector with

get_stavector as we learned to do in Chapter 2, The Tools of the Trade in Quantum

Computing; or you can even just pass the quantum circuit to the Statevector

constructor. For instance, to create basis states, you would only need a circuit with

𝑋 gates on the qubits that you need to be set to 1. If you use this method, however,

you need to be careful to remember that qubit 0 in Qiskit circuits is represented as

the rightmost one in kets. Thus, if you have a three-qubit QuantumCircuit called

qc and you use qc.x(0), you will obtain |001⟩!

In order to compute expectation values, quantum states are not enough. We also need to

create Hamiltonians. For now, we will learn how to work with tensor products of 𝑍 gates,

Enter quantum: formulating optimization problems the quantum way 101

like the ones we used in the previous section, starting with simple ones that can be stored

in Qiskit Pauli objects. Qiskit offers several ways to initialize them, like in the case of

Statevector objects. The first one is to use a string to specify the positions of 𝑍 and 𝐼

matrices in the product. For instance, if we are working with three qubits and we want to

create 𝑍0𝑍1 (which is, as you surely remember, the tensor product 𝑍 ⊗ 𝑍 ⊗ 𝐼), we can use

the following instructions:

from qiskit.quantum_info import Pauli

Z0Z1 = Pauli("ZZI")

print("Z0Z1 is",Z0Z1)

print("And its matrix is")

print(Z0Z1.to_matrix())

They give the following output:

Z0Z1 is ZZI

And its matrix is

[[1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]

[0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]

[0.+0.j 0.+0.j -1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]

[0.+0.j 0.+0.j 0.+0.j -1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]

[0.+0.j 0.+0.j 0.+0.j 0.+0.j -1.+0.j 0.+0.j 0.+0.j 0.+0.j]

[0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j -1.+0.j 0.+0.j 0.+0.j]

[0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j]

[0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j]]

The matrix representing 𝑍0𝑍1 is of size 8 × 8 and, as you can see, it can be hard to read.

Fortunately, we can use the fact that tensor products of diagonal matrices are always

diagonal, and print only the non-zero coefficients with the following instructions:

print("The sparse representation of Z0Z1 is")

print(Z0Z1.to_matrix(sparse=True))

102 Chapter 3: Working with Quadratic Unconstrained Binary Optimization Problems

They will give us:

Z0Z1 is ZZI

The sparse representation of Z0Z1 is

(0, 0) (1+0j)

(1, 1) (1+0j)

(2, 2) (-1+0j)

(3, 3) (-1+0j)

(4, 4) (-1+0j)

(5, 5) (-1+0j)

(6, 6) (1+0j)

(7, 7) (1+0j)

To learn more. . .

When constructing a Pauli object, we can also specify which positions of the tensor

product are 𝑍 matrices, passing them as a vector of ones (indicating the presence of

𝑍) and zeroes (indicating the absence of 𝑍 or, equivalently, the presence of 𝐼). Since

the construction method is more general and it can be used to create other tensor

products, we would need to specify another vector with positions of 𝑋 matrices,

which we will set to all zeroes for the moment.

For instance, you can run something like Z0Z1 = Pauli(([0,1,1],[0,0,0])) in

order to obtain 𝑍 ⊗𝑍 ⊗𝐼 . Notice that, because of the convention of qubit numbering

in Qiskit, we need to use [0,1,1] for the vector of 𝑍 positions instead of [1,1,0].

The main drawback of working with Pauli objects is that you cannot add them or multiply

them by scalars. To get something like 𝑍0𝑍1 + 𝑍1𝑍2, we need first to convert the Pauli

objects to PauliOp, which we can then add together as shown in the following code:

from qiskit.opflow.primitive_ops import PauliOp

H_cut = PauliOp(Pauli("ZZI")) + PauliOp(Pauli("ZIZ"))

print("H_cut is")

Enter quantum: formulating optimization problems the quantum way 103

print(H_cut)

print("The sparse representation of H_cut is")

print(H_cut.to_spmatrix())

The output, in this case, is:

H_cut is

1.0 * ZZI

+ 1.0 * ZIZ

The sparse representation of H_cut is

(0, 0) (2+0j)

(3, 3) (-2+0j)

(4, 4) (-2+0j)

(7, 7) (2+0j)

Since the sum of diagonal matrices is diagonal, we have used the sparse representation to

more compactly show the non-zero terms of H_cut. Notice that even some of the diagonal

terms are zero, because some elements of 𝑍0𝑍1 cancel with those of 𝑍0𝑍2.

A more compact way of obtaining the same Hamiltonian is:

from qiskit.opflow import I, Z

H_cut = (Z^Z^I) + (Z^I^Z)

print("H_cut is")

print(H_cut)

This evaluates to:

H_cut is

1.0 * ZZI

+ 1.0 * ZIZ

Notice that we have used ^ to compute tensor products and parenthesis to get the operation

priorities right.

104 Chapter 3: Working with Quadratic Unconstrained Binary Optimization Problems

Of course, more complicated Hamiltonians, even including coefficients, can be constructed.

For example,

H_ising = -0.5*(Z^Z^I) + 2*(Z^I^Z) -(I^Z^Z) + (I^Z^I) -5*(I^I^Z)

defines the Hamiltonian −1/2𝑍0𝑍1 + 2𝑍0𝑍2 − 𝑍1𝑍2 + 𝑍1 − 5𝑍2.

Now we are ready to compute expectation values. Thanks to the code that we have written

and executed so far, psi stores |100⟩ and H_cut stores 𝑍0𝑍1 + 𝑍1𝑍2. Then, computing

⟨100| (𝑍0𝑍1 + 𝑍1𝑍2) |100⟩ is as easy as running the following instruction:

print("The expectation value is", psi.expectation_value(H_cut))

This will give us the following output:

The expectation value is (-2+0j)

Since 𝑍0𝑍1 + 𝑍0𝑍2 is the Hamiltonian for the Max-Cut problem of the graph in Figure 3.5,

this indicates that the assignment represented by |100⟩ (vertex 0 in one set and 1 and 2 in

the other) cuts the two edges of the graph and is, therefore, an optimal solution. Notice how

the output is represented as a complex number because inner products can, in general, have

imaginary parts. However, these expectation values will always be real, and the coefficients

that will go with the imaginary unit — represented in Python as j — will just be 0.

Exercise 3.4

Write code to compute the expectation value of all the possible cuts of the graph in

Figure 3.5. How many optimal solutions are there?

If you want to evaluate expressions such as ⟨𝜓|𝐻cut |𝜓⟩ step by step, you can also use Qiskit

to first compute 𝐻cut |𝜓⟩ and, then, the inner product of |𝜓⟩ with that. This can be achieved

with the following instruction:

print("The expectation value is", psi.inner(psi.evolve(H_cut)))

Moving from Ising to QUBO and back 105

Here, the evolve method is used to compute the matrix-vector multiplication, and inner

is, obviously, used for the inner product.

Important note

We must stress that all these operations are numerical and not something that we

can run on actual quantum computers. In fact, as you already know, on real devices

we have no access to the full state vector: this is something that we can only do

when we run circuits on simulators. In any case, we know that state vectors grow

exponentially in size with the number of qubits, so simulations can easily become

unfeasible in many scenarios. But don’t worry. In Chapter 5, QAOA: Quantum

Approximate Optimization Algorithm, we will learn how to use quantum computers

to estimate expectation values of tensor products of 𝑍 matrices. In Chapter 7, VQE:

Variational Quantum Eigensolver, we will do the same with more general tensor

products. In fact, the procedure that we will use will clarify why we call these

quantities expectation values!

But enough of tensor products and expectation values for now. Instead, in the next section,

we will introduce a new formalism that will allow us to formulate some optimization

problems more naturally than with the Ising model.

3.3 Moving from Ising to QUBO and back
Consider the following problem. Let’s say that you are given a set of integers 𝑆 and a

target integer value 𝑇 , and you are asked whether there is any subset of 𝑆 whose sum is

𝑇 . For instance, if 𝑆 = {1, 3, 4, 7,−4} and 𝑇 = 6, then the answer is affirmative, because

3 + 7 − 4 = 6. However, if 𝑆 = {2,−2, 4, 8,−12} and 𝑇 = 1, the answer is negative because

all the numbers in the set are even and they cannot add up to an odd number.

This problem, called the Subset Sum problem, is known to be 𝑁𝑃-complete (see, for

instance, Section 7.5 in the book by Sipser [26] for a proof). It turns out that we can

reduce the Subset Sum problem to finding a spin configuration of minimal energy for an

Ising model, (which is an 𝑁𝑃-hard problem – see Section 3.1.3). This means that we can

106 Chapter 3: Working with Quadratic Unconstrained Binary Optimization Problems

rewrite any instance of Subset Sum as an Ising ground state problem (check Appendix C,

Computational Complexity, for a refresher on reductions).

However, it may not be directly evident how to do so.

In fact, it is much simpler to pose the Subset Sum problem as a minimization problem

by using binary variables instead of variables that take 1 or −1 values. Indeed, if we are

given 𝑆 = {𝑎0,… , 𝑎𝑚} and an integer 𝑇 , we can define binary variables 𝑥𝑗 , 𝑗 = 0,… , 𝑚, and

consider

𝑐(𝑥0, 𝑥1,… , 𝑥𝑚) = (𝑎0𝑥0 + 𝑎1𝑥1 + … + 𝑎𝑚𝑥𝑚 − 𝑇)2 .

Clearly, the Subset Sum problem has a positive answer if and only if we can find binary

values 𝑥𝑗 , 𝑗 = 0,… , 𝑚, such that 𝑐(𝑥0, 𝑥1,… , 𝑥𝑚) = 0. In that case, the variables 𝑥𝑗 that

are equal to 1 will indicate which numbers from the set are selected for the sum. But

𝑐(𝑥0, 𝑥1,… , 𝑥𝑚) is always non-negative, so we have reduced the Subset Sum problem to

finding the minimum of 𝑐(𝑥0, 𝑥1,… , 𝑥𝑚): if the minimum is 0, the Subset Sum has a positive

solution; otherwise, it doesn’t.

For example, for the case of 𝑆 = {1, 4,−2} and 𝑇 = 2 that we considered previously, the

problem would be

Minimize 𝑥20 + 8𝑥0𝑥1 − 4𝑥0𝑥2 − 4𝑥0 + 16𝑥21 − 16𝑥1𝑥2 − 16𝑥1 + 4𝑥22 + 8𝑥2 + 4

subject to 𝑥𝑗 ∈ {0, 1}, 𝑗 = 0,… , 𝑚

where we have expanded (𝑥0 + 4𝑥1 − 2𝑥2 − 2)2 to obtain the expression to be optimized.

If you wish, you can simplify it a little by taking into account that 𝑥2𝑗 = 𝑥𝑗 always holds

for binary variables. In any case, 𝑥0 = 0, 𝑥1 = 𝑥2 = 1 would be an optimal solution for this

problem.

Notice that, in all of these cases, the function 𝑐(𝑥0, 𝑥1,… , 𝑥𝑚) that we need to minimize is a

polynomial of degree 2 on the binary variables 𝑥𝑗 . We can thus generalize this setting and

define Quadratic Unconstrained Binary Optimization (QUBO) problems, which are of

Moving from Ising to QUBO and back 107

the form

Minimize 𝑞(𝑥0,… , 𝑥𝑚)

subject to 𝑥𝑗 ∈ {0, 1}, 𝑗 = 0,… , 𝑚

where 𝑞(𝑥0,… , 𝑥𝑚) is a quadratic polynomial on the 𝑥𝑗 variables. The reason why these

problems are called QUBO should now be clear: we are minimizing quadratic expressions

over binary variables with no restrictions (because every combination of zeroes and ones

is acceptable).

From the preceding reduction of the Subset Sum problem, it follows that QUBO problems

are 𝑁𝑃-hard. Indeed, the QUBO model is very flexible, and it enables us to formulate many

optimization problems in a natural way. For example, it is quite easy to recast any Ising

minimization problem as a QUBO instance. If you need to minimize

−∑
𝑗 ,𝑘

𝐽𝑗𝑘𝑧𝑗𝑧𝑘 −∑
𝑗
ℎ𝑗𝑧𝑗

with some variables 𝑧𝑗 , 𝑗 = 0,… , 𝑚, taking values 1 or −1, you can define new variables

𝑥𝑗 = (1 − 𝑧𝑗)/2. Obviously, 𝑥𝑗 will be 0 when 𝑧𝑗 is 1, and 1 when 𝑧𝑗 is −1. Furthermore, if

you make the substitutions 𝑧𝑗 = 1 − 2𝑥𝑗 , you obtain a quadratic polynomial in the binary

variables 𝑥𝑗 that takes exactly the same values as the energy function of the original Ising

model. If you minimize the polynomial for the variables 𝑥𝑗 , you can then recover the spin

values 𝑧𝑗 that achieve the minimal energy.

In case you were wondering, yes, you can also use the substitution 𝑧𝑗 = 2𝑥𝑗 −1 to transform

Ising problems into QUBO formalism. In that case, values of 𝑧𝑗 equal to −1 would be taken

to values of 𝑥𝑗 equal to 0 and values of 𝑧𝑗 equal to 1 would be taken to 1 in 𝑥𝑗 . However,

we will stick to the transformation 𝑧𝑗 = 1 − 2𝑥𝑗 for the rest of the book.

108 Chapter 3: Working with Quadratic Unconstrained Binary Optimization Problems

For instance, if the Ising energy is given by (−1/2)𝑧0𝑧1 + 𝑧2, then, under the transformation

𝑧𝑗 = 1 − 2𝑥𝑗 , the corresponding QUBO problem will be the following:

Minimize − 2𝑥0𝑥1 + 𝑥0 + 𝑥1 − 2𝑥2 +
1
2

subject to 𝑥𝑗 ∈ {0, 1}, 𝑗 = 0, 1, 2.

You can also go from a QUBO problem to an Ising model instance by using the 𝑥𝑗 = (1−𝑧𝑗)/2

substitution. However, you will need to pay attention to a couple of details. Let’s illustrate

them with an example. Suppose that your QUBO problem is asking to minimize 𝑥20+2𝑥0𝑥1−3.

Then, when you substitute the 𝑥𝑗 variables, you obtain

𝑧20
4
+
𝑧0𝑧1
2

− 𝑧0 −
𝑧1
2
−
9
4
.

But the Ising model does not allow squared variables or independent terms! Fixing these

problems is not difficult, though. Regarding the squared variables, we can simply notice

that it always holds that 𝑧2𝑗 = 1, because 𝑧𝑗 is either 1 or −1. Thus, we replace each squared

variable with the constant value 1. In our case, we would get

1
4
+
𝑧0𝑧1
2

− 𝑧0 −
𝑧1
2
−
9
4
=
𝑧0𝑧1
2

− 𝑧0 −
𝑧1
2
− 2.

Then, we can simply drop the independent term, because we are dealing with a minimization

problem and it won’t influence the choice of optimal variables (however, you should add

it back when you want to recover the original value of the function to minimize). In the

preceding example, the equivalent Ising minimization problem would then be the following:

Minimize

𝑧0𝑧1
2

− 𝑧0 −
𝑧1
2

subject to 𝑧𝑗 ∈ {1,−1}, 𝑗 = 0, 1, 2.

Combinatorial optimization problems with the QUBO model 109

It is easy to check that this problem has two optimal solutions: 𝑧0 = 𝑧1 = 1 and 𝑧0 = 1, 𝑧1 =

−1, both attaining the −1 value. If we add back the independent term of value −2 that

we had dropped, we obtain an optimal cost of −3 in the QUBO problem. These solutions

correspond to 𝑥0 = 𝑥1 = 0 and 𝑥0 = 0, 𝑥1 = 1, respectively, which indeed evaluate to −3

and are optimal for the original problem.

Exercise 3.5

Write the Subset Sum problem for 𝑆 = {1,−2, 3,−4} and 𝑇 = 0 as a QUBO problem

and transform it into an instance of the Ising model.

So now we know how to go from QUBO problems to Ising energy minimization problems

and back, and we can use either formalism — whichever is more convenient at any given

moment. In fact, as we will learn in Chapters 4 and 5, the Ising model is the preferred

formulation when solving combinatorial optimization problems with quantum computers.

Also, the software tools that we will be using (Qiskit and D-Wave’s Ocean) will help us in

rewriting our QUBO problems in the Ising formalism by using transformations like the

ones we have described in this section.

We now have all the mathematical tools that we need in order to work with combinatorial

optimization problems if we want to solve them with quantum computers. Let’s play with

our new, shiny toys and use them to write some important problems in QUBO formalism.

3.4 Combinatorial optimization problems with
the QUBOmodel

In this final section of the chapter, we are going to introduce some techniques that will

allow us to write many important optimization problems as QUBO and Ising instances, so

we can later solve them with different quantum algorithms. These examples will also help

you understand how to formulate your own optimization problems under these models,

which is the first step in order to be able to use quantum computers to solve them.

110 Chapter 3: Working with Quadratic Unconstrained Binary Optimization Problems

3.4.1 Binary linear programming
Binary linear programming problems involve optimizing a linear function on binary

variables subject to linear constraints. Thus, the general form is

Minimize 𝑐0𝑥0 + 𝑐1𝑥1 + … + 𝑐𝑚𝑥𝑚

subject to 𝐴𝑥 ≤ 𝑏,

𝑥𝑗 ∈ {0, 1}, 𝑗 = 0,… , 𝑚,

where 𝑐𝑗 are integer coefficients, 𝐴 is an integer matrix, 𝑥 is the transpose of (𝑥0,… , 𝑥𝑚),

and 𝑏 is an integer column vector.

An example of this type of problem could be the following:

Minimize − 5𝑥0 + 3𝑥1 − 2𝑥2

subject to 𝑥0 + 𝑥2 ≤ 1,

3𝑥0 − 𝑥1 + 3𝑥2 ≤ 4

𝑥𝑗 ∈ {0, 1}, 𝑗 = 0, 1, 2.

Binary linear programming (also known as zero-one linear programming) is 𝑁𝑃-hard.

In fact, the decision version in which the goal is to determine if there is any assignment of

zeroes and ones that satisfies the linear constraints (with no actual optimization performed)

was one of Richard M. Karp’s original 21 𝑁𝑃-complete problems published in his famous

paper on reducibility [27]. Assignments that satisfy the constraints are called feasible.

To write a binary linear program in QUBO formalism, we need to perform some transfor-

mations. The first one is to convert the inequality constraints into equality constraints

by adding slack variables. This is better understood with an example. In the preceding

problem, we have two constraints: 𝑥0 + 𝑥2 ≤ 1 and 3𝑥0 − 𝑥1 + 3𝑥2 ≤ 4. In the first one, the

minimum value of the left-hand side is 0, attained when both 𝑥0 and 𝑥2 are 0. Thus, if we

Combinatorial optimization problems with the QUBO model 111

add a new binary slack variable 𝑦0 to that left-hand side and substitute ≤ with =, we have

𝑥0 + 𝑥2 + 𝑦0 = 1,

which can be satisfied if and only if 𝑥0 + 𝑥2 ≤ 1 can be satisfied. Indeed, if 𝑥0 = 𝑥2 = 0,

then we can take 𝑦0 = 1; and, if 𝑥0 = 0 and 𝑥2 = 1, or 𝑥0 = 1 and 𝑥2 = 0, we can take

𝑦0 = 0. If 𝑥0 = 𝑥2 = 1, it is not possible to satisfy the constraint. That’s why we can replace

𝑥0 + 𝑥2 ≤ 1 with 𝑥0 + 𝑥2 + 𝑦0 = 1 without changing the set of feasible solutions.

In the same way, the minimum value of 3𝑥0 − 𝑥1 +3𝑥2 is −1, and it is achieved when 𝑥0 = 0,

𝑥1 = 1, and 𝑥2 = 0.

Important note

Notice how the general rule to minimize these linear expressions on binary variables

within some constraints is to set the variables with positive coefficients to 0 and

those with negative coefficients to 1.

Then, in order for 3𝑥0 − 𝑥1 + 3𝑥2 to reach up to 4, which is the right-hand side of the

constraint, we may need to add a number as big as 5. But to write non-negative numbers

up to 5 we need only three bits, so we can add three new binary variables, 𝑦1, 𝑦2, and 𝑦3,

and consider

3𝑥0 − 𝑥1 + 3𝑥2 + 𝑦1 + 2𝑦2 + 4𝑦3 = 4,

which can be satisfied if and only if 3𝑥0 − 𝑥1 + 3𝑥2 ≤ 4 can be satisfied.

To learn more. . .

In fact, notice that 𝑦1 + 2𝑦2 + 4𝑦3 may go up to 7, but we only need to go up to 5.

Thus, we could also use

3𝑥0 − 𝑥1 + 3𝑥2 + 𝑦1 + 2𝑦2 + 2𝑦3 = 4

as a replacement for 3𝑥0 − 𝑥1 + 3𝑥2 ≤ 4.

112 Chapter 3: Working with Quadratic Unconstrained Binary Optimization Problems

Putting it all together, our original problem is equivalent to the following one:

Minimize − 5𝑥0 + 3𝑥1 − 2𝑥2

subject to 𝑥0 + 𝑥2 + 𝑦0 = 1,

3𝑥0 − 𝑥1 + 3𝑥2 + 𝑦1 + 2𝑦2 + 2𝑦3 = 4

𝑥𝑗 ∈ {0, 1}, 𝑗 = 0, 1, 2,

𝑦𝑗 ∈ {0, 1}, 𝑗 = 0, 1, 2, 3.

Now, we are ready to write the problem as a QUBO instance. The only thing that we need

to do is to incorporate the constraints as penalty terms in the expression that we are

trying to minimize. For that, we use an integer 𝐵 (for which we will select a concrete value

later on) and consider the problem

Minimize − 5𝑥0 + 3𝑥1 − 2𝑥2 + 𝐵(𝑥0 + 𝑥2 + 𝑦0 − 1)2

+ 𝐵(3𝑥0 − 𝑥1 + 3𝑥2 + 𝑦1 + 2𝑦2 + 2𝑦3 − 4)2

subject to 𝑥𝑗 ∈ {0, 1}, 𝑗 = 0, 1, 2,

𝑦𝑗 , ∈ {0, 1}, 𝑗 = 0, 1, 2, 3,

which is already in QUBO form.

Since the new problem is unconstrained, we need to set 𝐵 big enough so that violating

the constraints does not pay off. If one of the original constraints is violated, the terms

that are multiplied by 𝐵 will be greater than 0. Moreover, the expression that we wanted

to minimize in the original formulation of the problem was −5𝑥0 + 3𝑥1 − 2𝑥2, which can

reach a minimum value of −7 (when 𝑥0 = 𝑥2 = 1 and 𝑥1 = 0) and a maximum value of 3

(when 𝑥0 = 𝑥2 = 0 and 𝑥1 = 1). Thus, if we choose, for instance, 𝐵 = 11, any assignment

that violates the constraints will achieve a value greater than at least 4 and will never

be selected as the optimal solution to the QUBO problem if there is at least one feasible

solution (which is the case for this particular problem).

Combinatorial optimization problems with the QUBO model 113

In this way, a QUBO problem whose optimal solution is the same as the optimal solution

of the original one is the following one:

Minimize − 5𝑥0 + 3𝑥1 − 2𝑥2 + 11(𝑥0 + 𝑥2 + 𝑦0 − 1)2

+ 11(3𝑥0 − 𝑥1 + 3𝑥2 + 𝑦1 + 2𝑦2 + 2𝑦3 − 4)2

subject to 𝑥𝑗 ∈ {0, 1}, 𝑗 = 0, 1, 2,

𝑦𝑗 , ∈ {0, 1}, 𝑗 = 0, 1, 2, 3.

If you expand the expression to minimize, you will obtain a quadratic polynomial in the 𝑥𝑗
variables, exactly what we need in the QUBO formulation.

To learn more. . .

Integer linear programming is a generalization of binary linear programming

in which non-negative integer variables are used instead of binary ones. In some

instances of that kind of problem, the constraints allow us to deduce that the integer

variables are bounded. For instance, if you have the constraint

2𝑎0 + 3𝑎1 ≤ 10

then you can deduce that 𝑎0 ≤ 5 and 𝑎1 ≤ 3. Since both 𝑎0 and 𝑎1 are non-negative,

we can replace them with expressions in binary variables in the same way that we

introduced slack variables for binary integer programs. In this case, for instance, we

can replace 𝑎0 with 𝑥0 + 2𝑥1 + 4𝑥2 and 𝑎1 with 𝑥3 + 2𝑥4. In that manner, the integer

linear program is transformed into an equivalent binary linear program that, in

turn, can be written as a QUBO problem.

The procedure that we have studied in this section can be applied to transform any binary

linear program into a QUBO problem. You only need to first introduce slack variables and

then add penalty terms that substitute the original constraints. This is quite useful, since

many important problems can be written directly as binary linear programs. In the next

subsection, we will give a prominent example.

114 Chapter 3: Working with Quadratic Unconstrained Binary Optimization Problems

3.4.2 The Knapsack problem
In the famous Knapsack problem, you are given a list of objects 𝑗 = 0,… , 𝑚, each of them

with a weight 𝑤𝑗 and a value 𝑐𝑗 . You are also given a maximum weight 𝑊 and the goal is to

find a collection of objects that maximizes the total value without going over the maximum

weight allowed. Think of it as if you were going on a journey and you want to pack as

many valuable objects as possible without getting a knapsack that is too heavy to carry.

For instance, you can have objects with values 𝑐0 = 5, 𝑐1 = 3, and 𝑐2 = 4 and weights

𝑤0 = 3, 𝑤1 = 1, and 𝑤2 = 1. If the maximum weight is 4, then the optimal solution would

be to choose objects 0 and 2 for a total value of 9. However, that solution is unfeasible if

the maximum weight is 3. In that case, we should choose objects 1 and 2 to obtain a total

value of 7.

Although, at first sight, this problem may seem easy to solve, the fact is that (surprise,

surprise!) it is 𝑁𝑃-hard. In fact, if we consider a decision version of the problem in which

we are also given a value 𝑉 and we are asked if there is a selection of objects with a value

of at least 𝑉 that also satisfies the weight constraint, then the problem is 𝑁𝑃-complete.

To learn more. . .

Proving that the decision version of the Knapsack problem is 𝑁𝑃-complete is easy,

because we already know that the Subset Sum problem is 𝑁𝑃-complete. Suppose,

then, that you are given an instance of the Subset Sum problem with set 𝑆 =

{𝑎0,… , 𝑎𝑚} and target sum 𝑇 . Then, you can recast this as an instance of the Knapsack

problem by considering objects 𝑗 = 0,… , 𝑚 with values 𝑐𝑗 = 𝑎𝑗 and weights 𝑤𝑗 = 𝑎𝑗 ,

maximum weight 𝑊 = 𝑇 , and minimum total value 𝑉 = 𝑇 . Then, a solution

to the Knapsack decision problem will give you a selection of objects 𝑗0,… , 𝑗𝑘
such that 𝑎𝑗0 + … + 𝑎𝑗𝑘 ≤ 𝑊 = 𝑇 because of the weight constraint and such that

𝑎𝑗0 + … + 𝑎𝑗𝑘 ≥ 𝑉 = 𝑇 because of the minimum value condition. Obviously, that

selection of objects would also be a solution to the Subset Sum problem.

Combinatorial optimization problems with the QUBO model 115

It is straightforward to write the Knapsack problem as a binary linear program. We only

need to define binary variables 𝑥𝑗 , 𝑗 = 0,… , 𝑚, that indicate whether we choose object 𝑗 (if

𝑥𝑗 = 1) or not (if 𝑥𝑗 = 0) and consider

Minimize − 𝑐0𝑥0 − 𝑐1𝑥1 − … − 𝑐𝑚𝑥𝑚

subject to 𝑤0𝑥0 + 𝑤1𝑥1 + … + 𝑤𝑚𝑥𝑚 ≤ 𝑊 ,

𝑥𝑗 ∈ {0, 1}, 𝑗 = 0,… , 𝑚,

where 𝑐𝑗 are the object values, 𝑤𝑗 are their weights, and 𝑊 is the maximum weight of the

knapsack. Notice that, since the original problem was asking to maximize the value, we

are now minimizing the negative value, which is completely equivalent.

For instance, in the example that we considered previously with object values 5, 3, and 4,

weights 3, 1, and 1, and maximum weight 3, the problem would be the following:

Minimize − 5𝑥0 − 3𝑥1 − 4𝑥2

subject to 3𝑥0 + 𝑥1 + 𝑥2 ≤ 3,

𝑥𝑗 ∈ {0, 1}, 𝑗 = 0, 1, 2.

Of course, then we can add slack variables and introduce penalty terms, just as we did in

the previous subsection, to rewrite the program as a QUBO problem. And that is exactly

what we will need to do in order solve these problems with our quantum algorithms!

Exercise 3.6

Consider objects with values 3, 1, 7, 7 and weights 2, 1, 5, 4. Write the Knapsack

problem for the case in which the maximum weight is 8 as a binary linear program.

116 Chapter 3: Working with Quadratic Unconstrained Binary Optimization Problems

To learn more. . .

A variant of the Knapsack problem allows us to choose several copies of the same

object to put into the knapsack. In that case, we should use integer variables instead

of binary ones to represent the number of times that each object is chosen. However,

notice that, once we know the maximum weight allowed, each integer variable

is bounded. Thus, we can use the technique that we explained at the end of the

previous subsection in order to replace the integer variables with binary variables.

And, afterwards, of course, we can rewrite the problem using the QUBO formalism.

For our next examples of optimization problems, we shall go back to working with graphs.

In fact, in the next subsection, we will deal with a very colorful problem!

3.4.3 Graph coloring
In this subsection and the next, we will study some problems that are related to graphs

but have many applications in different fields. The first one is graph coloring, in which

we are given a graph and we are asked to assign a color to each vertex in such a way that

vertices that are connected by an edge (also called adjacent vertices) receive different

colors. Usually, we are asked to do this using the minimum possible number of colors or

using no more than a given number of different colors. If we can color a graph with 𝑘

colors, we say that it is 𝑘-colorable. The minimum number of colors needed to color a

graph is called its chromatic number.

In Figure 3.6, we present three color assignments for the same graph. The one in Figure 3.6a

is not a valid coloring, because there are adjacent vertices that share the same color. The

one in Figure 3.6b is valid, but not optimal, because we do not need more than three colors

for this graph, as Figure 3.6c proves.

The graph coloring problem may look like a children’s game. However, many very relevant

practical problems can be written as instances of graph coloring. For example, imagine

that your company has several projects and you need to assign supervisors to each of them,

but some projects are incompatible because of time overlaps or other restrictions. You can

Combinatorial optimization problems with the QUBO model 117

(a) Invalid coloring (b) Non-optimal coloring

(c) Optimal coloring

Figure 3.6: Different colorings of a graph

create a graph in which the projects are the vertices and two projects are connected by

an edge if and only if they are incompatible. Then, finding the chromatic number of the

graph is equivalent to finding the minimum number of project leaders that you need to

assign. Furthermore, finding a coloring will give you a way of assigning the supervisors

while satisfying the constraints.

To learn more. . .

The history of graph coloring dates back to the middle of the 19th century and it is

full of surprising plot twists. It originated from a seemingly simple problem: finding

the minimum number of colors needed in order to color a geographical map in such

a way that any pair of neighboring countries receive different colors. But, in spite

of its humble origins, it evolved to even become a philosophical debate about the

validity of computer-assisted mathematical proofs!

A very enjoyable popular recounting of this long and winding process can be found

in Four Colors Suffice, by Robin Wilson [28].

Deciding whether a graph is 2-colorable or not is relatively easy. Indeed, notice that the

vertices of a 2-colorable graph can be assigned to two disjoint sets depending on the color

they receive and such that there are no edges among vertices of the same set — that’s why

118 Chapter 3: Working with Quadratic Unconstrained Binary Optimization Problems

these graphs are said to be bipartite graphs. But it is a well-known fact (originally proved

by König in 1936) that a graph is bipartite if and only if it has no cycles of odd length (refer

to Section 1.6 in the book by Diestel [29]) and we can check for the presence of cycles by,

for instance, computing the powers of the adjacency matrix of the graph (cf. Section 10.4.7

in Rosen’s book on discrete mathematics [30]). However, checking if a graph is 𝑘-colorable

is 𝑁𝑃-complete for any 𝑘 ≥ 3 (see the paper by Garey, Johnson, and Stockmeyer [31]) and,

thus, computing the chromatic number of a graph is 𝑁𝑃-hard.

Suppose we have a graph with vertices 0,… , 𝑚. In order to write the problem of determining

if a graph is 𝑘-colorable using the QUBO framework, we will define some binary variables

𝑥𝑗 𝑙 with 𝑗 = 0,… , 𝑚 and 𝑙 = 0,… , 𝑘 − 1. The variable 𝑥𝑗 𝑙 will get value 1 if the vertex 𝑗

receives the 𝑙-th color (for simplicity, colors are usually identified with numbers) and 0

otherwise. Then, the condition that vertex 𝑗 receives exactly one color can be algebraically

written as

𝑘−1
∑
𝑙=0

𝑥𝑗 𝑙 = 1.

For this condition to hold, there must exist 𝑙 such that 𝑥𝑗 𝑙 = 1 and such that 𝑥𝑗ℎ = 0 for any

ℎ ≠ 𝑙, exactly as we need.

On the other hand, we need to impose the constraint that adjacent vertices are not assigned

the same color. Notice that in the case that two vertices 𝑗 and ℎ receive the same color 𝑙,

then we would have 𝑥𝑗 𝑙𝑥ℎ𝑙 = 1. Thus, for adjacent vertices 𝑗 and ℎ we need to impose

𝑘−1
∑
𝑙=0

𝑥𝑗 𝑙𝑥ℎ𝑙 = 0.

We can write these constraints as penalty terms in the expression to minimize in our QUBO

problem to get

Minimize

𝑚
∑
𝑗=0 (

𝑘−1
∑
𝑙=0

𝑥𝑗 𝑙 − 1
)

2

+ ∑
(𝑗 ,ℎ)∈𝐸

𝑘−1
∑
𝑙=0

𝑥𝑗 𝑙𝑥ℎ𝑙

subject to 𝑥𝑗 𝑙 ∈ {0, 1}, 𝑗 = 0,… , 𝑚, 𝑙 = 0,… , 𝑘 − 1,

Combinatorial optimization problems with the QUBO model 119

where 𝐸 is the set of edges of the graph. Notice that we do not need to square the terms

∑𝑘−1
𝑙=0 𝑥𝑗 𝑙𝑥ℎ𝑙 because they are always non-negative. If we find that the optimal solution of

the problem is 0, then the graph is 𝑘-colorable. Otherwise, it is not.

Exercise 3.7

Consider a graph with vertices 0, 1, 2, and 3, and edges (0, 1), (0, 2), (1, 3), and (2, 3).

Write the QUBO version of the problem of checking whether the graph is 2-colorable.

In the next subsection, we will study another optimization problem on graphs. Do you like

traveling? Then, prepare yourself to optimize your travel plans with the help of QUBO

formalism.

3.4.4 The Traveling Salesperson Problem
The Traveling Salesperson Problem (or, simply, TSP) is one of the most famous problems

in combinatorial optimization. The goal of the problem is very simple to state: you need to

find a route that goes through each of the cities in a given set once and only once while

minimizing some global quantity (distance traveled, time spent, total cost...).

We can formulate the problem mathematically using graphs. In this formulation, we would

be given a set of vertices 𝑗 = 0,… , 𝑚 representing the cities, and, for each pair of vertices 𝑗

and 𝑙, we would also be given the cost 𝑤𝑗 𝑙 of traveling from 𝑗 to 𝑙 (this cost does not need to

be the same, in general, as 𝑤𝑙𝑗). We then need to find a path in the graph (that is, a set of

edges such that the end of an edge is the beginning of the next one) that visits each vertex

once and only once and that minimizes the sum of the costs of all the edges used.

To learn more. . .

As you have probably guessed, the TSP is 𝑁𝑃-hard (refer to Chapter 15 in the book

on combinatorial optimization by Korte and Vygen [32] for more details). In fact,

given a graph, a set of costs for the edges and a value 𝐶, it is 𝑁𝑃-complete to decide

whether there is a path that visits all the cities and has a cost less than or equal to 𝐶.

120 Chapter 3: Working with Quadratic Unconstrained Binary Optimization Problems

For instance, in Figure 3.7 we can see a TSP instance with four cities. The numbers that

appear to label the edges are their costs. For simplicity, we have assumed that for every

pair of vertices, the travel cost is, in this case, the same in both directions.

0

1

2

2

3

1

3

4

1

1

Figure 3.7: An example of the Traveling Salesperson Problem

To formulate the TSP in the QUBO framework, we will define binary variables 𝑥𝑗 𝑙 that will

indicate the order of visiting the different vertices. More concretely, if vertex 𝑗 is the 𝑙-th in

the tour, then 𝑥𝑗 𝑙 will be 1 and 𝑥𝑗ℎ will be 0 for ℎ ≠ 𝑙. Thus, for every vertex 𝑗 , we need to

impose the constraint

𝑚
∑
𝑙=0

𝑥𝑗 𝑙 = 1,

because every vertex needs to be visited exactly once. But we also need to impose

𝑚
∑
𝑗=0

𝑥𝑗 𝑙 = 1

for every position 𝑙, because we can only visit one city at a time.

If those two constraints are met, we will have a path that visits every vertex once and

only once. However, that is not enough. We also want to minimize the total cost of the

path, so we need an expression that gives us that cost in terms of the 𝑥𝑗 𝑙 variables. Notice

Combinatorial optimization problems with the QUBO model 121

that an edge (𝑗 , 𝑘) is used if and only if the vertices 𝑗 and 𝑘 are consecutive in the path.

That is, if and only if there exists an 𝑙 such that 𝑗 is visited in position 𝑙 and 𝑘 is visited in

position 𝑙 + 1. In that case, the cost of using the edge will be given by 𝑤𝑗𝑘𝑥𝑗 𝑙𝑥𝑘𝑙+1, because

𝑥𝑗 𝑙𝑥𝑘𝑙+1 = 1. But if 𝑗 and 𝑘 are not consecutive in the path, then 𝑥𝑗 𝑙𝑥𝑘𝑙+1 = 0 for every 𝑙,

which is also the cost of that path in our route — we are not using it, so we don’t pay for it!

Thus, the total cost of the tour is given by

𝑚−1
∑
𝑙=0

𝑚
∑
𝑗=0

𝑚
∑
𝑘=0

𝑤𝑗𝑘𝑥𝑗 𝑙𝑥𝑘𝑙+1,

where we are assuming that 𝑤𝑗𝑗 = 0 for 𝑗 = 0,… , 𝑚 — staying in the same place costs

nothing!

Then, we can incorporate the constraints as penalty terms in the function to minimize and

write the TSP problem as

Minimize

𝑚−1
∑
𝑙=0

𝑚
∑
𝑗=0

𝑚
∑
𝑘=0

𝑤𝑗𝑘𝑥𝑗 𝑙𝑥𝑘𝑙+1 + 𝐵
(

𝑚
∑
𝑙=0

𝑥𝑗 𝑙 − 1
)

2

+ 𝐵
(

𝑚
∑
𝑗=0

𝑥𝑗 𝑙 − 1
)

2

subject to 𝑥𝑗 𝑙 ∈ {0, 1}, 𝑗 , 𝑙 = 0,… , 𝑚,

where 𝐵 is chosen so that unfeasible solutions never achieve an optimal value. For instance,

if we select

𝐵 = 1 +
𝑚
∑
𝑗 ,𝑘=0

𝑤𝑗𝑘 ,

then those solutions that violate the constraints will get a penalty that is bigger than the

cost of any valid tour and will not be selected as optimal.

Exercise 3.8

Obtain the expression for the route cost in the TSP problem with the graph in

Figure 3.7.

122 Chapter 3: Working with Quadratic Unconstrained Binary Optimization Problems

We have shown how to formulate several important problems in the QUBO formalism.

But the ones that we have focused on are not, by any means, the only ones that these

techniques can address. In the next subsection, we will give you a couple of hints of where

to look for more.

3.4.5 Other problems and other formulations
In this chapter, we have introduced the Ising and QUBO models and we have shown how to

use them to formulate combinatorial optimization problems. In fact, in the last part of the

chapter, we have studied several famous problems, including binary linear programming

and the Traveling Salesperson Problem, and we have given QUBO formulations for them.

The possibility of using these frameworks to formulate optimization problems is not reduced

to the examples that we have worked with. Other important problems that can be readily

written as QUBO and Ising instances include finding cliques in graphs, determining whether

a logic formula is satisfiable, and scheduling jobs under constraints. Using the techniques

described in this chapter, you are now equipped to write your own formulations for these

and other problems.

However, it is useful to have some references to problems that have already been formulated

as QUBO instances to be used out of the box or to serve as inspiration if your problem

doesn’t exactly fit any of them. A good survey of such formulations is the one compiled by

Lucas [33], which includes all 21 of Karp’s 𝑁𝑃-complete problems and more.

An important thing that you should always keep in mind when using the QUBO framework

is that, usually, there is more than just one way of formulating a problem. For example,

sometimes it is straightforward to state a problem as a binary linear program and then use

the transformations that we have studied to obtain a QUBO and, eventually, an Ising version

of the problem. Nevertheless, it could be possible that with a different approach, you may

find a more compact formulation that reduces, for instance, the number of variables or the

length of the expression to minimize.

Combinatorial optimization problems with the QUBO model 123

In recent years, the comparison of alternative QUBO formulations of important combinato-

rial optimization problems has become a very active research area. It is good advice to keep

an open mind (and an eye on the scientific literature) because, in many cases, choosing

the right formulation can be a crucial factor to obtain better results when using quantum

computers to solve optimization problems.

To learn more. . .

A recent paper by Salehi, Glos, and Miszczak [34] addresses the task of representing

the TSP and some of its variants with QUBO formalism and studies how different

formulations can affect the performance of quantum optimization algorithms.

Our next stop will be using actual quantum devices to solve the type of problem that we

have been focusing on in this chapter. Get ready to learn how to use quantum annealers!

Summary
This chapter has been devoted to introducing two different mathematical frameworks, the

Ising model and the QUBO formalism, which allow us to write combinatorial optimization

problems in a way that we will later be able to use to find approximate solutions with

the help of quantum computers. We started with some simple examples and worked our

way up to some famous problems such as graph coloring and the Traveling Salesperson

Problem.

In order to achieve that, we studied different techniques that find wider applications in the

process of writing optimization problems for quantum computers. We saw, for example,

how to use slack variables and how to replace constraints with penalty terms. We also

learned how to transform integer variables into a series of binary ones.

After all that we have covered in this chapter, you are now prepared to write your own

problems in the languages required by optimization algorithms that can run on quantum

computers. The rest of the chapters in this part of the book will be devoted to learning how

to implement and run those quantum optimization algorithms. In fact, in the next chapter,

124 Chapter 3: Working with Quadratic Unconstrained Binary Optimization Problems

we will explain how to use a type of quantum computer called a quantum annealer to

solve QUBO and Ising problems.

4
Adiabatic Quantum
Computing and Quantum
Annealing

Love’s a different sort of thing, hot enough to make you flow into something,
interflow, cool and anneal and be a weld stronger than what you started with.

— Theodore Sturgeon

In the previous chapter, we studied how to formulate different combinatorial optimization

problems as QUBO instances that, in turn, could be rewritten as the optimization problem

of finding a state with minimum energy in an Ising model system. In this chapter, we will

use this fact to introduce a way of using quantum annealers — a special type of quantum

computer — to try to find (approximate) solutions to those combinatorial optimization

problems.

126 Chapter 4: Adiabatic Quantum Computing and Quantum Annealing

But, in order to do that, we first need to talk a little bit more about Hamiltonians and their

ground states, as well as the central role they play in adiabatic quantum computing.

The topics that we will cover in this chapter are as follows:

• Adiabatic quantum computing

• Quantum annealing

• Using Ocean to formulate and transform optimization problems

• Solving optimization problems on quantum annealers with Leap

Here we go!

4.1 Adiabatic quantum computing
In Chapter 1, Foundations of Quantum Computing, we focused mainly on quantum circuits

but we briefly mentioned that there were other equivalent quantum computing models.

One of them is adiabatic quantum computing, introduced in 2000 by Farhi, Goldstone,

Gutmann, and Sipser in a widely influential paper [35].

When using quantum circuits, we apply operations (our beloved quantum gates) through

discrete, sequential steps. However, adiabatic quantum computing relies on the use of

continuous transformations. Namely, we will use a Hamiltonian 𝐻 (𝑡) that will vary with

time and that will be the driving force to change the state of our qubits according to the

time-dependent Schrödinger equation:

𝐻 (𝑡) |𝜓(𝑡)⟩ = 𝑖ℏ
𝜕
𝜕𝑡

|𝜓(𝑡)⟩ .

To learn more. . .

As you may remember, in Chapter 1, Foundations of Quantum Computing, we talked

about the time-independent Schrödinger equation. In that case, the Hamiltonian

— which you can think of as a mathematical object that can describe the energy of

Adiabatic quantum computing 127

the system — remained unchanged throughout the process. Now, we’ll consider

situations in which this energy can vary with time. This is the case, for instance,

if you are applying an electromagnetic pulse to your qubits and you change its

intensity or its frequency.

The terms in this equation are the time-dependent Hamiltonian𝐻 (𝑡), the state vector

of the system |𝜓(𝑡)⟩, the imaginary unit 𝑖 (defined by 𝑖2 = −1), and the reduced

Planck’s constant ℏ.

In addition to using time-dependent Hamiltonians, there is another ingredient that we

need for our new quantum computing model: the idea of adiabatic evolution. Roughly

speaking, an adiabatic process is one in which the “energy configuration” of the system

changes “very gently” (there are quite a few quotation marks here, aren’t there?). But. . . what

does this have to do with quantum computing and how does it help us in finding solutions

to our problems?

The key observation is that we will be considering problems whose optimal solutions will

correspond to minimum-energy or ground states of some Hamiltonian of an Ising model.

So, if we start with our system in the ground state (for some Hamiltonian) and we evolve it

adiabatically, we know that it will remain in a ground state through the whole process. We

won’t be adding enough energy for the system to “jump” to the next energy level: this is,

in more “physical” terms, to go from the ground state to an excited state. And we can use

that to our advantage, because if we engineer the procedure so that the final Hamiltonian

of the system is the one whose ground state will yield the solution to our problem, then we

only need to measure the system to get the solution we are looking for.

Important note

To put it in a nutshell, the idea behind adiabatic quantum computing is to start

with a simple Hamiltonian, one for which we can easily obtain — and prepare! —

the ground state, and evolve it “carefully.” We do this so that we remain in the

128 Chapter 4: Adiabatic Quantum Computing and Quantum Annealing

ground state all the time, slowly changing our system until the ground state of

its Hamiltonian is the solution to our problem. And then, bang, we perform a

measurement and get our result!

Of course, the crucial thing here is how to perform the evolution to ensure that it is, indeed,

adiabatic. But don’t worry, the adiabatic theorem has got our backs there. This result,

originally proved by Max Born and Vladimir Fock [36], two of the fathers of quantum

mechanics, says that for your process to be adiabatic, it should be slow enough. You may

ask: how slow? Well, the total time should be inversely proportional to the square of the

spectral gap, which is the minimum difference in energy between the ground state and

the first excited state of the Hamiltonian during the whole evolution.

This makes perfect intuitive sense. If there is always a big difference in energy between

the ground state and the first excited state, then you can speed things up a little bit — you

won’t risk jumping to the next energy level. However, if the difference is small, you’d better

be careful, lest you accidentally go up a step (or several!) on the energy ladder.

Now that we have a clear understanding of the ideas behind adiabatic quantum computing,

let’s make things a little bit more formal. Suppose that you have a problem for which 𝐻1 is

the Hamiltonian whose ground state encodes the result that you want to find. For instance,

𝐻1 could be an Ising Hamiltonian that you obtained from transforming a QUBO problem.

Now, imagine that your system is in the ground state of some initial Hamiltonian 𝐻0. We

will soon discuss how to choose 𝐻0, but for now just think that you can prepare its ground

state easily enough so that it is a natural choice for you.

Suppose that we run the process for total time 𝑇 . The time-dependent Hamiltonian that

we will consider will be of the form

𝐻 (𝑡) = 𝐴(𝑡)𝐻0 + 𝐵(𝑡)𝐻1,

Quantum annealing 129

where 𝐴 and 𝐵 are real-valued functions that accept inputs over the interval [0, 𝑇] such

that 𝐴(0) = 𝐵(𝑇) = 1 and 𝐴(𝑇) = 𝐵(0) = 0. Notice that it holds that 𝐻 (0) = 𝐻0 and

𝐻 (𝑇) = 𝐻1, exactly as we desired. A common choice for the functions 𝐴 and 𝐵 is to set

𝐴(𝑡) = 1 − 𝑡/𝑇 and 𝐵(𝑡) = 𝑡/𝑇 . Nonetheless, as we will see later in this chapter, sometimes

we also use other options, under the requirement that they satisfy the aforementioned

boundary conditions.

Adiabatic quantum computing is polynomially equivalent to other quantum computing

models, as proved by Aharonov et al. [37], including the quantum circuit model. This

means that anything that is efficiently computable in one of these models is also efficiently

computable in adiabatic quantum computing, and vice versa. Consequently, you can choose

to use any of these models depending on the particulars of your problem or, as we will see

in the next section, on the kind of quantum computer that you have access to.

4.2 Quantum annealing
Although we have just seen that adiabatic quantum computing is, theoretically, a perfectly

viable alternative to the quantum circuit model, in its practical incarnation it is usually

implemented in a restricted version called quantum annealing.

Quantum annealing relies on the same core idea as adiabatic quantum computing: it takes

an initial Hamiltonian 𝐻0, a final Hamiltonian 𝐻1 whose ground state encodes the solution

to the problem of interest, and it gradually changes the acting Hamiltonian from the initial

to the final one by using some functions 𝐴 and 𝐵 (as described in the previous section) to

decrease the action of 𝐻0 and to increase the action of 𝐻1. However, quantum annealing

deviates from full adiabatic quantum computing in two ways. First of all, in practical

implementations of quantum annealing, the final Hamiltonian 𝐻1 that can be realized

cannot be chosen completely at will, but has to be selected from a certain, restricted class.

A typical option is an Ising Hamiltonian of the form

−∑
𝑗 ,𝑘

𝐽𝑗𝑘𝑍𝑗𝑍𝑘 −∑
𝑗
ℎ𝑗𝑍𝑗 ,

130 Chapter 4: Adiabatic Quantum Computing and Quantum Annealing

which is the quantum version of the one we introduced in Section 3.1.3. In this case, the

user has the freedom of selecting the 𝐽𝑗𝑘 and ℎ𝑗 coefficients within certain ranges. Due to

this restriction in the choice of the final Hamiltonian, quantum annealing, unlike adiabatic

quantum computing, is not universal and can only be used to solve a specific (but still

very important!) type of problem. On the bright side, physical quantum devices based on

quantum annealing are simpler to construct, making it possible to scale the size of these

quantum annealers up to hundreds or even thousands of qubits.

The initial Hamiltonian in the quantum annealing setup is also usually fixed to be 𝐻0 =

−∑𝑛−1
𝑗=0 𝑋𝑗 , where 𝑛 is the number of qubits, and 𝑋𝑗 stands for the tensor product in which

the 𝑋 matrix is acting on qubit 𝑗 with the rest of positions occupied by 𝐼 , the identity

matrix. The ground state of 𝐻0 is easily seen to be ⨂𝑛−1
𝑖=0 |+⟩ , the tensor product of 𝑛 copies

of the plus state, which is relatively easy to prepare because it is completely unentangled.

Exercise 4.1

Prove that |𝜓0⟩ = ⨂𝑛−1
𝑖=0 |+⟩ has the minimum possible energy for 𝐻0 = −∑𝑛−1

𝑗=0 𝑋𝑗
by first showing that, for each 𝑗 and each state |𝜓⟩, it holds that ⟨𝜓|𝑋𝑗 |𝜓⟩ ≤ 1 and

then showing that ⟨𝜓0|𝑋𝑗 |𝜓0⟩ = 1 for each 𝑗 .

Thus, the Hamiltonian used in quantum annealing is given by

𝐻 (𝑡) = −𝐴(𝑡)
𝑛−1
∑
𝑗=0

𝑋𝑗 − 𝐵(𝑡)∑
𝑗 ,𝑘

𝐽𝑗𝑘𝑍𝑗𝑍𝑘 − 𝐵(𝑡)∑
𝑗
ℎ𝑗𝑍𝑗 ,

where 𝐽𝑗𝑘 and ℎ𝑗 are some adjustable coefficients, and 𝐴 and 𝐵 are functions such that

𝐴(0) = 𝐵(𝑇) = 1 and 𝐴(𝑇) = 𝐵(0) = 0, with 𝑇 being the total annealing time. In this

context, 𝐴 and 𝐵 are called the annealing schedule.

The other important deviation from the adiabatic quantum computing model is that, in

quantum annealing, evolution is no longer guaranteed to be adiabatic. There are two main

reasons for this decision. As you surely remember, the spectral gap is the minimum of

the difference between the ground state and the first excited state of 𝐻 (𝑡) for 𝑡 ∈ [0, 𝑇].

Quantum annealing 131

Computing this spectral gap can be very difficult. Actually, it can be even harder than

finding the ground state that we are looking for, as proved by Cubitt et al. [38]. The second

reason is that, even if we are able to compute the time that we need for the process to be

adiabatic, it can be so big that it wouldn’t be practical — or even possible! — to run the

system evolution for so long.

Thus, in quantum annealing, we run the evolution for a certain amount of time that need not

satisfy the conditions for adiabaticity, and hope to still be able to find good approximations

of the optimal solution to our problem. In fact, we don’t strictly need to remain in the

ground state of 𝐻 (𝑡). Since, at the end, we are going to measure the state, it would be

enough if the amplitude of an optimal or sufficiently good solution in our final state were

big enough. That’s because, then, the probability of obtaining a useful result will still be

high. And, of course, we can always repeat the process several times and keep the best of

all measurements!

In 2011, the Canadian company D-Wave was the first to ever commercialize a quantum

device that implemented quantum annealing as we have just described it. That quantum

annealer, called D-Wave One, had 128 qubits, while one of D-Wave’s most recent quantum

devices, the Advantage, has more than 5000 qubits, and it’s available for you to use online!

We need to keep in mind that, with these quantum computers, the evolution process will

not be adiabatic in general, so there is no guarantee that the exact solution will be found in

all cases. But, all over the world, many research teams and prominent companies — from

sectors as diverse as finance, logistics, and aircraft manufacturing — are actively exploring

the practical applications of quantum annealers. We will devote the rest of this chapter to

showing you how you can also try them for your own optimization problems.

Using D-Wave’s quantum annealers is much easier than you may think. First of all, you

need to follow the instructions in Appendix D, Installing the Tools, to install Ocean, which

is D-Wave’s quantum annealing Python library, and to create a free account on D-Wave

Leap, a cloud service where you can get one minute per month of free computing time

132 Chapter 4: Adiabatic Quantum Computing and Quantum Annealing

on D-Wave’s quantum annealers. This may not seem like much, but you will see that it is

enough to run quite a number of experiments.

To learn more. . .

If one minute per month proves not to be enough for your annealing necessities,

both D-Wave Leap and Amazon Braket offer paid access to quantum annealers.

Obviously, the pricing of these services varies from time to time, so please check

their websites to check the current rates and conditions.

Once you have everything set up, you can access quantum annealers to find an approxima-

tion of a solution to any combinatorial optimization problem that you may have written as

either an instance of finding the ground state of an Ising model or as a QUBO problem. For

instance, let’s try to solve the MaxCut problem for the graph in Figure 3.5. As you surely

remember, we can pose it as finding the ground state of

𝑍0𝑍1 + 𝑍0𝑍2,

which is, of course, an Ising Hamiltonian in which 𝐽01 = 𝐽02 = 1 and the rest of the

coefficients are 0.

All we need to tell the quantum annealer is that those are the coefficients we want to

use, and then we can perform the annealing multiple times to obtain some results that

will hopefully solve our problem. To specify the problem, we can use the dimod package,

included in the Ocean library, as follows:

import dimod

J = {(0,1):1, (0,2):1}

h = {}

problem = dimod.BinaryQuadraticModel(h, J, 0.0, dimod.SPIN)

print("The problem we are going to solve is:")

print(problem)

The output will be the following:

Quantum annealing 133

The problem we are going to solve is:

BinaryQuadraticModel({0: 0.0, 1: 0.0, 2: 0.0},

{(1, 0): 1.0, (2, 0): 1.0}, 0.0, 'SPIN')

There are a couple of things to notice here. First, we have used J for the coefficients of

the degree 2 terms — (0,1):1 sets the 𝐽01 coefficient to 1 and (0,2):1 sets 𝐽02 = 1 — and

h for the linear ones. Those coefficients that we do not specify are automatically set to 0

by the BinaryQuadraticModel constructor, but we still need to pass both the J and the h

parameters (even in our case, where the latter is empty). Notice that in the output we get

(1, 0): 1.0, (2, 0): 1.0, which seems to be the reverse of what we used. But they are

exactly the same, because 𝑍0𝑍1 = 𝑍1𝑍0 and, thus, the situation is symmetrical. Second, we

have used 0.0 as the value for the offset, which is a constant term that can be added to the

Hamiltonian. Finally, we have used the dimod.SPIN parameter because we are working

with an Ising Hamiltonian and, thus, the values of our variables are 1 and −1. In just a

minute, we will see how to use binary variables instead. But, before that, let’s use the

following code to run the annealing process on one of the quantum annealers:

from dwave.system import DWaveSampler

from dwave.system import EmbeddingComposite

sampler = EmbeddingComposite(DWaveSampler())

result = sampler.sample(problem, num_reads=10)

print("The solutions that we have obtained are")

print(result)

What we are doing here is, first, importing DWaveSampler, which will give us access to the

quantum annealers, and then EmbeddingComposite, which will allow us to map or embed

our problem into the actual qubits of the annealer — don’t worry, we will explain this in

detail later. For now, you can think of this as an automatic way of selecting a few qubits in

the computer that will be used to represent our variables. After that, we create an object

sampler that we then use to obtain 10 samples or possible solutions to our problem. This

is where the actual execution on the actual quantum annealer happens. After that, we just

134 Chapter 4: Adiabatic Quantum Computing and Quantum Annealing

print the result, which will vary from execution to execution. This is because we are using

an actual quantum computer, which is, as you know, essentially probabilistic. In our case,

we obtained the following:

The solutions that we have obtained are

0 1 2 energy num_oc. chain_.

0 +1 -1 -1 -2.0 6 0.0

1 -1 +1 +1 -2.0 4 0.0

['SPIN', 2 rows, 10 samples, 3 variables]

This means that we obtained two different solutions: 𝑧0 = 1, 𝑧1 = −1, and 𝑧2 = −1, and

𝑧0 = −1, 𝑧1 = 1, and 𝑧2 = 1, both with energy −2; the first one was measured in 6 of the

executions and the second in the remaining 4 — we will explain what the chain_. data

means later in the chapter. But meanwhile, we can rejoice. These two solutions are, indeed,

maximum cuts in our graph, as you can easily check!

We can get some additional information from the result variable. In fact, we can access the

best solution through result.first and the total time that we used the quantum annealer

for, with result.info['timing']['qpu_access_time']. This is the amount that will be

subtracted from your monthly 60 seconds. . . or that you will be charged for if you have a

paying plan. In our case, the time that we used the annealer for was 15 832.16, which may

look like a huge number if you don’t realize that it is actually measured in microseconds.

So for the 10 samples we used about 0.016 seconds. That minute of access doesn’t seem so

short anymore, right?

We can also use dimod to work with QUBO problems. We will need to specify the coefficients

of the degree 2 terms, the linear coefficients — remember that, in QUBO, we are using binary

variables, so expressions like 𝑥23 can be simplified to 𝑥3 — and the independent coefficient,

exactly as in the Ising case. The only change is that we will use the dimod.BINARY parameter

when creating our problem with the BinaryQuadraticModel constructor.

Using Ocean to formulate and transform optimization problems 135

Exercise 4.2

Create an instance of a simple QUBO problem and solve it with an annealer. Notice

that the values for the variables in the solution will be 0 and 1 instead of 1 and −1.

This is just the simplest kind of execution that we can run on a quantum annealer, in which

we have used all the default parameters. But the Ocean software implements many other

functionalities that allow us, for instance, to work more comfortably with optimization

problems and to control the settings of our experiments more precisely, including the

annealing time and other important values. The rest of this chapter will guide you through

the most important features and options to help you get the most of your time with

annealers, starting with how to use Ocean to work with optimization problems.

4.3 Using Ocean to formulate and transform
optimization problems

As we have just seen, the BinaryQuadraticModel class can be used to define both Ising

and QUBO problems. But dimod also offers other models and utilities that will make our

lives a little bit easier. Let’s start by studying how we can conveniently define problems

with linear restrictions.

4.3.1 Constrained quadratic models in Ocean
You surely remember that a problem like

Minimize − 5𝑥0 + 3𝑥1 − 2𝑥2

subject to 𝑥0 + 𝑥2 ≤ 1,

3𝑥0 − 𝑥1 + 3𝑥2 ≤ 4

𝑥𝑗 ∈ {0, 1}, 𝑗 = 0, 1, 2

136 Chapter 4: Adiabatic Quantum Computing and Quantum Annealing

is an instance of binary linear programming. In Section 3.4.1, we studied this family of

problems in detail and we showed that they can be transformed into the QUBO and Ising

models by using slack variables and penalty terms.

So, imagine that you want to solve the preceding problem in a quantum annealer. Do you

need to perform all those boring transformations in order to obtain the QUBO coefficients

and then use them to define a BinaryQuadraticModel object? No! Fortunately, dimod

provides the ConstrainedQuadraticModel class, which simplifies the process of working

with problems that involve linear constraints.

In order to instantiate our binary linear program as a ConstrainedQuadraticModel object,

the first thing that we need to do is to define the variables that we want to use and their

types. In our case, we have three binary variables that we can define with the following

piece of code:

x0 = dimod.Binary("x0")

x1 = dimod.Binary("x1")

x2 = dimod.Binary("x2")

With these instructions, we have simply created three binary variables and we have labeled

them so that we can use them in mathematical expressions and easily identify them when

we print them.

To learn more. . .

If you have used symbolic mathematics libraries (for instance, SymPy), you will

recognize that the principles at work here are very similar.

Now, we are going to define a ConstrainedQuadraticModel object and we are going to set

the objective (the function that we seek to minimize) and also fix the constraints of the

problem. For that, we will use the variables that we have just created. This can be achieved

with the following instructions:

blp = dimod.ConstrainedQuadraticModel()

blp.set_objective(-5*x0+3*x1-2*x2)

Using Ocean to formulate and transform optimization problems 137

blp.add_constraint(x0 + x2 <= 1, "First constraint")

blp.add_constraint(3*x0 -x1 + 3*x2 <= 4, "Second constraint")

Setting the objective or adding constraints automatically adds all the variables involved to

the problem object. Notice also that we have provided labels to identify the constraints. If

you prefer not to do it, then dimod will randomly assign an alphanumeric string to each

constraint and it will be used as its name, should you need it. If, later on, you want to

rename any of them, you can use the relabel_constraints method.

We can inspect the elements of blp by accessing its variables, objective, and constraints

attributes. Thus, we can execute these instructions:

print("Our variables are:")

print(blp.variables)

print("Our objective is:")

print(blp.objective)

print("Our constraints are:")

print(blp.constraints)

And we will obtain something like this:

Our variables are:

Variables(['x0', 'x1', 'x2'])

Our objective is:

ObjectiveView({'x0': -5.0, 'x1': 3.0, 'x2': -2.0}, {}, 0.0,

{'x0': 'BINARY', 'x1': 'BINARY', 'x2': 'BINARY'})

Our constraints are:

{'First constraint': Le(ConstraintView({'x0': 1.0, 'x2': 1.0}, {}, 0.0,

{'x0': 'BINARY', 'x2': 'BINARY'}), 1.0), 'Second constraint':

Le(ConstraintView({'x0': 3.0, 'x1': -1.0, 'x2': 3.0}, {}, 0.0,

{'x0': 'BINARY', 'x1': 'BINARY', 'x2': 'BINARY'}), 4.0)}

138 Chapter 4: Adiabatic Quantum Computing and Quantum Annealing

Notice that both the objective and the constraints are internally represented as quadratic

functions and, therefore, they formally have quadratic terms, linear terms, and an offset or

independent term. In our case, only the linear part of the constraints is non-empty, and the

offset is 0 in both cases.

To learn more. . .

As you can see from the output, the constraints that we have created are instances of

the dimod.sym.Le class, where Le stands for less than or equal to. You can also create

equality constraints, which will belong to the dimod.sym.Eq class or inequality

constraints with ≥, which will be dimod.sym.Ge objects. Of course, an equality

constraint is equivalent to one Le constraint plus one Ge constraint with the same

left- and right-hand sides. And we can transform Le constraints into Ge constraints

— and the other way around — by multiplying everything by −1.

Now, we know how to construct problems with constraints using dimod. In the next

subsection, we will learn how to use the problems that we have defined to compute the

cost of different value assignments, check if those assignments satisfy the constraints, and

to also find the optimal solution to the problem.

4.3.2 Solving constrained quadratic models with dimod
The dimod package provides many tools to work with the constrained quadratic problems

that we have just introduced. For instance, we can define an assignment of values to the

variables, check if it is feasible, and compute its cost for the problem defined in the previous

subsection by using the following instructions:

sample1 = {"x0":1, "x1":1, "x2":1}

print("The assignment is", sample1)

print("Its cost is", blp.objective.energy(sample1))

print("Is it feasible?",blp.check_feasible(sample1))

print("The violations of the constraints are")

print(blp.violations(sample1))

Using Ocean to formulate and transform optimization problems 139

We are using the assignment 𝑥0 = 𝑥1 = 𝑥2 = 1, so when we execute the code we obtain the

following output:

The assignment is {'x0': 1, 'x1': 1, 'x2': 1}

Its cost is -4.0

Is it feasible? False

The violations of the constraints are

{'First constraint': 1.0, 'Second constraint': 1.0}

This tells us that the assignment is not feasible, and the violations method gives us the

amount by which the left-hand side of each inequality is bigger than the right-hand side.

If, on the other hand, we want to try the 𝑥0 = 𝑥1 = 0, 𝑥2 = 1 assignment, we can use the

following code:

sample2 = {"x0":0, "x1":0, "x2":1}

print("The assignment is", sample2)

print("Its cost is", blp.objective.energy(sample2))

print("Is it feasible?",blp.check_feasible(sample2))

print("The violations of the constraints are")

print(blp.violations(sample2))

The result that we obtain is the following:

The assignment is {'x0': 0, 'x1': 0, 'x2': 1}

Its cost is -2.0

Is it feasible? True

The violations of the constraints are

{'First constraint': 0.0, 'Second constraint': -1.0}

In this case, the assignment is feasible and, therefore, no violation term is positive.

140 Chapter 4: Adiabatic Quantum Computing and Quantum Annealing

The dimod package also provides a brute-force solver that tries all possible assignments

and sorts them according to their cost, from lowest to highest. Using it with our example

is as simple as running

solver = dimod.ExactCQMSolver()

solution = solver.sample_cqm(blp)

print("The list of assignments is")

print(solution)

to obtain

The list of assignments is

x0 x1 x2 energy num_oc. is_sat. is_fea.

6 1 0 1 -7.0 1 arra... False

2 1 0 0 -5.0 1 arra... True

7 1 1 1 -4.0 1 arra... False

3 1 1 0 -2.0 1 arra... True

4 0 0 1 -2.0 1 arra... True

0 0 0 0 0.0 1 arra... True

5 0 1 1 1.0 1 arra... True

1 0 1 0 3.0 1 arra... True

['INTEGER', 8 rows, 8 samples, 3 variables]

The first number is just an identifier of the assignment. It is followed by the values given to

the variables. Then, we find the cost of the assignment — or, rather, its energy, if interpreted

in terms of the Hamiltonian. After that, comes the times this solution has been found, which

will always be 1 with this solver. Finally, we find information about which constraints are

satisfied and whether the solution is feasible or not. It is very important to notice that the

assignments are ordered by cost, but some of them may be unfeasible, even the first one, as

in this case.

In fact, if we execute solution.first, we will obtain this output:

Using Ocean to formulate and transform optimization problems 141

Sample(sample={'x0': 1, 'x1': 0, 'x2': 1}, energy=-7.0,

num_occurrences=1, is_satisfied=array([False, False]),

is_feasible=False)

where we can see that this assignment does not satisfy either of the two constraints of our

problem. If you want the optimal solution to the problem, you should always remove the

unfeasible solutions first with the filter method, using an instruction like the following:

feasible_sols = solution.filter(lambda s: s.is_feasible)

Then, if you access feasible_sols.first, you will get

Sample(sample={'x0': 1, 'x1': 0, 'x2': 0}, energy=-5.0, num_occurrences=1,

is_satisfied=array([True, True]), is_feasible=True)

which is, indeed, the optimal solution to our binary linear program.

Of course, all these computations are done with a (very inefficient) classical algorithm. In

the next subsection, we explain how to use actual quantum annealers to try to solve the

problems that we have defined.

4.3.3 Running constrained problems on quantum
annealers

As useful as the ConstrainedQuadraticModel class is, we cannot use it to define problems

that can be run on quantum annealers. In order to do that, we first need to eliminate the

constraints and create a BinaryQuadraticModel object that we can later execute on actual

quantum hardware as we did in Section 4.2. Fortunately, the process is really simple thanks

to the utilities provided in the Ocean library. Let’s see how this works with an example.

To illustrate the general procedure, let’s define a simple constrained problem with the

following code:

y0, y1 = dimod.Binaries(["y0", "y1"])

cqm = dimod.ConstrainedQuadraticModel()

142 Chapter 4: Adiabatic Quantum Computing and Quantum Annealing

cqm.set_objective(-2*y0-3*y1)

cqm.add_constraint(y0 + 2*y1 <= 2)

We can transform this constrained problem into an unconstrained one by using the

cqm_to_bqm method as follows:

qubo, invert = dimod.cqm_to_bqm(cqm, lagrange_multiplier = 5)

print(qubo)

In a moment, we will explain what invert is and how it is used, but for now let’s focus on

the output of those instructions, which will be something similar to the following:

BinaryQuadraticModel({'y0': -17.0, 'y1': -23.0,

'slack_03b79fa9-3faa-410c-800b-65cfaf281cdf_0': -15.0,

'slack_03b79fa9-3faa-410c-800b-65cfaf281cdf_1': -15.0},

{('y1', 'y0'): 20.0,

('slack_03b79fa9-3faa-410c-800b-65cfaf281cdf_0', 'y0'): 10.0,

('slack_03b79fa9-3faa-410c-800b-65cfaf281cdf_0', 'y1'): 20.0,

('slack_03b79fa9-3faa-410c-800b-65cfaf281cdf_1', 'y0'): 10.0,

('slack_03b79fa9-3faa-410c-800b-65cfaf281cdf_1', 'y1'): 20.0,

('slack_03b79fa9-3faa-410c-800b-65cfaf281cdf_1',

'slack_03b79fa9-3faa-410c-800b-65cfaf281cdf_0'): 10.0},

20.0, 'BINARY')

That is quite a mouthful, but we promise that it is not nearly as complicated as it seems. In

fact, with what you already know from Chapter 3, QUBO: Quadratic Unconstrained Binary

Optimization, you could have computed a similar output yourself! Let’s unpack it.

Since this is an unconstrained problem, what we are seeing is the specification of the

cost function. First, we have the linear part, which starts with 'y0': -17.0. It tells us

that, in the objective function, 𝑦0 has coefficient −17, 𝑦1 has coefficient −23, and the two

other variables have coefficient −15. Then comes the quadratic part, with coefficient 20 for

the 𝑦0𝑦1 term, something that we deduce from the ('y1', 'y0'): 20.0 value, and with

Using Ocean to formulate and transform optimization problems 143

coefficients 10 and 20 for the other products of two variables. Finally, 20 is the independent

term or offset, and we are also told that all the variables are binary.

But, where do all these coefficients come from? What our good friend dimod is doing here

is nothing but applying the transformations that we studied in Section 3.4.1. First, two slack

variables — with quite ugly random names — are introduced to transform the inequality

constraint into an equality one. Then, the equality constraint is incorporated into the cost

function as a penalty term with a penalty coefficient (the lagrange_multiplier parameter),

which equals 5. And that’s all! It wasn’t that mysterious after all, was it?

Exercise 4.3

Check that the QUBO problem returned by cqm_to_bqm coincides with what you

would obtain should you apply the transformations explained in Section 3.4.1. Don’t

forget the offset!

We can now use a quantum annealer to solve the problem defined in the qubo object just

as we did in Section 4.2. For instance, we can run the following code:

sampler = EmbeddingComposite(DWaveSampler())

result = sampler.sample(qubo, num_reads=10)

print("The solutions that we have obtained are")

print(result)

Do not forget to import EmbeddingComposite and DWaveSampler if you haven’t done it yet.

If you run these instructions, you will obtain an output similar to the following:

slack_03b79fa9-3faa-410c-800b-65cfaf281cdf_0 ... y1 energy num_oc. ...

0 0 ... 1 -3.0 5 ...

1 1 ... 0 -2.0 3 ...

2 0 ... 0 -2.0 1 ...

3 0 ... 1 0.0 1 ...

['BINARY', 4 rows, 10 samples, 4 variables]

144 Chapter 4: Adiabatic Quantum Computing and Quantum Annealing

We can all agree that this is not very informative. The problem here is that we are looking

at solutions to the transformed problem, which include the slack variables with all those

long, cryptic names. Of course, we don’t really care about the slack variable values — we

only introduced them in order to write our problem without any constraints. So, what can

we do? Here’s where the invert object comes to our rescue! It allows us to retrieve the

solutions to the original problem from the solutions to the transformed one. Thus, we can

run the following instructions:

samples = []

occurrences = []

for s in result.data():

samples.append(invert(s.sample))

occurrences.append(s.num_occurrences)

sampleset = dimod.SampleSet.from_samples_cqm(samples,cqm,

num_occurrences=occurrences)

print("The solutions to the original problem are")

print(sampleset)

and obtain the following output, which now only shows the original variables:

The solutions to the original problem are

y0 y1 energy num_oc. is_sat. is_fea.

3 1 1 -5.0 1 arra... False

0 0 1 -3.0 5 arra... True

1 1 0 -2.0 3 arra... True

2 1 0 -2.0 1 arra... True

['INTEGER', 4 rows, 10 samples, 2 variables]

Here, we have created a new SampleSet object — the type of structure in which dimod

stores the results of solvers or samplers — from the samples obtained with the transformed

problem. Notice that we use invert to eliminate the slack variables and that, by passing

the cqm problem to the from_samples_cqm method, the energy without the penalties is

Using Ocean to formulate and transform optimization problems 145

computed, as well as the feasibility status of each assignment. In fact, notice that when

printing the solutions that we sampled for the transformed problem, we obtained a solution

with 0 energy. It corresponds to the assignment 𝑦0 = 1 and 𝑦1 = 1, which, on the original

problem, had energy −5. The difference in the two energies comes from the fact that this

assignment is unfeasible, and in the unconstrained problem it receives a penalty for it.

Notice that we have also used the number of occurrences to keep track of how many times

each solution is sampled.

So, in this way, we have recovered some solutions to the original problem, but there are a

couple of details that we still need to fix. The first one is that if we want to only retain the

feasible solutions, we need to use the filter method as we did in the previous subsection

when using ExactCMQSolver. The second has to do with the repetition — which we can

observe in the last two outputs — of the solution that sets 𝑦0 = 1 and 𝑦0 = 0. These

two solutions come from two different assignments in the transformed problem, but they

only differed in the values given to the slack variables. So, when those slack variables are

eliminated, they produce exactly the same assignment. If we want them to be considered

together, as they should be, we can use the aggregate method. Putting it all together, we

can execute this code:

final_sols = sampleset.filter(lambda s: s.is_feasible)

final_sols = final_sols.aggregate()

print("The final solutions are")

print(final_sols)

This will print

y0 y1 energy num_oc. is_sat. is_fea.

0 0 1 -3.0 5 arra... True

1 1 0 -2.0 4 arra... True

['INTEGER', 2 rows, 9 samples, 2 variables]

which is something that we can indeed use to solve our problem.

146 Chapter 4: Adiabatic Quantum Computing and Quantum Annealing

In this section, we have learned how to work with constrained problems and how to solve

them both by brute force and with quantum annealers, transforming them into something

that the quantum computer can use and then getting back to the original formulation. In

the next section, we will study how to have more control over what the quantum annealer

is doing in order to find the ground state of our Hamiltonians. Let’s fiddle a little bit with

the inner workings of those shiny quantum computers!

4.4 Solving optimization problems on quantum
annealers with Leap

So far, we have run a couple of different optimization problems on actual quantum annealers.

However, we have always used the default parameters and we do not even know the

characteristics of the quantum computers that we are using. In this section, we shall

remedy that. We will explain the different types of annealers that we can access through

D-Wave Leap. We will also explore several hyperparameters that we can tweak when

we are using these devices, and we will explain how to adjust the way in which our

problems are embedded in the physical qubits — we will finally learn what that mysterious

EmbeddingComposite object is used for!

4.4.1 The Leap annealers
You can list the devices to which you have access with your Leap account by using the

get_solvers method in this way:

from dwave.cloud import Client

for solver in Client.from_config().get_solvers():

print(solver)

The results will depend on your actual access privileges, but for a typical free account you

will see something like this:

BQMSolver(id='hybrid_binary_quadratic_model_version2')

DQMSolver(id='hybrid_discrete_quadratic_model_version1')

Solving optimization problems on quantum annealers with Leap 147

CQMSolver(id='hybrid_constrained_quadratic_model_version1')

StructuredSolver(id='Advantage_system6.1')

StructuredSolver(id='Advantage2_prototype1.1')

StructuredSolver(id='DW_2000Q_6')

StructuredSolver(id='Advantage_system4.1')

In this case, there are seven different solvers in total, of three different types. First, we

have those with the word hybrid in their identifier. We will talk about them later in

the chapter, but, for now, it suffices to know that they combine classical and quantum

resources to solve problems. The other four, called DW_2000Q_6, Advantage_system4.1,

Advantage_system6.1, and Advantage2_prototype1.1, are pure quantum annealers. These

are the devices that are selected when we use DWaveSampler to solve a problem, as we have

been doing so far in this chapter. Let’s explore their properties in more detail.

We can select a particular annealer by using the solver parameter in the DWaveSampler

constructor and then access the properties of the device with the properties attribute. For

instance, for the DW_2000Q_6 annealer, we can run the following instructions

from dwave.system import DWaveSampler

sampler=DWaveSampler(solver='DW_2000Q_6')

print("Name:",sampler.properties["chip_id"])

print("Number of qubits:",sampler.properties["num_qubits"])

print("Category:",sampler.properties["category"])

print("Supported problems:",sampler.properties["supported_problem_types"])

print("Topology:",sampler.properties["topology"])

print("Range of reads:",sampler.properties["num_reads_range"])

to obtain this output:

Name: DW_2000Q_6

Number of qubits: 2048

Category: qpu

148 Chapter 4: Adiabatic Quantum Computing and Quantum Annealing

Supported problems: ['ising', 'qubo']

Topology: {'type': 'chimera', 'shape': [16, 16, 4]}

Range of reads: [1, 10000]

If we do the same but with the Advantage_system4.1 solver, we obtain:

Name: Advantage_system4.1

Number of qubits: 5760

Category: qpu

Supported problems: ['ising', 'qubo']

Topology: {'type': 'pegasus', 'shape': [16]}

Range of reads: [1, 10000]

The properties of the Advantage_system6.1 solver will be exactly the same — except for

the name, of course.

Finally, for the Advantage2_prototype1.1 solver, we obtain the following output:

Name: Advantage2_prototype1.1

Number of qubits: 576

Category: qpu

Supported problems: ['ising', 'qubo']

Topology: {'type': 'zephyr', 'shape': [4, 4]}

Range of reads: [1, 10000]

To learn more. . .

The solvers have many other properties that we haven’t yet discussed; we will study

some of the most relevant ones in Sections 4.4.2, 4.4.3, and 4.4.4. You can nonetheless

access all of them through the properties dictionary, printing it directly. But be

careful: some of them can be huge to print, such as properties["qubits"], which

contains information about all the potentially thousands of qubits in a device!

Solving optimization problems on quantum annealers with Leap 149

Some properties are the same for the four devices. For instance, as we can see, all are of type

qpu, which means that they are quantum processing units or quantum annealers. Also,

all of them accept problems in the QUBO or Ising formats — but not constrained problems;

that is why we had to transform them before running them in the previous section — and

all can be used to obtain between 1 and 10 000 samples at a time. The main difference,

other than the number of qubits — which is notably bigger in the Advantage_system4.1

and Advantage_system6.1 devices — is the topology. This refers to the way in which the

qubits are connected to each other in the machine, and determines which couplings — or

connections between variables — can be used to define our problems. . . unless we use an

embedding, which will help us in mapping our coefficients to actual qubit connections.

The Advantage2_prototype1.1 solver is a little bit special. As can be inferred from the

name, it is a prototype of a new family of annealers that D-Wave will introduce in 2023-2024

— that’s why, for now, it has fewer qubits than the rest of the devices, but the full version

has been announced to have more than 7000 qubits. It uses a new topology, called Zephyr,

which is designed to increase connectivity and decrease errors. At the time of writing, the

available device is not a final version. For this reason, we will not use it in the examples

that we will be working with, nor will we describe its properties and topology in detail.

Notice, however, that everything that we explain about how to work with the devices

translates, with no changes, to this new annealer.

We have summarized some of the annealer properties in Table 4.1.

Annealer name Number of qubits Topology

DW_2000Q_6 2048 Chimera

Advantage_system4.1 5760 Pegasus

Advantage_system6.1 5760 Pegasus

Advantage2_prototype1.1 576 Zephyr

Table 4.1: Summary of annealer properties

In the next subsection, we shall explore in more detail the annealers’ topologies and how

we can embed our problems in them.

150 Chapter 4: Adiabatic Quantum Computing and Quantum Annealing

4.4.2 Embeddings and annealer topologies
In current quantum computers, be they annealers or gate-based devices, technological

difficulties prevent qubits from being connected in an all-to-all way. In fact, each qubit is

usually connected exclusively to some of its neighbours and we can only apply two-qubit

gates or use couplings (that is, use non-zero coefficients in the Ising model) between those

qubits that are actually linked. The particular way in which the qubits are connected in a

certain quantum chip is called its topology and sometimes it is important to be aware of it

when we design our algorithms or when we anneal our problems.

For instance, the topology of the DW_2000Q_6 annealer is called, as we saw in the previous

subsection, Chimera. It consists of cells of 8 qubits organized into two groups of 4 qubits

each. All the qubits in one group are connected to all the qubits in the other group, but

there are no connections inside each group. For graph connoisseurs, the connections follow

a complete bipartite graph 𝐾4,4, which is depicted in Figure 4.1.

0 1 2 3

4 5 6 7

Figure 4.1: Qubit connections in a Chimera cell

The DW_2000Q_6 computer has 256 of these cells, organized in a 16 × 16 grid, making for a

total of 8 ⋅ 16 ⋅ 16 = 2048 qubits, as expected. Each of the qubits that occupy the positions 0

to 3 in a cell is also connected to the qubits in the same position of the vertically adjacent

cells. In a similar way, each qubit in positions 4 to 7 is also connected to the qubit in the

same position of the horizontally adjacent cells. In total, each qubit will be connected to

four other qubits in the same cell and to two other qubits (or one, if it lives in a border cell)

from other cells.

Solving optimization problems on quantum annealers with Leap 151

We can obtain a list enumerating all the connections by using the properties["couplers"]

attribute as follows:

sampler=DWaveSampler(solver='DW_2000Q_6')

print("Couplings:",sampler.properties["couplers"])

Running this, we will get a very long list that begins like this:

[[0, 4], [1, 4], [2, 4], [3, 4], [0, 5], [1, 5], [2, 5], [3, 5],

[0, 6], [1, 6], [2, 6], [3, 6], [0, 7], [1, 7], [2, 7], [3, 7],

[4, 12], [8, 12], [9, 12], [10, 12], [11, 12], [5, 13], [8, 13],

[9, 13], [10, 13], [11, 13], [6, 14], [8, 14], [9, 14], [10, 14],

[11, 14], [7, 15], [8, 15], [9, 15], [10, 15], [11, 15], [12, 20],

[16, 20], [17, 20], [18, 20], [19, 20], [13, 21], [16, 21],

[17, 21], [18, 21], [19, 21], [16, 22], [17, 22]...

A slightly more readable way of obtaining the same information is by using sampler.adjacency,

which will we give us a dictionary indexed by qubit numbers and values that specify the

qubits that are connected to the qubit in the key. In our case, it starts like this:

{0: {4, 5, 6, 7, 128}, 1: {4, 5, 6, 7, 129},

2: {4, 5, 6, 7, 130}, 3: {4, 5, 6, 7, 131},

4: {0, 1, 2, 3, 12}, 5: {0, 1, 2, 3, 13},

6: {0, 1, 2, 3, 14}, 7: {0, 1, 2, 3, 15},

8: {12, 13, 14, 15, 136}, ...

Exercise 4.4

Pick the qubits numbered from 0 to 7 and check that their connections correspond

to the description of the Chimera topology that we have made in the text. Notice

that they all lie in the top-left corner cell, so they will be connected to one cell on

the right and one cell below.

152 Chapter 4: Adiabatic Quantum Computing and Quantum Annealing

To learn more. . .

The Advantage_system4.1 and Advantage_system6.1 annealers use a topology

called Pegasus. It also groups qubits into cells, but their structure is more involved

than that of the Chimera cells. Every qubit is connected to up to 15 qubits, compared

to the maximum of 6 in DW_2000Q_6.

This topology also contains groups of 4 qubits that are all connected to each other,

making it much easier to embed problems into it, as we will see later in the Sec-

tion 4.4.2.

Describing the Pegasus topology in detail would get us too far out from our path, but

you can find all the information in Section 2.3 of the QPU-Specific Physical Properties

document for the Advantage_system4.1 and Advantage_system6.1 annealers. You

can download it, together with the corresponding documents for the rest of the

D-Wave quantum computers, at https://docs.dwavesys.com/docs/latest/doc_

physical_properties.html.

One important thing to note about the Chimera topology is that it does not contain

triangles. That is, there are no three vertices all connected to each other. Thus, if our Ising

Hamiltonian is something like 𝑍0𝑍1 + 𝑍0𝑍2 + 𝑍1𝑍2, we cannot directly map it to qubits in

the DW_2000Q_6 annealer. What can we do then? Is it impossible to solve such a problem

with this computer? Don’t worry, embeddings are here to save the day!

An embedding is, essentially, a way of mapping the qubits in our problem Hamiltonian to

the physical qubits in the annealer. The trick here is that this mapping need not be one to

one. In fact, we can use several physical qubits (what we call a chain) to represent a single

qubit from our problem. In that case, though, we want all the qubits in the same chain to

have the same value when we measure them. To guarantee that, we need to use coupling

strengths that are negative and big in absolute value.

For instance, if qubits 12 and 20 are part of the same chain, the coefficient for (12, 20) could

be, for instance, −15. Then, the term −15𝑍12𝑍20 will be part of the spin Hamiltonian that

https://docs.dwavesys.com/docs/latest/doc_physical_properties.html
https://docs.dwavesys.com/docs/latest/doc_physical_properties.html

Solving optimization problems on quantum annealers with Leap 153

we want to minimize and it will make it very likely for 𝑍12 and 𝑍20 to be equal to each

other, because that will make the total energy significantly lower.

Of course, the embedding needs to define the physical qubits (chains) used to represent each

problem qubit, ensure that they can be connected correctly, and compute some appropriate

coupling strengths for the chains. This may seem very complicated, but Ocean can compute

embeddings automatically for us. Let’s see, with an example, how to do it for a simple case.

We could use the following code:

Define the problem

J = {(0,1):1, (0,2):1, (1,2):1}

h = {}

triangle = dimod.BinaryQuadraticModel(h, J, 0.0, dimod.SPIN)

Embed it and solve it on the DW_2000Q_6 annealer

sampler = EmbeddingComposite(DWaveSampler(solver = "DW_2000Q_6"))

result = sampler.sample(triangle, num_reads=10,

return_embedding = True)

print("The samples obtained are")

print(result)

print("The embedding used was")

print(result.info["embedding_context"])

In these instructions, we first define a problem that requires three qubits to be connected

together, something that we know is not directly possible with the annealer that we have

selected. But, since we are using EmbeddingComposite, a way of embedding our graph in

the actual annealer topology is automatically found for us, and we can run the annealing

process and obtain some samples. By setting the return_embedding parameter to True, we

also recover the embedding information. Let’s see what the output of running this code

may look like:

The samples obtained are

0 1 2 energy num_oc. chain_.

154 Chapter 4: Adiabatic Quantum Computing and Quantum Annealing

0 +1 -1 -1 -1.0 3 0.0

1 +1 +1 -1 -1.0 2 0.0

2 +1 -1 +1 -1.0 2 0.0

3 -1 +1 +1 -1.0 3 0.0

['SPIN', 4 rows, 10 samples, 3 variables]

The embedding used was

{'embedding': {1: (1015, 1008), 0: (1011,), 2: (1012,)},

'chain_break_method': 'majority_vote', 'embedding_parameters': {},

'chain_strength': 1.9996979771955565}

As you can see, EmbeddingComposite performs the embedding in a way that is completely

transparent for the user and, in fact, the samples returned only refer to the variables in

the original problem. However, underneath the hood, variable 0 has been mapped to qubit

1011, variable 2 has been mapped to qubit 1012, and variable 1 is represented by the chain

formed by qubits 1008 and 1015. The coupling strength for these two qubits was almost 2,

which is bigger than the coefficients of the original problem in order to prevent the qubits

in the chain from having different values. If, for whatever reason, these two qubits in the

chain happen to receive different values, the chain is said to be broken and the method

specified in 'chain_break_method' would be used to assign a value to variable 1. In this

case, that value would be a simple majority vote between the qubits in the chain.

To learn more. . .

Finding a suitable embedding is an 𝑁𝑃-hard problem. However, the minorminer

package included with Ocean provides heuristics for finding embeddings that usually

work well in practice. These are used by EmbeddingComposite.

In addition to EmbeddingComposite, there are other classes in Ocean that allow you to find

embeddings for your problems. For instance, AutoEmbeddingComposite first tries to run

the problem on the annealer directly, not using an embedding, and only looks for one if it is

needed; this can save some computing time in some cases. The FixedEmbeddingComposite

class doesn’t compute an embedding, but uses whichever one is passed as a parameter;

Solving optimization problems on quantum annealers with Leap 155

in this case, the embedding should be a Python dictionary with the format shown in the

previous output. We also can use LazyFixedEmbeddingComposite, which only computes

the embedding for a problem on the first call to the sample method, storing it for future

calls; EmbeddingComposite, on the other hand, recomputes the embedding with each call

to sample.

So, that should cover most of your needs for embedding problems into any annealer

topology. But we’re not done yet! There are still some additional parameters that we can

control when running problems with Ocean on actual quantum devices. We will study

some of the most important ones in the next subsection.

4.4.3 Controlling annealing parameters
You surely remember from the beginning of this chapter that for an evolution to be adiabatic

(and, hence, for the system to remain in a state of minimal energy), it needs to be slow

enough. However, this condition is difficult to meet in practice, so we just resort to running

the evolution for a short period of time, resulting in what we call quantum annealing.

The question is: to what extent can we control the annealing process with D-Wave’s

quantum annealers? It turns out that there are quite a number of things that we can do in

order to try to improve the results for our combinatorial optimization problems. The first

(and most obvious) is changing the duration of the annealing process.

You can easily check the range of annealing times that a device supports, as well as its

default annealing time, using instructions like the following:

sampler = DWaveSampler(solver = "Advantage_system4.1")

print("The default annealing time is",

sampler.properties["default_annealing_time"],"microseconds")

print("The possible values for the annealing time (in microseconds)"\

" lie in the range",sampler.properties["annealing_time_range"])

The output, in this case, will be as follows:

The default annealing time is 20.0 microseconds

156 Chapter 4: Adiabatic Quantum Computing and Quantum Annealing

The possible values for the annealing time (in microseconds)

lie in the range [0.5, 2000.0]

Exercise 4.5

Check the default annealing time and the annealing time range for the DW_2000Q_6

annealer.

Modifying the annealing time for a problem couldn’t be easier. For instance, imagine that

we want to increase it to 100 microseconds and sample from the triangle problem that we

defined in the previous subsection. Then, the only modification that we would need to

apply is adding the annealing_time parameter when calling the sample method. We could

run, for instance, the following code:

J = {(0,1):1, (0,2):1, (1,2):1}

h = {}

triangle = dimod.BinaryQuadraticModel(h, J, 0.0, dimod.SPIN)

sampler = EmbeddingComposite(DWaveSampler(solver = "DW_2000Q_6"))

result = sampler.sample(triangle, num_reads=10, annealing_time = 100)

print("The samples obtained are")

print(result)

Important note

In order to try to obtain better and better solutions, you may be tempted to increase

the annealing time to its maximum possible value. However, be warned that this

may have two unwanted consequences. On the one hand, the longer you run the

annealing process, the higher the possibility that external interactions will affect

the system state and ruin your computation: you might get worse results instead of

better ones! On the other hand, by increasing the annealing time, you will obviously

spend more time using the quantum processing unit. . . and you will be charged

accordingly!

Solving optimization problems on quantum annealers with Leap 157

With Ocean, the options to control the annealing process are not reduced to just modifying

the annealing time. You can also tailor, to some extent, the annealing schedule itself. As

we already know, this refers to the 𝐴 and 𝐵 functions in the expression

𝐻 (𝑡) = −𝐴(𝑡)
𝑛−1
∑
𝑗=0

𝑋𝑗 − 𝐵(𝑡)∑
𝑗 ,𝑘

𝐽𝑗𝑘𝑍𝑗𝑍𝑘 − 𝐵(𝑡)∑
𝑗
ℎ𝑗𝑍𝑗 ,

which defines the Hamiltonian that we use in the annealing process.

You may remember that we only required 𝐴 and 𝐵 to satisfy that 𝐴(0) = 𝐵(𝑇) = 1 and

𝐴(𝑇) = 𝐵(0) = 0, where 𝑇 is the total annealing time, but we did not restrict in any way

how 𝐴 and 𝐵 should behave except for these boundary conditions. D-Wave’s annealers

have default schedules. You can find them at https://docs.dwavesys.com/docs/lates

t/doc_physical_properties.html and in the annealing schedule sections of the user

manuals for the devices, which you can find on that same web page. We can modify those

default schedules by specifying the values that we want the functions to take at some

intermediate times.

We can define a custom annealing schedule through a list of pairs of real numbers. The first

number of each pair needs to be a time value given in microseconds and the second one

has to be a number between 0 and 1. This second number is called the anneal fraction,

usually denoted by 𝑠. The higher the value of 𝑠 is, the higher the value of 𝐵 and the lower

the value of 𝐴 will be. As a consequence, when 𝑠 = 1, we can interpret that 𝐵 is 1 and 𝐴 is

0; when 𝑠 = 0, we can interpret that 𝐴 is 1 and 𝐵 is 0.

There are two types of annealing schedules that we can use. The first one is called forward

annealing and corresponds to the usual annealing process that we have been studying

since the beginning of this chapter. It starts with (0, 0) and ends at (𝑇 , 1), where 𝑇 is the

total annealing time — which, of course, must not be bigger than the maximum annealing

time allowed by the device. In addition, the values of 𝑠 must monotonically increase over

the time points.

An example of a forward annealing schedule could be the following:

https://docs.dwavesys.com/docs/latest/doc_physical_properties.html
https://docs.dwavesys.com/docs/latest/doc_physical_properties.html

158 Chapter 4: Adiabatic Quantum Computing and Quantum Annealing

forward_schedule=[[0.0, 0.0], [5.0, 0.25], [25, 0.75], [30, 1.0]]

In this case, 𝑠 starts at 0, gets value 0.25 at 5 microseconds, 0.75 at 25 microseconds and,

finally, 1 at 30 microseconds, which is the end of the annealing process. The growth of 𝑠

will be linear between the points specified in the schedule. To use this custom schedule in

a device, you only need to pass it as the anneal_schedule parameter. For instance, you

can do something like the following:

forward_schedule=[[0.0, 0.0], [5.0, 0.25], [25, 0.75], [30, 1.0]]

sampler = EmbeddingComposite(DWaveSampler())

result = sampler.sample(triangle, num_reads=10,

anneal_schedule = forward_schedule)

Here, triangle is the problem that we defined in the previous code block.

To learn more. . .

Controlling the annealing schedule can be useful for certain problems, especially if

you know that at some points the ground state and the first excited state are closer.

In this case, you can use a custom schedule to slow the annealing process down on

those “dangerous” regions, while allowing it to go faster on other, less problematic,

time intervals.

In addition to forward annealing, we can also use reverse annealing. In reverse annealing,

𝑠 starts at 1, decreases for some time, and then increases back to 1 at the end of the annealing

process. An example of a reverse annealing schedule could be

reverse_schedule=[[0.0, 1.0], [10.0, 0.5], [20, 1.0]]

where, as in the case of forward annealing, the values of 𝑠 are linearly interpolated between

the points given in the list.

When using reverse annealing, you also need to specify an initial state. This is because now

we do not start with a Hamiltonian whose ground state is known to us. You can do that

with the initial_state parameter of the sample method. Reverse annealing is commonly

Solving optimization problems on quantum annealers with Leap 159

used on an approximate solution that we already have in an attempt to find a better one.

In this case, we take that solution to be the initial state, we decrease the intensity of the

final Hamiltonian for some time, and then we increase it again in an attempt to obtain a

new solution with a lower energy.

There are two different ways in which we can use reverse annealing. We can run several rep-

etitions of the annealing process on the same initial state with the reinitialize_state=True

option when calling sample. Alternatively, we can use the final (measured) state of one

execution as the initial state of the next one by setting reinitialize_state=False.

Let’s now look at an example in which we will apply reverse annealing to a simple problem.

The following code, in which we use the triangle problem defined previously, is almost

self-explanatory:

reverse_schedule=[[0.0, 1.0], [10.0, 0.5], [20, 1.0]]

initial_state = {0:1, 1:1, 2:1}

sampler = EmbeddingComposite(DWaveSampler())

result = sampler.sample(triangle, num_reads=10,

anneal_schedule = reverse_schedule,

reinitialize_state=False, initial_state = initial_state)

print("The samples obtained are")

print(result)

A possible output of these instructions could be the following:

The samples obtained are

0 1 2 energy num_oc. chain_.

0 -1 +1 -1 -1.0 1 0.0

1 +1 +1 -1 -1.0 1 0.0

2 +1 +1 -1 -1.0 1 0.0

3 -1 +1 -1 -1.0 1 0.0

4 -1 -1 +1 -1.0 1 0.0

5 +1 -1 +1 -1.0 1 0.0

160 Chapter 4: Adiabatic Quantum Computing and Quantum Annealing

6 +1 +1 -1 -1.0 1 0.0

7 +1 +1 -1 -1.0 1 0.0

8 +1 -1 -1 -1.0 1 0.0

9 -1 +1 -1 -1.0 1 0.0

['SPIN', 10 rows, 10 samples, 3 variables]

To learn more. . .

Some researchers have found that reverse annealing can be more effective than

forward annealing for some problems. For a very illuminating example, please check

the paper by Carugno et al. [39].

Now, we know how to control both the annealing time and the schedule. In the next

subsection, we will explain why it is important to set the coupling strengths and the

penalty terms wisely, something that is easily overlooked, but that can greatly affect the

results of our executions.

4.4.4 The importance of coupling strengths
You surely remember that there are a couple of situations in which we have to select

values for some arbitrary constants that are used to set coupling strengths in the annealer.

The first situation is having to introduce constraints as penalty terms in the objective

function, using the lagrange_multiplier parameter in the cqm_to_bqm method of the

dimod package. The second one is having to select the coupling strengths for the chains

in a particular embedding, which is usually handled automatically by classes such as

EmbeddingComposite.

It would be very natural to think that you would want these constants to be as big as

possible. After all, you are not interested in solutions that do not satisfy the problem

constraints and you do not want your chains to be broken. However, there is an important

detail that makes choosing the values of these constants a little bit trickier than expected.

.

Solving optimization problems on quantum annealers with Leap 161

It turns out that the range of values that you use for qubit couplings in D-Wave’s annealers

is not arbitrarily large. For example, the following instructions allow us to check what the

possible values are for the case of the Advantage_system4.1 device — and, of course, if

you change the solver name, you can get the values for any other annealers as well:

sampler = DWaveSampler("Advantage_system4.1")

print("The coupling strength range is", sampler.properties["h_range"])

The output that you will get if you run these instructions is the following:

The coupling strength range is [-4.0, 4.0]

This means that, if you set coupling strengths (that is, 𝐽 coefficients) that in absolute value

are bigger than 4, the largest one will be scaled down to 4. . . and the rest of the coefficients

in your model will be scaled down accordingly. This can cause some of the values to be

very close together, even closer than the resolution of the device, affecting the results of

the annealing process. Let’s illustrate it with an example.

The following code defines a constrained problem, converts it into an unconstrained model

using the penalty constant 𝑀 = 10, and then runs it on Advantage_system4.1 taking

100 samples. Then, it converts the samples back to the variables of the original problem,

aggregates the results, as we did in Section 4.3.3, and shows the frequency of each obtained

solution:

sampler = EmbeddingComposite(DWaveSampler("Advantage_system4.1"))

Define the problem

x0 = dimod.Binary("x0")

x1 = dimod.Binary("x1")

x2 = dimod.Binary("x2")

blp = dimod.ConstrainedQuadraticModel()

blp.set_objective(-5*x0+3*x1-2*x2)

blp.add_constraint(x0 + x2 <= 1, "First constraint")

blp.add_constraint(3*x0 -x1 + 3*x2 <= 4, "Second constraint")

162 Chapter 4: Adiabatic Quantum Computing and Quantum Annealing

Convert the problem and run it

qubo, invert = dimod.cqm_to_bqm(blp, lagrange_multiplier = 10)

result = sampler.sample(qubo, num_reads=100)

Aggregate and show the results

samples = []

occurrences = []

for s in result.data():

samples.append(invert(s.sample))

occurrences.append(s.num_occurrences)

sampleset = dimod.SampleSet.from_samples_cqm(samples,blp,

num_occurrences=occurrences)

print("The solutions to the original problem are")

print(sampleset.filter(lambda s: s.is_feasible).aggregate())

When we ran this code, we obtained the following output:

The solutions to the original problem are

x0 x1 x2 energy num_oc. is_sat. is_fea.

0 1 0 0 -5.0 21 arra... True

1 1 1 0 -2.0 32 arra... True

2 0 0 1 -2.0 11 arra... True

3 0 0 0 0.0 17 arra... True

4 0 1 1 1.0 10 arra... True

5 0 1 0 3.0 9 arra... True

['INTEGER', 6 rows, 100 samples, 3 variables]

So, in 21 out of 100 samples, we have obtained the optimal solution, and, in 43 more

cases, we obtained solutions with the second lowest energy. Not too bad. . . but not very

good either. The not-so-obvious problem behind this result is that the penalty constant

(the lagrange_multiplier parameter) is too big compared to the range of energies of the

objective function. In fact, if you use ExactSolver on the transformed problem, you can

Solving optimization problems on quantum annealers with Leap 163

easily check that all the assignments that are unfeasible on the original problem get energy

16 or higher on the transformed one, while the feasible solutions always get energy 3 or

lower. That is a huge gap!

But notice what happened when we ran the same code after reducing the penalty constant

to 4. In that case, we obtained the following result:

The solutions to the original problem are

x0 x1 x2 energy num_oc. is_sat. is_fea.

0 1 0 0 -5.0 30 arra... True

1 1 1 0 -2.0 31 arra... True

2 0 0 1 -2.0 16 arra... True

3 0 0 0 0.0 8 arra... True

4 0 1 1 1.0 10 arra... True

5 0 1 0 3.0 3 arra... True

['INTEGER', 6 rows, 98 samples, 3 variables]

As you can see, the frequency of the optimal solution has increased to 30 and the two solu-

tions with the second lowest energy appear, more or less, the same number of times as in the

experiment with lagrange_multiplier=10. In this case (check it by using ExactSolver),

the unfeasible solutions all have energy that is at least 4 in the transformed problem, so all

the feasible solutions have lower energy. Notice, though, that the gap is now much smaller

and we only recovered 98 feasible solutions from the 100 samples.

We even tried a more extreme experiment, setting lagrange_multiplier=1. When we ran

it, we obtained the following output:

The solutions to the original problem are

x0 x1 x2 energy num_oc. is_sat. is_fea.

0 1 0 0 -5.0 76 arra... True

1 0 0 1 -2.0 5 arra... True

2 1 1 0 -2.0 11 arra... True

3 0 0 0 0.0 1 arra... True

164 Chapter 4: Adiabatic Quantum Computing and Quantum Annealing

4 0 1 1 1.0 1 arra... True

['INTEGER', 5 rows, 94 samples, 3 variables]

The frequency of the optimal solution has dramatically improved, up to 76 out of 100

samples. However, we also “lost” 6 samples because they corresponded to unfeasible

solutions. In this case, there are some unfeasible solutions with energy as low as −2 in the

transformed problem. This is still bigger than the optimal energy, which is −5, but the low

energy of these unfeasible solutions can fool the annealer into selecting them at times, as

we have seen.

Setting a good penalty constant can be difficult, because it involves having some information

about the energy distribution of the solutions to the problem. But let the examples here

serve as a warning that you should not just use any value for lagrange_multiplier,

because setting it too high can affect the quality of your solutions. In case of doubt, try

some different options and keep the one that offers the best results.

To learn more. . .

Something similar may happen when the value of the coupling strength for chains in

an embedding is too big. Fortunately, the methods used by EmbeddingComposite and

its relatives take this into account and will try to keep the value as low as possible

without risking breaking many chains. But should you need, for some reason, to

create your own embedding, do not take the choice of the coupling strength lightly.

You now know how to adjust the most important parameters that govern quantum annealing

and, more importantly, you understand the implications of such adjustments. But it turns

out that D-Wave offers other ways of solving optimization problems beyond “pure” quantum

annealing. Let us study them in the following subsection.

4.4.5 Classical and hybrid samplers
We have already seen that dimod provides a classical solver called ExactSolver. And it’s

not alone! In Ocean, we can also find solvers such as, for example, SimulatedAnnealing

or SteepestDescentSolver that do not rely on any quantum resources whatsoever.

Solving optimization problems on quantum annealers with Leap 165

The purpose of including these classical solvers in a quantum optimization library is two-

fold. On the one hand, it allows you to try and use different methods to solve your problems.

On the other hand, they can be used in combination with quantum annealers in what

D-Wave calls hybrid solvers. Let’s briefly study these two aspects.

Classical solvers

Using classical solvers with Ocean couldn’t be simpler. As long as you have a QUBO or

Ising problem, you can use the sample method of any classical solver to get (approximate)

solutions to it, exactly like you would do with a quantum annealer. In fact, you can also

use the num_reads parameter to specify the number of samples that you want.

We will devote the rest of this subsection to describing the classical solvers included in

Ocean at the time of writing.

SteepestDescentSolver

This is included in the greedy package and it is a discrete version of the gradient descent

algorithm for continuous optimization (more on that in Chapter 8, What is Quantum

Machine Learning?). At each step, it selects one direction (that is, one variable flip) in which

the decrease in energy is bigger. We can use it as shown in the following piece of code,

where we first define a simple Ising problem and then we sample from it:

import greedy

import dimod

J = {(0,1):1, (1,2):1, (2,3):1, (3,0):1}

h = {}

problem = dimod.BinaryQuadraticModel(h, J, 0.0, dimod.SPIN)

Sample with SteepestDescentSolver

solver = greedy.SteepestDescentSolver()

solution = solver.sample(problem, num_reads = 10)

print(solution.aggregate())

The output of running these instructions will be similar to the following:

166 Chapter 4: Adiabatic Quantum Computing and Quantum Annealing

0 1 2 3 energy num_oc. num_st.

0 +1 -1 +1 -1 -4.0 5 1

2 -1 +1 -1 +1 -4.0 3 1

1 +1 -1 -1 +1 0.0 1 0

3 +1 +1 -1 -1 0.0 1 0

['SPIN', 4 rows, 10 samples, 4 variables]

As you can see, this is exactly the format the we already know and love from using quantum

solvers.

To learn more. . .

In addition to the num_reads parameter, you can also set initial_states to specify

the solutions from which the descent is going to start. If you don’t use this parameter,

then the initial states will be selected at random. In that case, you can use the seed

argument should you want your results to be reproducible.

TabuSolver

This solver is included in the tabu package. It is an example of a local search algorithm.

That is, it tries to improve a solution by exploring its neighbors — the solutions that can be

obtained by flipping one variable, for instance. In this, the method is somewhat similar

to the greedy descent algorithm implemented in SteepestDescentSolver, but it tries to

avoid falling into local minima by sometimes accepting solutions with higher energy than

the current one, and it also “remembers” solutions it has already visited in order not to

explore them again — that is where the name tabu comes from.

Ocean implements the multistart tabu algorithm described in [40]. It can be used with the

following instructions:

import tabu

solver = tabu.TabuSampler()

solution = solver.sample(problem, num_reads = 10)

print(solution.aggregate())

Solving optimization problems on quantum annealers with Leap 167

The tabu algorithm also accepts initial_states and seed parameters.

SimulatedAnnealingSampler

This is included in the neal package and it implements the heuristic algorithm known

as simulated annealing [41]. It is another local search algorithm that explores the

neighbourhood of the candidate solution that it is considering at a given moment. With

that, it tries to move to solutions with lower energy. However, like tabu search, it can move

to solutions with higher energy with some probability. This probability is bounded by a

global “temperature” parameter that decreases with time, eventually reaching 0, inspired

by the way in which metals become less malleable when they cool down during annealing

— hence the name of the method. In fact, quantum annealing is seen by some people as a

quantum version of simulated annealing. The analogy they make is that the intensity of

the initial Hamiltonian 𝐻0 can be understood as analogous to the temperature in simulated

annealing: it allows the solutions to move or “tunnel” to some neighboring ones and it

decreases over time. Simulated annealing can be used in Ocean as follows:

import neal

solver = neal.SimulatedAnnealingSampler()

solution = solver.sample(problem, num_reads = 10)

print(solution.aggregate())

As you surely guessed, the initial_states and seed parameters are also supported.

These samplers are all classical algorithms that do not use quantum resources. However,

they can be combined with quantum annealers, as we show in the next subsection.

Hybrid solvers

In addition to quantum annealers and classical solvers, Ocean also provides the programmer

with hybrid solvers that try to combine the best of both worlds. You may remember that,

back in Section 4.4.1, these hybrid solvers were listed among the devices available through

your Leap account. Finally, the time to learn how to use them has come!

168 Chapter 4: Adiabatic Quantum Computing and Quantum Annealing

Let’s start with LeapHybridSampler. This sampler accepts QUBO and Ising problems and

can scale up to a high number of variables because, internally, it divides the problem,

assigns different parts to classical solvers and quantum annealers, and then reconstructs a

global solution from the local ones. Its use is very similar to that of the samplers that we

have studied so far. For instance, you can run the following instructions, with problem as

defined in the previous subsection — or just any other QUBO or Ising problem:

import dwave.system

sampler = dwave.system.LeapHybridSampler()

solution = solver.sample(problem, num_reads = 10)

print(solution.aggregate())

One interesting property of LeapHybridSampler and the rest of the hybrid samplers is what

is called the quota conversion rate. It can be checked through the following property:

sampler.properties["quota_conversion_rate"]

In the case of LeapHybridSampler, it is 20. This means that for each 20 microseconds that

you use this hybrid sampler, you will get charged just 1 microsecond of quantum processor

access because the quantum annealers are not used for the whole computation. Neat, right?

Ocean also provides LeapHybridCQMSampler, which is used similarly to LeapHybridSampler,

but with constrained problems like the ones we defined in Section 4.3.3. Finally, there is also

LeapHybridDQMSampler, which works with discrete quadratic problems defined as objects

of the DiscreteQuadraticModel class.

To learn more. . .

We have not worked with the DiscreteQuadraticModel class, but it is very similar

to BinaryQuadraticModel. The main difference is that it accepts variables that take

a finite amount of different values instead of just 0 and 1. The problems defined

through this class can be converted to binary quadratic problems by one-hot

encoding; that is, each discrete variable is represented by a vector of 𝑛 binary

variables, where 𝑛 is the total number of values that the original discrete variable

Solving optimization problems on quantum annealers with Leap 169

can take. The restriction is that only one of those variables can take the value 1 at a

given time. So, if binary variable number 3 is 1, this means that the original variable

takes the value 3.

This ends our study of quantum annealing and its use in combinatorial optimization. But

this kind of problem can also be solved with algorithms designed for quantum computers

based on the quantum circuit model. That will be the topic of our next chapter.

Summary
In this chapter, you have learned about the adiabatic quantum computing model, which is

equivalent to the quantum circuit model that we had already studied. Instead of discrete

quantum gates, adiabatic quantum computing uses continuous evolution through a time-

dependent Hamiltonian. You have learned how to select this Hamiltonian to encode

combinatorial optimization problems and how, if the evolution is slow enough, the adiabatic

theorem guarantees that we will measure the ground state at the end of the process.

You have also learned that, in practice, quantum annealing is used instead of adiabatic

quantum computing, because adiabatic evolution can take too long for the process to be

feasible. What is more, you now know how to use actual quantum annealers through

D-Wave Leap to find approximate solutions to combinatorial optimization problems in

several different ways.

You also know how to control several parameters of the annealing process, in order to

improve the quality of the solutions that you can find with quantum annealers. Finally, you

have also learned how to use hybrid solvers that divide big problems into smaller pieces

and combine classical and quantum techniques to find a global solution to the original

problem.

We will now turn to using quantum computers based on the quantum circuit model. But

we will not forget about optimization problems and Hamiltonians. In fact, as you will soon

170 Chapter 4: Adiabatic Quantum Computing and Quantum Annealing

see, the topic of our next chapter will be how to discretize quantum annealing so that it

can be implemented with quantum gates.

5
QAOA: Quantum
Approximate Optimization
Algorithm

True optimization is the revolutionary contribution of modern research to decision
processes.

— George Dantzig

The techniques that we have introduced in the two previous chapters already allow us

to solve combinatorial optimization problems on quantum computers. Specifically, we

have studied how to write problems using the QUBO formalism and how to use quantum

annealers to sample approximate solutions. This is an important approach to quantum

optimization, but it is not the only one.

In this chapter, we are going to show how the ideas that we have already explored can also be

used on digital quantum computers. We will be using our beloved quantum circuits — with

172 Chapter 5: QAOA: Quantum Approximate Optimization Algorithm

all their qubits, quantum gates, and measurements — to solve combinatorial optimization

problems formulated in the QUBO framework.

More concretely, we will be studying the famous Quantum Approximate Optimization

Algorithm (QAOA), which is a gate-based algorithm that can be understood to be the

counterpart to quantum annealing in the quantum circuit model. We will start by introduc-

ing all the theoretical concepts that are needed in order to understand this algorithm, then

we will study the kind of circuits used in its implementation, and finally, we will explain

how to run QAOA with both Qiskit and PennyLane.

After reading this chapter, you will understand how QAOA works, you will know how

to design the circuits used in the algorithm, and you will be able to solve your own

combinatorial optimization problems using QAOA in Qiskit and PennyLane.

The topics that we will cover in this chapter are the following:

• From adiabatic computing to QAOA

• Using QAOA with Qiskit

• Using QAOA with PennyLane

5.1 From adiabatic computing to QAOA
In this first section, we will introduce all the theoretical concepts that will allow us to

understand QAOA in depth. But before that, we will give an intuitive idea of how QAOA

works by studying its relationship with quantum annealing. Sounds interesting? Then

keep on reading, because here we go!

5.1.1 Discretizing adiabatic quantum computing
In the previous chapter, we studied adiabatic quantum computing and its practical realiza-

tion, quantum annealing, and we learned how to use them in order to obtain approximate

solutions to combinatorial optimization problems. Both of these techniques relied on the

adiabatic theorem. When we applied them, we used a time-dependent Hamiltonian that

From adiabatic computing to QAOA 173

induced a continuous transformation of the state of a quantum system: from an initial state

to a final state that — hopefully — has a big overlap with the solution to our problem.

A natural question to ask is whether there is any sort of analog to this way of solving

optimization problems for circuit-based quantum computers. At first sight, there is an

apparent difficulty in this idea, because in the quantum circuit model we apply instantaneous

operations — quantum gates — that change the state vector in discrete steps. How can we

resolve this “tension” between these discrete operations and the continuous evolution that

we rely on for adiabatic quantum computing?

The answer is that we may discretize any continuous evolution, approximating it with

a sequence of small, discrete changes. This process, sometimes called Trotterization, is

the inspiration for the topic to which this chapter is devoted: the Quantum Approximate

Optimization Algorithm — QAOA, for short.

QAOA was initially proposed [42] as a discretization or Trotterization of adiabatic quan-

tum computing with the goal of approximating the optimal solutions to combinatorial

optimization problems. As you surely remember, the Hamiltonian that is used in adiabatic

quantum computing — and in quantum annealing — is of the form

𝐻 (𝑡) = 𝐴(𝑡)𝐻0 + 𝐵(𝑡)𝐻1,

with 𝐻0 and 𝐻1 two fixed Hamiltonians and 𝐴(𝑡) and 𝐵(𝑡) functions satisfying 𝐴(0) =

𝐵(𝑇) = 1 and 𝐴(𝑇) = 𝐵(0) = 0, where 𝑇 is the total time of the process. It turns out that the

evolution of the quantum system is governed by the famous time-dependent Schrödinger

equation, and if you can solve it, you will have an expression for the state vector of your

system at any moment 𝑡 between 0 and 𝑇 .

However, to understand QAOA we don’t need to learn how to solve the Schrödinger

equation — that was close, but we managed to dodge the bullet! All that we need to know

is that, applying discretization, we can express the solution as a product of operators of the

form

𝑒𝑖Δ𝑡(𝐴(𝑡𝑐)𝐻0+𝐵(𝑡𝑐)𝐻1)

174 Chapter 5: QAOA: Quantum Approximate Optimization Algorithm

applied to the initial state. Here, 𝑖 is the imaginary unit, 𝑡𝑐 is a fixed time point in [0, 𝑇],

and Δ𝑡 is a small amount of time. The key idea is that in the interval [𝑡𝑐 , 𝑡𝑐 + Δ𝑡] we assume

that the Hamiltonian is constant and equal to 𝐻 (𝑡𝑐) = 𝐴(𝑡𝑐)𝐻0 + 𝐵(𝑡𝑐)𝐻1. Of course, the

smaller Δ𝑡 is, the better this approximation will be. It is also important to notice that

𝑒𝑖Δ𝑡(𝐴(𝑡𝑐)𝐻0+𝐵(𝑡𝑐)𝐻1)
is a unitary transformation, just like the ones we studied in Chapter 1,

Foundations of Quantum Computing. In fact, you surely remember that some of the quantum

gates that we introduced in that chapter, such as 𝑅𝑋 , 𝑅𝑌 , and 𝑅𝑍 , are also exponentials of

some matrices. Using this discretization technique, if |𝜓0⟩ is the initial state, then the final

state can be approximated by

(

𝑝

∏
𝑚=0

𝑒𝑖Δ𝑡(𝐴(𝑡𝑚)𝐻0+𝐵(𝑡𝑚)𝐻1)
)

|𝜓0⟩ ,

where 𝑡𝑚 = 𝑚Δ𝑡
𝑇 and 𝑝 = 𝑇

Δ𝑡 .

In order to compute this state with a quantum circuit, we just need an additional ap-

proximation. As you know, for any real numbers 𝑎 and 𝑏, it holds that 𝑒𝑎+𝑏 = 𝑒𝑎𝑒𝑏. The

analogous identity for exponentials of matrices does not hold in general — unless the

matrices commute. However, if Δ𝑡 is small, then

𝑒𝑖Δ𝑡(𝐴(𝑡𝑐)𝐻0+𝐵(𝑡𝑐)𝐻1) ≈ 𝑒𝑖Δ𝑡𝐴(𝑡𝑐)𝐻0𝑒𝑖Δ𝑡𝐵(𝑡𝑐)𝐻1 ,

which is known as the Lie-Trotter formula.

Putting it all together, the final state of the adiabatic evolution can be approximated by

𝑝

∏
𝑚=0

𝑒𝑖Δ𝑡𝐴(𝑡𝑚)𝐻0𝑒𝑖Δ𝑡𝐵(𝑡𝑚)𝐻1 |𝜓0⟩ ,

which is the inspiration for QAOA, as we will see in the next subsection.

From adiabatic computing to QAOA 175

5.1.2 QAOA: The algorithm
The starting point and goal of QAOA are exactly the same as those of quantum annealing.

We begin with a combinatorial optimization problem that we want to solve, and we encode

it, as we learned in Chapter 3, Working with Quadratic Unconstrained Binary Optimization

Problems, into an Ising Hamiltonian 𝐻1. In order to find its ground state and solve our

problem, we seek to apply a quantum state evolution similar to that of quantum annealing,

but using a quantum circuit instead of a quantum annealer.

In light of the discretization of adiabatic evolution that we obtained at the end of the

previous subsection, the idea behind QAOA is simple. In order to simulate with a quantum

circuit the evolution of a state under a time-dependent Hamiltonian, you only need to take

an initial state |𝜓0⟩ and then alternate for 𝑝 times the application of the operators 𝑒𝑖𝛾𝐻1

and 𝑒𝑖𝛽𝐻0
for some values of 𝛾 and 𝛽. In the next subsection, by the way, we will see that

the unitary transformations 𝑒𝑖𝛾𝐻1
and 𝑒𝑖𝛽𝐻0

can be implemented with just one-qubit and

two-qubit quantum gates.

What we are doing is, then, using a quantum circuit to prepare a state of the form

𝑒𝑖𝛽𝑝𝐻0𝑒𝑖𝛾𝑝𝐻1 … 𝑒𝑖𝛽2𝐻0𝑒𝑖𝛾2𝐻1𝑒𝑖𝛽1𝐻0𝑒𝑖𝛾1𝐻1 |𝜓0⟩ ,

where 𝑝 ≥ 1. Usually, we collect all the coefficients in the exponents in two tuples

𝜷 = (𝛽1,… , 𝛽𝑝) and 𝜸 = (𝛾1,… , 𝛾𝑝) and we denote the whole state by
||𝜷, 𝜸⟩.

In QAOA, we choose a fixed value of 𝑝 and we have some values for 𝜷 and 𝜸. Instead

of thinking of the values for 𝜷 and 𝜸 as small increments of time multiplied by intensity

coefficients given by the functions 𝐴 and 𝐵, as we did in the previous subsection, we’ll just

consider them to be “plain real numbers.” And this is where the magic kicks in. Since we

are now free to choose their values as we see fit. . . why not choose the best possible values

for them?

But what does best mean here? Remember that we are just trying to find the ground state

of 𝐻1, so, for us, the lower the value of the energy ⟨𝜷, 𝜸||𝐻1 ||𝜷, 𝜸⟩, the better. In this way,

176 Chapter 5: QAOA: Quantum Approximate Optimization Algorithm

we have transformed our optimization problem into another one: finding the values 𝜷 and

𝜸 that minimize

𝐸(𝜷, 𝜸) = ⟨𝜷, 𝜸||𝐻1 ||𝜷, 𝜸⟩ .

Notice that, since the values 𝜷 and 𝜸 are real and so is the energy 𝐸(𝜷, 𝜸), what we have in

our hands is the old problem of finding a minimum for a real-valued function with real

inputs. There are many algorithms that we can apply for this, for instance, the famous

gradient descent algorithm, which we will be using to train machine learning models

in Part 3, A Match Made in Heaven: Quantum Machine Learning, of this book. However,

there is an important twist. As we know, the number of amplitudes needed to describe a

state like
||𝜷, 𝜸⟩ is exponential in the number of qubits that we are using. Thus, computing

𝐸(𝜷, 𝜸) may be difficult with just a classical computer.

But it turns out that estimating values of 𝐸(𝜷, 𝜸) is something that we can do very efficiently

with a quantum computer — at least when the number of terms in 𝐻1 is polynomial in the

number of qubits, something that is usually the case in the problems we are interested in.

In the next subsection, we will explain in detail how to compute that kind of estimation,

but for now just keep in mind that, given some values 𝜷 and 𝜸, we can rely on the quantum

computer to compute 𝐸(𝜷, 𝜸).

Then, we can take any classical algorithm for function minimization and, whenever it

needs to compute a value of the 𝐸 function, we use a quantum computer to estimate it

and we give that value back to the classical algorithm until it needs another of value 𝐸. At

that moment, we again use the quantum computer to obtain it and so on and so forth, all

until we meet the stopping criteria of the classical algorithm. This is what we call a hybrid

algorithm, one where the classical and the quantum computer work in tandem to solve a

problem. We will see this kind of interaction many more times throughout the book.

Once we have obtained the optimal values 𝜷∗
and 𝜸∗ for 𝜷 and 𝜸 — or, at least, an estimation

of them — we can use the quantum computer once more in order to prepare the state

||𝜷
∗, 𝜸∗⟩. This state should have a sizeable overlap with the ground state of 𝐻1, so when

we measure it in the computational basis, we will have a good chance of obtaining a string

From adiabatic computing to QAOA 177

of zeros and ones that is a good solution to our original problem — the one encoded in

𝐻1 by using the techniques of Chapter 3, Working with Quadratic Unconstrained Binary

Optimization Problems.

We now have all the pieces of the puzzle, so let’s put them all together. The input to

QAOA is an Ising Hamiltonian 𝐻1, the ground state of which we wish to approximate

because it encodes the solution to a certain combinatorial optimization problem. To that

end, we consider the energy function 𝐸(𝜷, 𝜸) as defined before and we proceed to minimize

it. For that, we choose 𝑝 ≥ 1 and some initial values 𝜷𝟎 and 𝜸𝟎 that we shall use as the

starting point for some classical minimization algorithm. Then, we run the minimization

algorithm and, whenever it requests an evaluation of 𝐸 on some points 𝜷 and 𝜸, we use the

quantum computer to prepare the state
||𝜷, 𝜸⟩ and estimate its energy, and we return the

value to the classical algorithm. We continue this process until the classical minimization

algorithm stops, returning some optimal values 𝜷∗
and 𝜸∗. As a final step, we use the

quantum computer to prepare
||𝜷

∗, 𝜸∗⟩. When we measure it, we obtain a — hopefully,

good — approximate solution to our combinatorial problem.

We have collected all these steps as pseudocode in the following algorithm. Notice that

there are just two points at which the quantum computer is required.

Algorithm 5.1 (QAOA).

Choose a value for 𝑝

Choose a starting set of values 𝜷 = (𝛽1,… , 𝛽𝑝) and 𝜸 = (𝛾1,… , 𝛾𝑝)

while the stopping criteria are not met do

Prepare state
||𝜷, 𝜸⟩ ⊳ This is done on the quantum computer!

From measurements of
||𝜷, 𝜸⟩, estimate 𝐸(𝜷, 𝜸)

Update 𝜷 and 𝜸 according to the minimization algorithm

Obtain the optimal values 𝜷∗
and 𝜸∗ returned by the minimization algorithm

Prepare state
||𝜷

∗, 𝜸∗⟩ ⊳ This is done on the quantum computer!

Measure the state to obtain an approximate solution

178 Chapter 5: QAOA: Quantum Approximate Optimization Algorithm

To learn more. . .

Just before bringing this subsection to an end, we thought this could be a good time

for us to share a historical fact with you.

When it was introduced in a 2014 paper [42], QAOA provided a better ratio of

approximation for the Max-Cut problem than any existing classical algorithm that

would run on polynomial time. And we say that it provided because, soon after, this

claim was challenged by a paper [43] that presented a classical algorithm that could

beat QAOA.

What can we say? Sometimes classics refuse to die!

The description of QAOA that we have discussed may seem a little bit abstract. But don’t

worry. In the next subsection, we will make all of this much more concrete, because we

will be studying in detail the quantum circuits that are needed to implement the parts of

the algorithm that run on quantum computers.

5.1.3 Circuits for QAOA
As we have just seen, quantum computers are only used at certain steps in QAOA. And, in

fact, those steps always involve the preparation of a state of the form

||𝜷, 𝜸⟩ = 𝑒𝑖𝛽𝑝𝐻0𝑒𝑖𝛾𝑝𝐻1 … 𝑒𝑖𝛽2𝐻0𝑒𝑖𝛾2𝐻1𝑒𝑖𝛽1𝐻0𝑒𝑖𝛾1𝐻1 |𝜓0⟩ ,

where |𝜓0⟩ is the ground state of 𝐻0. Of course, we need to prepare the state with adequate

quantum gates on a quantum circuit, so let’s analyze the operations that we need to perform.

A crucial observation is that the Hamiltonians 𝐻0 and 𝐻1 take a very specific form. As we

studied in the previous chapter, 𝐻0 is usually taken to be −∑𝑛−1
𝑗=0 𝑋𝑗 , while 𝐻1 is an Ising

Hamiltonian of the form

−∑
𝑗 ,𝑘

𝐽𝑗𝑘𝑍𝑗𝑍𝑘 −∑
𝑗
ℎ𝑗𝑍𝑗 ,

where the coefficients 𝐽𝑗𝑘 and ℎ𝑗 are real numbers.

From adiabatic computing to QAOA 179

The ground state of 𝐻0 is ⨂𝑛−1
𝑖=0 |+⟩, as you proved in Exercise 4.1. This state can be easily

prepared: starting from |0⟩, you just need to use a Hadamard gate on each qubit of the

circuit.

That was easy, so let’s now focus on the operations of the form 𝑒𝑖𝛽𝑘𝐻0
, with 𝛽𝑗 a real number.

Notice that 𝐻0 = −∑𝑛−1
𝑗=0 𝑋𝑗 and that all the 𝑋𝑗 matrices commute with each other, so we

can replace the exponential of the sum with the product of the exponentials. Therefore, it

holds that

𝑒𝑖𝛽𝑘𝐻0 = 𝑒−𝑖𝛽𝑘 ∑
𝑛−1
𝑗=0 𝑋𝑗 =

𝑛−1
∏
𝑗=0

𝑒−𝑖𝛽𝑘𝑋𝑗 .

But 𝑒−𝑖𝛽𝑋𝑗 is the expression for the rotation gate 𝑅𝑋 (2𝛽), so this means that we just need to

apply this gate to each of the qubits in our circuit. Neat, isn’t it?

The last type of operation that we need to translate into quantum gates is 𝑒𝑖𝛾𝑙𝐻1
for any

real coefficient 𝛾𝑙 . We know that 𝐻1 is a sum of terms of the form 𝐽𝑗𝑘𝑍𝑗𝑍𝑘 and ℎ𝑗𝑍𝑗 . Again,

these matrices commute with each other, so we get

𝑒𝑖𝛾𝑙𝐻1 = 𝑒−𝑖𝛾𝑙(∑𝑗 ,𝑘 𝐽𝑗𝑘𝑍𝑗𝑍𝑘+∑𝑗 ℎ𝑗𝑍𝑗) = ∏
𝑗 ,𝑘

𝑒−𝑖𝛾𝑙𝐽𝑗𝑘𝑍𝑗𝑍𝑘 ∏
𝑗
𝑒−𝑖𝛾𝑙ℎ𝑗𝑍𝑗 .

Similar to the case of 𝐻0, the operations of the form 𝑒−𝑖𝛾𝑙ℎ𝑗𝑍𝑗 can be carried out with rotation

gates 𝑅𝑍 . Thus, we only need to learn how to implement 𝑒−𝑖𝛾𝑙𝐽𝑗𝑘𝑍𝑗𝑍𝑘 . To keep things simple,

let’s denote the real number 𝛾𝑙𝐽𝑗𝑘 by 𝑎. Notice that 𝑒−𝑖𝑎𝑍𝑗𝑍𝑘 is the exponential of a diagonal

matrix, because 𝑍𝑗𝑍𝑘 is the tensor product of diagonal matrices. In fact, it holds that if |𝑥⟩

is a computational basis state in which qubits 𝑗 and 𝑘 have the same value, then

𝑒−𝑖𝑎𝑍𝑗𝑍𝑘 |𝑥⟩ = 𝑒−𝑖𝑎 |𝑥⟩ .

On the other hand, if qubits 𝑗 and 𝑘 have different values, then

𝑒−𝑖𝑎𝑍𝑗𝑍𝑘 |𝑥⟩ = 𝑒𝑖𝑎 |𝑥⟩ .

180 Chapter 5: QAOA: Quantum Approximate Optimization Algorithm

This unitary action is implemented by the circuit in Figure 5.1, where, for simplicity, we

have only depicted qubits 𝑗 and 𝑘 — the action on the rest of the qubits would be the

identity gate.

||𝑥𝑗⟩

|𝑥𝑘⟩ 𝑅𝑍(2𝑎)

Figure 5.1: Implementation of 𝑒−𝑖𝑎𝑍𝑗𝑍𝑘

We now have all the elements in place, so let’s illustrate them with an example. Imagine

that the Ising Hamiltonian of your problem is 3𝑍0𝑍2 − 𝑍1𝑍2 + 2𝑍0. Then, the circuit used

by QAOA to prepare
||𝜷, 𝜸⟩ with 𝑝 = 1 is the one shown in Figure 5.2.

𝐻 𝑅𝑍(4𝛾1) 𝑅𝑋 (2𝛽1)

𝐻 𝑅𝑋 (2𝛽1)

𝐻 𝑅𝑍(6𝛾1) 𝑅𝑍(−2𝛾1) 𝑅𝑋 (2𝛽1)

Figure 5.2: QAOA circuit with 𝑝 = 1

Notice how we first prepare the ground state of 𝐻0 with a column of Hadamard gates. Then,

we have the implementation of 𝑒−𝑖3𝛾1𝑍0𝑍2 with a CNOT gate between qubits 0 and 2, an 𝑅𝑍
gate on qubit 2, and another CNOT gate between qubits 0 and 2. The implementation of

𝑒𝑖𝛾1𝑍1𝑍2 is similar, but on qubits 1 and 2. Then, we use an 𝑅𝑍 gate on qubit 0 to implement

𝑒−𝑖2𝛾1𝑍0 . Finally, a column of 𝑅𝑋 gates implements 𝑒−𝑖𝛽1 ∑𝑗 𝑋𝑗 . If we increased the number

of layers 𝑝, the circuit would grow by repeating for another 𝑝 − 1 times the very same

circuit structure shown in Figure 5.2 except for the initial Hadamard gates. Additionally,

we would have to replace the parameters 𝛾1 and 𝛽1 by 𝛾2 and 𝛽2 in the second layer, by 𝛾3
and 𝛽3 in the third, and so on and so forth.

From adiabatic computing to QAOA 181

Exercise 5.1

Obtain the QAOA circuit for 𝑍1𝑍3 + 𝑍0𝑍2 − 2𝑍1 + 3𝑍2 with 𝑝 = 1.

Now that we know all the circuits that we need for QAOA, let’s study how to use them in

order to estimate the energy of the states
||𝜷, 𝜸⟩.

5.1.4 Estimating the energy
The circuits that we have just studied allow us to prepare any state of the form

||𝜷, 𝜸⟩. But

we are not interested in the states themselves. What we need is their energy with respect

to 𝐻1, because that is the quantity that we want to minimize. That is, we need to evaluate

⟨𝜷, 𝜸||𝐻1 ||𝜷, 𝜸⟩, but, of course, we don’t have access to the state vector because we are

preparing the state with a quantum computer. So, what can we do?

The key observation here is that we already know how to evaluate efficiently ⟨𝑥 |𝐻1 |𝑥⟩ for

any basis state |𝑥⟩. In fact, ⟨𝑥 |𝐻1 |𝑥⟩ is the value of 𝑥 in the cost function of our combinatorial

optimization problem, because we derived 𝐻1 from it. So, for instance, if we are trying to

solve a Max-Cut problem, each |𝑥⟩ represents a cut and we can easily compute — with a

classical computer — the cost of that cut, as we did in Section 3.1.2.

What is more, we can also evaluate ⟨𝑥 |𝐻1 |𝑥⟩ directly from the expression of the Hamiltonian.

We only need to notice that ⟨𝑥 |𝑍𝑗 |𝑥⟩ = 1 if the 𝑗-th bit of 𝑥 is 0 and that ⟨𝑥 |𝑍𝑗 |𝑥⟩ = −1

otherwise. In a similar way, ⟨𝑥 |𝑍𝑗𝑍𝑘 |𝑥⟩ = 1 if the 𝑗-th and 𝑘-th bits of 𝑥 are equal and

⟨𝑥 |𝑍𝑗𝑍𝑘 |𝑥⟩ = −1 if they are different.

Then, by linearity, we can easily evaluate ⟨𝑥 |𝐻1 |𝑥⟩. For instance, if𝐻1 = 3𝑍0𝑍2−𝑍1𝑍2+2𝑍0,

we will have

⟨101|𝐻1 |101⟩ = 3 ⟨101|𝑍0𝑍2 |101⟩ − ⟨101|𝑍1𝑍2 |101⟩ + 2 ⟨101|𝑍0 |101⟩ = 3 + 1 − 2 = 4.

Exercise 5.2

Evaluate ⟨100|𝐻1 |100⟩ with 𝐻1 = 3𝑍0𝑍2 − 𝑍1𝑍2 + 2𝑍0.

182 Chapter 5: QAOA: Quantum Approximate Optimization Algorithm

We also know that we can always write
||𝜷, 𝜸⟩ as a linear combination of basis states.

Namely, we have

||𝜷, 𝜸⟩ = ∑
𝑥
𝑎𝑥 |𝑥⟩

for certain amplitudes 𝑎𝑥 such that ∑𝑥 |𝑎𝑥 |
2 = 1.

But then it holds that

⟨𝜷, 𝜸||𝐻1 ||𝜷, 𝜸⟩ =
(
∑
𝑦
𝑎∗𝑦 ⟨𝑦 |)

𝐻1 (
∑
𝑥
𝑎𝑥 |𝑥⟩)

= ∑
𝑦

∑
𝑥
𝑎∗𝑦𝑎𝑥 ⟨𝑦 |𝐻1 |𝑥⟩ = ∑

𝑥
|𝑎𝑥 |2 ⟨𝑥 |𝐻1 |𝑥⟩ ,

because 𝐻1 |𝑥⟩ is always a multiple of |𝑥⟩ (just notice that 𝐻1 is a diagonal matrix because

it is a sum of diagonal matrices), because ⟨𝑦 |𝑥⟩ = 0 when 𝑦 ≠ 𝑥 , and because 𝑎∗𝑥𝑎𝑥 = |𝑎𝑥 |2.

Now, since we can compute ⟨𝑥 |𝐻1 |𝑥⟩ easily with the classical computer, we have reduced

our problem to computing the values |𝑎𝑥 |2. But |𝑎𝑥 |2 is the probability of measuring |𝑥⟩

when the state
||𝜷, 𝜸⟩ is prepared — this is the reason why, back in Chapter 3, Working

with Quadratic Unconstrained Binary Optimization Problems, we referred to expressions of

the form ⟨𝜓|𝐻1 |𝜓⟩ as expectation values; they are indeed the expected or average energy

under 𝐻1 when we measure the state |𝜓⟩!

From this observation, it follows that we can use the quantum computer to prepare
||𝜷, 𝜸⟩

and measure it 𝑀 times to make the estimation

⟨𝜷, 𝜸||𝐻1 ||𝜷, 𝜸⟩ ≈ ∑
𝑥

𝑚𝑥

𝑀
⟨𝑥 |𝐻1 |𝑥⟩ ,

where 𝑚𝑥 is the number of times that 𝑥 was measured. Of course, the higher the value of

𝑀 , the better this approximation will be.

Important note

In the process of estimating the energies of all the different states prepared with

quantum computers, we will compute the cost, for our optimization problem, of

many binary strings 𝑥 . Of course, it would be wise for us to always keep the best 𝑥

From adiabatic computing to QAOA 183

seen during the optimization process. Occasionally, it might be even better than the

ones we obtain when measuring the final state
||𝜷

∗, 𝜸∗⟩.

We’ve now covered all that we needed to know about the inner workings of QAOA. Before

we move on to show how to implement and use this algorithm with Qiskit and PennyLane,

we will introduce a little perk that we get from the fact that we are no longer using quantum

annealers, but universal quantum computers instead. This will help us in formulating some

problems in a more natural way, as we will show in the next subsection.

5.1.5 QUBO and HOBO
Up to this point, we have only considered problems that can be written under the QUBO

formalism. That is, minimization problems in which the cost function is a quadratic

polynomial on binary variables that had no constraints on the values they could take.

This is less restricting than it may seem, because QUBO is 𝑁𝑃-hard and there are many

important problems that we can rewrite via reductions, as we saw in Section 3.4.

However, consider a problem like the famous satisfiability or SAT. In it, we are given

a Boolean formula on binary variables and we have to determine whether there is any

assignment of values that makes the formula true. For example, we may receive

(𝑥0 ∨ ¬𝑥1 ∨ 𝑥2) ∧ (¬𝑥0 ∨ 𝑥1 ∨ ¬𝑥2) ∧ (𝑥0 ∨ 𝑥1 ∨ 𝑥2),

which is satisfiable (by assigning true to all the variables, for instance). Or we can be given

𝑥0 ∧ ¬𝑥0,

which is clearly unsatisfiable.

SAT is easily seen to be in 𝑁𝑃 (and, in fact, it is 𝑁𝑃-complete — see Section 7.4 in Sipser’s

book [26]). Then, we know that there must be a way of rewriting any SAT instance in

184 Chapter 5: QAOA: Quantum Approximate Optimization Algorithm

the QUBO formalism. But the task becomes much easier if we relax the conditions in the

QUBO formulation by allowing binary polynomials of any order. Let’s see why!

Let us consider, for the sake of an example, the formula (𝑥0 ∨ ¬𝑥1 ∨ 𝑥2) ∧ (¬𝑥0 ∨ 𝑥1 ∨ ¬𝑥2) ∧

(𝑥0 ∨ 𝑥1 ∨ 𝑥2). We’ll show how it can be represented as the polynomial

𝑝(𝑥0, 𝑥1, 𝑥2) = (1 − 𝑥0)𝑥1(1 − 𝑥2) + 𝑥0(1 − 𝑥1)𝑥2 + (1 − 𝑥0)(1 − 𝑥1)(1 − 𝑥2),

on the binary variables 𝑥0, 𝑥1, and 𝑥2. Let’s say that we consider some assignment of truth

values for the variables in the original formula, and we set 𝑥𝑖 = 1 in the polynomial if

𝑥𝑖 is true and 𝑥𝑖 = 0 if 𝑥𝑖 is false. It’s easy to see that the original formula will be true

under this assignment if and only if 𝑝(𝑥0, 𝑥1, 𝑥2) = 0, and that it will be false if and only if

𝑝(𝑥0, 𝑥1, 𝑥2) > 0. Thus, if the polynomial 𝑝 is 0 for some values of its variables, then the

original formula must be satisfiable. Otherwise, it has to be unsatisfiable.

Then, we can rewrite our original problem as follows:

Minimize (1 − 𝑥0)𝑥1(1 − 𝑥2) + 𝑥0(1 − 𝑥1)𝑥2 + (1 − 𝑥0)(1 − 𝑥1)(1 − 𝑥2)

subject to 𝑥𝑗 ∈ {0, 1}, 𝑗 = 0, 1, 2.

If the minimum of the polynomial is 0, then the formula will be satisfiable. Otherwise, the

formula will be unsatisfiable.

With a simple transformation, we have been able to reformulate our problem as something

that looks very much like a QUBO instance. But wait! This is not a QUBO problem.

The reason is that the degree of the binary polynomial is 3 and not 2, as you can easily

check by expanding its expression. These optimization problems in which we are asked to

minimize a binary polynomial — of any degree — with no additional restrictions are called

Higher Order Binary Optimization (HOBO) or Polynomial Unconstrained Binary

Optimization (PUBO) problems, for obvious reasons.

From adiabatic computing to QAOA 185

The method that we have applied is quite general. In fact, it is easy to see that we can apply

it to any Boolean formula that is given as conjunctions of disjunctions of variables and

negations of variables. Something like, for instance, (𝑥0 ∨¬𝑥1 ∨ 𝑥2) ∧ (¬𝑥0 ∨ 𝑥1 ∨¬𝑥2) ∧ (𝑥0 ∨

𝑥1 ∨ 𝑥2) or (𝑥0 ∨ 𝑥1 ∨ ¬𝑥2 ∨ 𝑥3) ∧ (¬𝑥0 ∨ 𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (¬𝑥0 ∨ 𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥3). We say that

these formulas are in conjunctive normal form or CNF. In this case, we can just obtain

an associated polynomial consisting of a sum of products. Each product will correspond to

one of the disjunctions of the formula. If a variable 𝑥 appears negated in the disjunction, it

will appear as 𝑥 in the product. If it appears in positive form, it will appear as 1 − 𝑥 in the

product.

Exercise 5.3

Write the HOBO version of the SAT problem with the Boolean formula

(𝑥0 ∨ 𝑥1 ∨ ¬𝑥2 ∨ 𝑥3) ∧ (¬𝑥0 ∨ 𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (¬𝑥0 ∨ 𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥3).

And what about Boolean formulas that are not in CNF? In this case, we can apply a method,

called the Tseitin transformation, that runs in polynomial time and gives us a formula

in CNF that is satisfiable if and only if the original formula was satisfiable (see [44, Chapter

2] for more details). In fact, the resulting formula will be in 3-CNF, meaning that the

disjunctions will involve at most three variables or negations of variables. This is very

convenient, because it guarantees that the process of expanding the polynomial to obtain

the coefficients will be efficient.

But enough about satisfiability. Let’s come back to HOBO problems. How can we solve

them? One way of doing this is by transforming them into QUBO problems. There are

different techniques for rewriting HOBO problems as QUBO instances by introducing

auxiliary variables. For example, you can substitute products 𝑥𝑦 by a new binary variable

𝑧 as long as you introduce a penalty term 𝑥𝑦 − 2𝑥𝑧 − 2𝑦𝑧 + 3𝑧, which is 0 if and only if

𝑥𝑦 = 𝑧. In this way, you can reduce a term of order 𝑚 + 1 such as 𝑥0𝑥1⋯ 𝑥𝑚 to a term of

order 𝑚 of the form 𝑧𝑥2⋯ 𝑥𝑚 and a quadratic penalty term on 𝑥0, 𝑥1, and 𝑧. By repeating

this process as many times as needed, you can obtain an equivalent problem in which the

186 Chapter 5: QAOA: Quantum Approximate Optimization Algorithm

objective function is a binary quadratic polynomial. Transformations of this kind are used

in D-Wave’s Ocean, where you can find BinaryPolynomial objects that you can reduce to

polynomials of degree 2 with the make_quadratic function.

However, if you are using QAOA, you can deal with HOBO problems directly. We can

consider a binary polynomial of any degree and transform it using the techniques of

Section 3.3. We will end up having a Hamiltonian that is a sum of tensor products of 𝑍𝑗
matrices. The only difference is that, now, these products can involve more than just one

or two 𝑍𝑗 matrices.

This implies that, when we set out to create a circuit for 𝑒−𝑖𝛾𝑙𝐻1
, we may need to implement

unitary operations of the form 𝑒−𝑖𝑎𝑍𝑗1𝑍𝑗2⋯𝑍𝑗𝑚 , with 𝑚 > 2. But that is not much more difficult

than implementing 𝑒−𝑖𝑎𝑍𝑗𝑍𝑘 . In fact, we can almost repeat the argument in Section 5.1.3,

because both 𝑍𝑗1𝑍𝑗2 ⋯𝑍𝑗𝑚 and 𝑒−𝑖𝑎𝑍𝑗1𝑍𝑗2⋯𝑍𝑗𝑚 are diagonal matrices. In fact, if |𝑥⟩ is a basis

state, then

𝑒−𝑖𝑎𝑍𝑗1𝑍𝑗2⋯𝑍𝑗𝑚 |𝑥⟩ = 𝑒−𝑖𝑎 |𝑥⟩

if the sum of the bits of 𝑥 in positions 𝑗1, 𝑗2,… , 𝑗𝑚 is even, and

𝑒−𝑖𝑎𝑍𝑗1𝑍𝑗2⋯𝑍𝑗𝑚 |𝑥⟩ = 𝑒𝑖𝑎 |𝑥⟩

if the sum is odd.

This unitary action can be implemented by using consecutive CNOT gates with control

qubits in 𝑗1, 𝑗2,… , 𝑗𝑚−1 and targets in 𝑗𝑚, then an 𝑅𝑍 gate with parameter 2𝑎 on qubit 𝑗𝑚
and, again, consecutive CNOT gates with control qubits in 𝑗𝑚−1, 𝑗𝑚−2,… , 𝑗1 and targets in

𝑗𝑚. Figure 5.3 illustrates this procedure for the case of 𝑒−𝑖𝑎𝑍0𝑍1𝑍3 , under the assumption that

we only have four qubits.

Of course, this operation would be just one part in the implementation of 𝑒−𝑖𝛾𝑙𝐻1
and we

would need to repeat a similar process for each term of the Hamiltonian.

From adiabatic computing to QAOA 187

|𝑥0⟩

|𝑥1⟩
|𝑥2⟩

|𝑥3⟩ 𝑅𝑍(2𝑎)

Figure 5.3: Implementation of 𝑒−𝑖𝑎𝑍0𝑍1𝑍3

Exercise 5.4

Implement, in a circuit with 5 qubits, the operation 𝑒−𝑖
𝜋
4 𝑍0𝑍2𝑍4 .

Notice that we can also estimate the energy of a Hamiltonian 𝐻1 that includes tensor

products of 𝑍 matrices in a way that is very similar to the one that we explained in

Section 5.1.4. The key fact is that, for any basis state |𝑥⟩, it holds that

⟨𝑥 |𝑍𝑗1𝑍𝑗2 ⋯𝑍𝑗𝑚 |𝑥⟩ = 1

if the sum of the bits of 𝑥 in positions 𝑗1, 𝑗2,… , 𝑗𝑚 is even, and

⟨𝑥 |𝑍𝑗1𝑍𝑗2 ⋯𝑍𝑗𝑚 |𝑥⟩ = −1

otherwise. By linearity, we can then evaluate ⟨𝑥 |𝐻1 |𝑥⟩ and, from that, we can estimate

⟨𝜓|𝐻1 |𝜓⟩ by measuring |𝜓⟩ a number of times, exactly as we did in Section 5.1.4.

Exercise 5.5

Evaluate ⟨100|𝐻1 |100⟩ with 𝐻1 = 𝑍0𝑍1𝑍2 + 3𝑍0𝑍2 − 𝑍1𝑍2 + 2𝑍0.

We have now covered all the necessary concepts to understand QAOA in all its glory. In

the next two sections, we will show how to implement and run this algorithm with both

Qiskit and PennyLane.

188 Chapter 5: QAOA: Quantum Approximate Optimization Algorithm

5.2 Using QAOA with Qiskit
With everything that we have learned in the previous sections of this chapter and what we

already know about Qiskit from Chapter 2, The Tools of the Trade in Quantum Computing,

and Section 3.2.2, we could implement our own Qiskit version of QAOA. However, there

is no need for that! As we shall show in this section, the Qiskit Optimization package

provides all that is necessary to run QAOA on both quantum simulators and actual quantum

computers. Moreover, it includes a set of tools to work directly with problems written

under the QUBO formalism. As a matter of fact, in this section, we will also see how,

underneath the hood, Qiskit uses the very same mathematical concepts that we have been

studying.

Let’s start by explaining how to work with QAOA in Qiskit when we already have the

problem Hamiltonian.

5.2.1 Using QAOA with Hamiltonians
If we have the Hamiltonian 𝐻1 that encodes our optimization problem, it is very easy to use

Qiskit’s QAOA implementation to approximate its ground state. Let’s start with a simple

example in which we have 𝐻1 = 𝑍0𝑍1. We can create this Hamiltonian and prepare the

corresponding QAOA circuit with the following lines of code:

from qiskit.opflow import Z

from qiskit.algorithms import QAOA

H1 = Z^Z # Define Z_0Z_1

qaoa = QAOA()

circuit = qaoa.construct_circuit([1,2],H1)[0]

circuit.draw(output="mpl")

As a result, we will obtain the circuit shown in Figure 5.4. We can see how it starts with two

Hadamard gates, which are then followed by the exponential of𝐻1 and then the exponential

Using QAOA with Qiskit 189

of 𝐻0 (because 𝐻0 = 𝑋0𝑋1 = 𝑋0𝐼 + 𝐼𝑋1). This is exactly the circuit that we derived in the

first part of the chapter.

Figure 5.4: QAOA circuit for 𝐻1 = 𝑍0𝑍1

In order to create the circuit, in addition to H1, we’ve passed [1,2] to the method called

construct_circuit. This list contains the 𝜷 and 𝜸 parameters that we want to use. In

Figure 5.4, this is indicated by the numbers below the exponentials in the gate boxes. Notice

that this means that the first element in [1,2] is what we call 𝛽1 and the second is 𝛾1. Also

notice that we have used [0] after the call to construct_circuit. This is because this

method, in general, returns a list of several circuits — but in this case, there is only one,

which is the one that we pick.

We can visualize the circuit in more detail by decomposing the exponentials — that is,

transforming them into simpler gates — a couple of times. For that, we may use

circuit.decompose().decompose().draw(output="mpl")

to get the circuit shown in Figure 5.5. The sequence of gates in that circuit is exactly the one

that we would expect from our derivations earlier in this chapter, because 𝑈 (𝜋/2, 0, 𝜋) = 𝐻 ,

as you can easily check from the definition that we gave in Section 1.3.4 (𝑈3 is Qiskit’s name

for our 𝑈 gate).

Figure 5.5: QAOA circuit for 𝐻1 = 𝑍0𝑍1, more detailed

190 Chapter 5: QAOA: Quantum Approximate Optimization Algorithm

By default, the value of 𝑝 for QAOA in Qiskit is 1. However, we can change it by using the

reps parameter when calling the class constructor. For instance, the following code can be

used to obtain the QAOA circuit for 𝑍0𝑍1 with 𝑝 = 2, 𝛽1 = 1, 𝛽2 = 2, 𝛾1 = 3, and 𝛾2 = 4:

qaoa = QAOA(reps = 2)

circuit = qaoa.construct_circuit([1,2,3,4],H1)[0]

circuit.decompose().decompose().draw(output="mpl")

The result of the execution is the circuit shown in Figure 5.6.

Figure 5.6: QAOA circuit for 𝐻1 = 𝑍0𝑍1 with 𝑝 = 2

All this is well and good, but we haven’t yet solved any optimization problems! For that,

we need to pass two additional parameters when creating a QAOA object. The first one is a

QuantumInstance. That is, some backend capable of executing the QAOA quantum circuit

to evaluate the energy of the
||𝜷, 𝜸⟩ states. The second one is a classical optimizer, which

will set initial values for 𝜷 and 𝜸, use the QuantumInstance to evaluate state energies, and

update the 𝜷 and 𝜸 parameters in order to optimize them, until some stopping criterion is

met.

To learn more. . .

The choice of classical optimizer can have a big impact on the execution time and

quality of the solutions obtained with QAOA.

For some insights into this, you can refer to [45].

In the following piece of code, we give an example of how to create the quantum instance

and the classical minimizer objects, and of how to use them with QAOA to solve a simple

problem:

Using QAOA with Qiskit 191

from qiskit.utils import algorithm_globals, QuantumInstance

from qiskit import Aer

from qiskit.algorithms.optimizers import COBYLA

seed = 1234

algorithm_globals.random_seed = seed

quantum_instance = QuantumInstance(Aer.get_backend("aer_simulator"),

seed_simulator=seed, seed_transpiler=seed,

shots = 10)

qaoa = QAOA(optimizer = COBYLA(), quantum_instance=quantum_instance)

result = qaoa.compute_minimum_eigenvalue(H1)

print(result)

Here, we are relying on the previous definition of H1 as Z^Z, running the circuit on the Aer

simulator with 10 shots, and using COBYLA as the classical optimizer — for an updated list

of minimizers, please refer to Qiskit’s documentation at https://qiskit.org/documenta

tion/stubs/qiskit.algorithms.optimizers.html. We are also setting seeds for those

processes that require random numbers, in order to obtain reproducible results.

If you run the preceding instructions, you will obtain the following output:

{ 'aux_operator_eigenvalues': None,

'cost_function_evals': 20,

'eigenstate': {'01': 0.5477225575051661, '10': 0.8366600265340756},

'eigenvalue': (-1+0j),

'optimal_parameters': {

ParameterVectorElement(𝛾[0]): -0.847240391875931,

ParameterVectorElement(𝛽[0]): 6.7647519845416655},

'optimal_point': array([6.76475198, -0.84724039]),

'optimal_value': -1.0,

'optimizer_evals': None,

'optimizer_time': 0.07764506340026855}

https://qiskit.org/documentation/stubs/qiskit.algorithms.optimizers.html
https://qiskit.org/documentation/stubs/qiskit.algorithms.optimizers.html

192 Chapter 5: QAOA: Quantum Approximate Optimization Algorithm

That is quite a lot of information! Let’s try to explain the most relevant pieces. The first

thing that we need to understand is that this result refers to the final state
||𝜷

∗, 𝜸∗⟩ obtained

by QAOA, not to the solutions that we would obtain if we measured it. In fact, this state

is reconstructed from 10 measurements — because our simulator is using 10 shots — but

those measurements are not given as part of the output. Instead, we get the eigenstate

field, which shows that we have |01⟩ with an amplitude roughly 0.5477 and |10⟩ with an

amplitude about 0.8367. These numbers are, in fact,

√
3/10 and

√
7/10, which means that,

once the state with the optimal parameters found by the minimizer was prepared and

measured, 01 was obtained 3 out of 10 times and 10 was obtained the remaining 7 times.

This state can be prepared with the QAOA circuit by using the optimal parameters reported

in the result: 𝛽1 ≈ 6.7648 and 𝛾1 ≈ −0.8472.

Notice that, with respect to the 𝑍0𝑍1 Hamiltonian, both |01⟩ and |10⟩ have an expected value

of −1, which is the optimal energy. This means that we have been able to find an optimal

solution — two of them, in fact — with QAOA! To get to this result, QAOA evaluated the

energy function — by preparing a circuit with some values of 𝛽1 and 𝛾1 and measuring it to

estimate its expectation value — 20 times, as indicated by the cost_function_evals field,

and it used about 0.08 seconds of computing time — your running time will most surely be

different from ours, though.

All this has been done with the Aer simulator. If we wanted to use a real quantum computer,

we could just replace the backend in the instantiation of the QuantumInstance object and

use some of the quantum devices provided by IBM, as we showed in Section 2.2.4. However,

this is not the best way to proceed. The problem with this straightforward approach is

that you will be running the classical part of the algorithm locally. Then, each time that an

energy estimation is required, a new job will be submitted to the quantum computer and

you will have to wait on the queue if other users have also sent jobs to execute. This can

be quite slow, not because of the process itself, but because of the queue waiting times.

Fortunately, Qiskit has recently introduced a new module called Runtime that allows us

to reduce the execution time for hybrid algorithms such as QAOA. Instead of submitting

each circuit individually, with Runtime you can submit a program that includes both the

Using QAOA with Qiskit 193

classical and the quantum part of the algorithm. The program is then queued just once,

greatly speeding up the whole execution.

Using Runtime with QAOA is very easy. In fact, we just need to specify the same elements

that we have used with the QAOA class, but in a slightly different way. The following piece

of code shows an example of how to do this:

from qiskit import IBMQ

provider = IBMQ.load_account()

program_id = "qaoa"

H1 = Z^Z

opt = COBYLA()

reps = 1

shots = 1024

runtime_inputs = {

"operator": H1,

"reps": reps,

"optimizer": opt,

"initial_point": [0,0],

"use_swap_strategies": False

}

options = {"backend_name": "ibmq_belem"}

job = provider.runtime.run(program_id=program_id,

options=options, inputs=runtime_inputs)

This will create and run a QAOA Runtime job whose quantum part will be executed in the

quantum computer that we have specified in the options["backend_name"] field — in our

194 Chapter 5: QAOA: Quantum Approximate Optimization Algorithm

case, ibmq_belem. We have used the 𝑍0𝑍1 Hamiltonian, COBYLA as the optimizer, a value

of 𝑝 = 1 (specified with the reps variable), and 1024 shots.

We have also chosen the initial values of 𝛽1 and 𝛾1 to be 0 with the initial_point field. If

this field is not used, the initial values are chosen at random.

Once the program has finished running (you can keep track of its execution using job.status()),

the result can be retrieved with job.result(). We can access some of its parameters with

the following instructions:

result = job.result()

print("Optimizer time", result['optimizer_time'])

print("Optimal value", result['optimal_value'])

print("Optimal point", result['optimal_point'])

print("Optimal state", result['eigenstate'])

In our case, running those lines of code offered the following result:

Optimizer time 88.11612486839294

Optimal value -0.84765625

Optimal point [0.42727683 2.39693691]

Optimal state {'00': 0.2576941016011038, '01': 0.691748238161833,

'10': 0.6584783595532961, '11': 0.14657549249448218}

As you can appreciate, the results are slightly worse than with the simulator, due to the

influence of noise. But the two optimal basis states — 01 and 10 — are still the most probable

ones and, therefore, if we prepare and measure the final state several times, we will have a

very high probability of finding an optimal solution.

So now we know how to solve problems with QAOA using Qiskit, both with simulators and

with actual quantum computers. However, so far, we’ve had to prepare the Hamiltonian

of the problem ourselves, and that is not ideal. As we learned in Chapter 3, Working with

Quadratic Unconstrained Binary Optimization Problems, for many problems, it is more

convenient to work with a QUBO formulation or even to write the problem as a binary

Using QAOA with Qiskit 195

linear program. Would it be possible to use those formalisms directly with QAOA in Qiskit?

Absolutely! We’ll show you how in the next subsection.

5.2.2 Solving QUBO problems with QAOA in Qiskit
Qiskit provides tools to work with quadratic problems, both with and without constraints,

which are similar to the ones that we studied when working with Ocean in Chapter 4,

Quantum Adiabatic Computing and Quantum Annealing. For example, we can define a

simple binary program with the following piece of code:

from qiskit_optimization.problems import QuadraticProgram

qp = QuadraticProgram()

qp.binary_var('x')

qp.binary_var('y')

qp.binary_var('z')

qp.minimize(linear = {'y':-1}, quadratic = {('x','y'):2, ('z','y'):-4})

qp.linear_constraint(linear = {'x':1, 'y':2, 'z':3},

sense ="<=", rhs = 5)

print(qp.export_as_lp_string())

As you can see, we are defining a quadratic problem with three binary variables, a function

to minimize that has a linear and a quadratic part, and a linear constraint in the binary

variables. When we run these instructions, we obtain the following output:

\ This file has been generated by DOcplex

\ ENCODING=ISO-8859-1

\Problem name: CPLEX

Minimize

obj: - y + [4 x*y - 8 y*z]/2

196 Chapter 5: QAOA: Quantum Approximate Optimization Algorithm

Subject To

c0: x + 2 y + 3 z <= 5

Bounds

0 <= x <= 1

0 <= y <= 1

0 <= z <= 1

Binaries

x y z

End

The problem has exactly the elements that we specified. The only detail that may deserve

a small explanation is why the quadratic part of the objective function is represented as

(4𝑥𝑦 − 8𝑦𝑧)/2 instead of 2𝑥𝑦 − 4𝑦𝑧. The reason for this seemingly odd choice is that, in

this way, the matrix with the quadratic coefficients can be made symmetric. Instead of

having 2 for the 𝑥𝑦 coefficient and 0 for the 𝑦𝑥 product, the value is duplicated and both

terms will have 2 as their coefficient — but then we need to divide by 2 so that the total

coefficient remains as in the original specification.

To learn more. . .

The internal representation of these quadratic problems is the one used by CPLEX,

an IBM package that is used to solve optimization problems with classical methods.

You can learn more about CPLEX on its web page: https://www.ibm.com/produc

ts/ilog-cplex-optimization-studio.

Once we have a QuadraticProgram object, we can solve it with one of the algorithms

provided by Qiskit. To achieve this, we can use MinimumEigenOptimizer together with a

concrete solver. For example, we can use a classical exact solver, which tries every possible

solution and selects the optimal one. In Qiskit, this is as simple as using the following

instructions:

https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio

Using QAOA with Qiskit 197

from qiskit_optimization.algorithms import MinimumEigenOptimizer

from qiskit.algorithms import NumPyMinimumEigensolver

np_solver = NumPyMinimumEigensolver()

np_optimizer = MinimumEigenOptimizer(np_solver)

result = np_optimizer.solve(qp)

print(result)

The result of the execution is as follows:

fval=-5.0, x=0.0, y=1.0, z=1.0, status=SUCCESS

As you can see, we obtain the optimal assignment (𝑥 = 0, 𝑦 = 1 and 𝑧 = 1), the optimal

value of the function (in this case, −5), and whether the assignment satisfies the constraints,

indicated by the SUCCESS value, or not — if there were no assignments satisfying the

constraints, we would obtain INFEASIBLE as the value for status.

In a similar way, we can use QAOA to solve the problem with the following instructions:

from qiskit import Aer

from qiskit.algorithms import QAOA

from qiskit.algorithms.optimizers import COBYLA

from qiskit.utils import QuantumInstance

quantum_instance = QuantumInstance(Aer.get_backend("aer_simulator"),

shots = 1024)

qaoa = QAOA(optimizer = COBYLA(),

quantum_instance=quantum_instance, reps = 1)

qaoa_optimizer = MinimumEigenOptimizer(qaoa)

result = qaoa_optimizer.solve(qp)

print(result)

In this case, the result will be the same one that we obtained with NumPyMinimumEigensolver.

But we can also obtain additional information with the following instructions:

198 Chapter 5: QAOA: Quantum Approximate Optimization Algorithm

print('Variable order:', [var.name for var in result.variables])

for s in result.samples:

print(s)

The result will be something like the following:

Variable order: ['x', 'y', 'z']

SolutionSample(x=array([0., 1., 1.]), fval=-5.0,

probability=0.11621093749999999, status=<OptimizationResultStatus.SUCCESS: 0>)

SolutionSample(x=array([0., 1., 0.]), fval=-1.0,

probability=0.107421875, status=<OptimizationResultStatus.SUCCESS: 0>)

SolutionSample(x=array([1., 0., 1.]), fval=0.0,

probability=0.1494140625, status=<OptimizationResultStatus.SUCCESS: 0>)

SolutionSample(x=array([0., 0., 1.]), fval=0.0,

probability=0.1103515625, status=<OptimizationResultStatus.SUCCESS: 0>)

SolutionSample(x=array([1., 0., 0.]), fval=0.0,

probability=0.103515625, status=<OptimizationResultStatus.SUCCESS: 0>)

SolutionSample(x=array([0., 0., 0.]), fval=0.0,

probability=0.1416015625, status=<OptimizationResultStatus.SUCCESS: 0>)

SolutionSample(x=array([1., 1., 0.]), fval=1.0,

probability=0.13769531249999997, status=<OptimizationResultStatus.SUCCESS: 0>)

SolutionSample(x=array([1., 1., 1.]), fval=-3.0,

probability=0.1337890625, status=<OptimizationResultStatus.INFEASIBLE: 2>)

First, we have printed the order of variables, to more easily interpret the assignments

considered by the solver. Then, we have a listing of the different solutions that are part

of the final, optimal state found by QAOA. Each item of the list includes the assign-

ment, the energy or function value, the probability of obtaining the corresponding basis

state when measuring the QAOA state, and whether the solution is feasible or not —

status=<OptimizationResultStatus.SUCCESS: 0> indicates that the solution is feasible,

while status=<OptimizationResultStatus.INFEASIBLE: 2> indicates that it is not.

Using QAOA with Qiskit 199

Exercise 5.6

Modify the code that we have just run to make the results reproducible. Hint: you

can set seeds in the same way that we did in Section 5.2.1.

We can also obtain full information about the QAOA execution by using the following:

print(result.min_eigen_solver_result)

We would obtain something like the following (where we have truncated part of the output):

{ 'aux_operator_eigenvalues': None,

'cost_function_evals': 32,

'eigenstate': { '000000': 0.09375,

'000001': 0.03125,

'000010': 0.05412658773652741,

[.....]

'111101': 0.11692679333668567,

'111110': 0.08838834764831845,

'111111': 0.07654655446197431},

'eigenvalue': (-14.7548828125+0j),

'optimal_parameters': {

ParameterVectorElement(𝛾[0]): -5.087643335935586,

ParameterVectorElement(𝛽[0]): -0.24590437874189125},

'optimal_point': array([-0.24590438, -5.08764334]),

'optimal_value': -14.7548828125,

'optimizer_evals': None,

'optimizer_time': 0.6570718288421631}

Notice, however, that these assignments include the auxiliary variables used in the trans-

formation from constrained to unconstrained problem, as in the procedure that we studied

in Chapter 3, Working with Quadratic Unconstrained Binary Optimization Problems, and the

200 Chapter 5: QAOA: Quantum Approximate Optimization Algorithm

function values are also the ones taken in the transformed problem. In fact, you can obtain

the corresponding QUBO problem with the following code:

from qiskit_optimization.converters import QuadraticProgramToQubo

qp_to_qubo = QuadraticProgramToQubo()

qubo = qp_to_qubo.convert(qp)

print(qubo.export_as_lp_string())

The output will be the following:

\ This file has been generated by DOcplex

\ ENCODING=ISO-8859-1

\Problem name: CPLEX

Minimize

obj: - 80 x - 161 y - 240 z - 80 c0@int_slack@0 - 160 c0@int_slack@1

- 160 c0@int_slack@2 + [16 x^2 + 68 x*y + 96 x*z +

32 x*c0@int_slack@0 + 64 x*c0@int_slack@1 + 64 x*c0@int_slack@2

+ 64 y^2 + 184 y*z + 64 y*c0@int_slack@0 + 128 y*c0@int_slack@1

+ 128 y*c0@int_slack@2 + 144 z^2 + 96 z*c0@int_slack@0

+ 192 z*c0@int_slack@1 + 192 z*c0@int_slack@2

+ 16 c0@int_slack@0^2 + 64 c0@int_slack@0*c0@int_slack@1

+ 64 c0@int_slack@0*c0@int_slack@2 + 64 c0@int_slack@1^2

+ 128 c0@int_slack@1*c0@int_slack@2 + 64 c0@int_slack@2^2]/2

+ 200

Subject To

Bounds

0 <= x <= 1

0 <= y <= 1

0 <= z <= 1

Using QAOA with Qiskit 201

0 <= c0@int_slack@0 <= 1

0 <= c0@int_slack@1 <= 1

0 <= c0@int_slack@2 <= 1

Binaries

x y z c0@int_slack@0 c0@int_slack@1 c0@int_slack@2

End

As you can see, this is now a QUBO problem in which slack variables and penalty terms

have been introduced, exactly as we did in Chapter 3, Working with Quadratic Unconstrained

Binary Optimization Problems.

To learn more. . .

In the qiskit_optimization.converters module, you can also find the functions

InequalityToEquality, IntegerToBinary, and LinearEqualityToPenalty. The

QuadraticProgramToQubo function calls them to convert quadratic programs with

constraints into QUBO instances, by first introducing slack variables to transform

inequalities into equalities, then transforming the integer slack variables into binary

ones, and finally, replacing the equality constraints with penalty terms.

You may now be wondering how to use MinimumEigenOptimizer with a quantum computer

instead of with a simulator. Of course, when defining the quantum_instance parameter

to use with the QAOA object, you can simply declare a real quantum device. But, as we

have already mentioned, that would imply entering the device queue many times, with the

consequent delay.

As you surely remember from the previous subsection, if you have a Hamiltonian, you

can use it directly in a QAOA Runtime program in order to submit your problem to the

queue just once. So, is it possible to obtain the Hamiltonian of our problem? It sure is!

You can run the following code to further transform the QUBO problem into an equivalent

Hamiltonian:

202 Chapter 5: QAOA: Quantum Approximate Optimization Algorithm

H1, offset = qubo.to_ising()

print("The Hamiltonian is", H1)

print("The constant term is", offset)

You can then use H1 to solve the problem with the QAOA Runtime program and even

recover the energy by adding back the offset term. But... that seems like a lot of work,

doesn’t it? What’s more, you would need to deal with all those ugly slack variables that

were introduced to transform the quadratic program into QUBO form. Surely, there has to

be a simpler way.

Fortunately, the Qiskit developers are very thoughtful, and they have enabled us to use

Qiskit Runtime directly with MinimumEigenOptimizer. To do that, though, you need

something called the QAOAClient, which will take care of running everything smoothly with

Runtime once you plug it into MinimumEigenOptimizer. Using it is as simple as selecting a

device with enough qubits. We need at least 6, so we have selected ibm_lagos, which has 7;

if you don’t have access to a big enough device, you can always use ibmq_qasm_simulator,

which supports up to 32. And once we have a device, we can just run the following

instructions:

from qiskit_optimization.runtime import QAOAClient

from qiskit import IBMQ

provider = IBMQ.load_account()

qaoa_client = QAOAClient(provider=provider,

backend=provider.get_backend("ibm_oslo"), reps=1)

qaoa = MinimumEigenOptimizer(qaoa_client)

result = qaoa.solve(qp)

print(result)

This will yield the following output:

Using QAOA with PennyLane 203

fval=-5.0, x=0.0, y=1.0, z=1.0, status=SUCCESS

And, of course, you can obtain further information about the execution, as we did in

previous examples, by accessing and using the values of the variables result.variables,

result.samples, and result.min_eigen_solver_result. Very convenient, right?

We have now learned how to work with QAOA in Qiskit and how to manage and solve our

problems in many different ways. It is time for us to turn back to PennyLane and see what

it can offer in order to solve our beloved QUBO problems.

5.3 Using QAOA with PennyLane
As we mentioned in Chapter 2, The Tools of the Trade in Quantum Computing, PennyLane

is a quantum programming library focused mainly on quantum machine learning. As

such, it doesn’t include as many tools for quantum optimization algorithms — such as

QAOA — as Qiskit does. However, it does provide some interesting features such as

automatic differentiation — that is, analytical computation of gradients — that may make it

an appealing alternative to Qiskit in some circumstances.

Let’s begin by explaining how to declare and work with Hamiltonians in PennyLane.

For that, we will use the Hamiltonian class. It provides a constructor that accepts a

list of coefficients and a list of products of Pauli matrices. For instance, if you want

to define 2𝑍0𝑍1 − 𝑍0𝑍2 + 3.5𝑍1, you will pass [2,-1,3.5] as the first argument and

[PauliZ(0)@PauliZ(1),PauliZ(0)@PauliZ(2),PauliZ(1)] as the second one. As we

know from Chapter 2, The Tools of the Trade in Quantum Computing, PauliZ is the 𝑍

matrix in PennyLane. We are also using the @ operator, which is PennyLane’s symbol for

the tensor product operation. Putting it all together, we get the following instructions:

import pennylane as qml

from pennylane import PauliZ

coefficients = [2,-1,3.5]

paulis = [PauliZ(0)@PauliZ(1),PauliZ(0)@PauliZ(2),PauliZ(1)]

204 Chapter 5: QAOA: Quantum Approximate Optimization Algorithm

H = qml.Hamiltonian(coefficients,paulis)

print(H)

The output when we execute that code will be the following:

(3.5) [Z1]

+ (-1) [Z0 Z2]

+ (2) [Z0 Z1]

As you can see, we have constructed exactly the Hamiltonian that we wanted. We can

also obtain its matrix by using print(qml.matrix(H)), which would give us the following

output:

[[4.5+0.j 0. +0.j 0. +0.j 0. +0.j 0. +0.j 0. +0.j 0. +0.j 0. +0.j]

[0. +0.j 6.5+0.j 0. +0.j 0. +0.j 0. +0.j 0. +0.j 0. +0.j 0. +0.j]

[0. +0.j 0. +0.j -6.5+0.j 0. +0.j 0. +0.j 0. +0.j 0. +0.j 0. +0.j]

[0. +0.j 0. +0.j 0. +0.j -4.5+0.j 0. +0.j 0. +0.j 0. +0.j 0. +0.j]

[0. +0.j 0. +0.j 0. +0.j 0. +0.j 2.5+0.j 0. +0.j 0. +0.j 0. +0.j]

[0. +0.j 0. +0.j 0. +0.j 0. +0.j 0. +0.j 0.5+0.j 0. +0.j 0. +0.j]

[0. +0.j 0. +0.j 0. +0.j 0. +0.j 0. +0.j 0. +0.j -0.5+0.j 0. +0.j]

[0. +0.j 0. +0.j 0. +0.j 0. +0.j 0. +0.j 0. +0.j 0. +0.j -2.5+0.j]]

As expected, this is a diagonal matrix. We can visualize it in a more compact way by

executing the following instructions, which will give us only the non-zero elements:

from pennylane.utils import sparse_hamiltonian

print(sparse_hamiltonian(H))

The result will be the following:

(0, 0) (4.5+0j)

(1, 1) (6.5+0j)

Using QAOA with PennyLane 205

(2, 2) (-6.5+0j)

(3, 3) (-4.5+0j)

(4, 4) (2.5+0j)

(5, 5) (0.5+0j)

(6, 6) (-0.5+0j)

(7, 7) (-2.5+0j)

You can also define Hamiltonians in a more compact manner by specifying them in a

mathematical expression like the following one:

H = 2*PauliZ(0)@PauliZ(1) - PauliZ(0)@PauliZ(2) +3.5*PauliZ(1)

If you print H, you will find that this definition is equivalent to the one that was introduced

previously.

Exercise 5.7

Use PennyLane to define the −3𝑍0𝑍1𝑍2 + 2𝑍1𝑍2 − 𝑍2 Hamiltonian in two different

ways.

Now that we know how to define Hamiltonians, we can use them to create QAOA circuits

with PennyLane. To this end, we will import the qaoa module, which will give us access

to the cost_layer and mixer_layer functions. We will need a cost Hamiltonian — the

one that encodes our optimization problem — to use with cost_layer and we will use

∑𝑗 𝑋𝑗 with mixer_layer (in the QAOA literature, our 𝐻0 Hamiltonian is sometimes called

the mixer Hamiltonian, hence the name of the function). With them, we can create

a function that constructs the QAOA circuit and that computes the energy of the state

prepared by the circuit with respect to 𝐻1. This latter part is very easy to accomplish with

PennyLane, because it provides the expval function, which computes exactly that, and it

can be used instead of the types of measurements that we introduced in Section 2.3.1.

We can, thus, define a function that computes the energy of parameters with the following

piece of code:

206 Chapter 5: QAOA: Quantum Approximate Optimization Algorithm

from pennylane import qaoa

H0 = qml.PauliX(0) + qml.PauliX(1)

H1 = 1.0*qml.PauliZ(0) @ qml.PauliZ(1)

wires = range(2)

dev = qml.device("default.qubit", wires=wires)

p = 2

@qml.qnode(dev)

def energy(angles):

for w in wires:

qml.Hadamard(wires=w)

for i in range(p):

qaoa.cost_layer(angles[2*i+1], H1)

qaoa.mixer_layer(angles[2*i], H0)

return qml.expval(H1)

There are several details that we need to explain here. First, we are working with a

simple problem in which we want to find the ground state of 𝑍0𝑍1. We have defined our 𝐻0

Hamiltonian as𝑋0+𝑋1 with H0 = qml.PauliX(0) + qml.PauliX(1). For𝐻1, we have used

1.0*qml.PauliZ(0) @ qml.PauliZ(1) instead of just qml.PauliZ(0) @ qml.PauliZ(1).

If you do not include the 1.0 coefficient, the tensor product will not be converted to a

Hamiltonian object, so you should be careful with that. Another important detail is that

the energy function only receives as parameters the angles for the rotations in the QAOA

circuit and we have declared p as a global variable. This is because we later want to optimize

energy with respect to its parameters, and p is not something that we want to optimize,

but a fixed value — in this case, we are setting it to 2.

Using QAOA with PennyLane 207

Finally, notice that the exponentials for 𝐻1 and 𝐻0 receive their parameters from the angles

list alternating between 𝐻0 and 𝐻1: first for the 𝐻0 exponential (which is implemented by

mixer_layer), then for the 𝐻1 exponential (implemented by cost_layer), then again for

the 𝐻0 exponential, and so on. In the notation that we have been using throughout this

chapter, if angles is [1.0,2.0.3.0,4.0], then we would have 𝛽1 = 1, 𝛾1 = 2, 𝛽2 = 3, and

𝛾2 = 4. Now we are ready to run the optimization process. To do that, we can use the

following code:

from pennylane import numpy as np

optimizer = qml.GradientDescentOptimizer()

steps = 20

angles = np.array([1,1,1,1], requires_grad=True)

for i in range(steps):

angles = optimizer.step(energy, angles)

print("Optimal angles", angles)

We are using GradientDescentOptimizer as the classical minimizer. It uses the famous

gradient descent algorithm — we will study this method in detail in Part 3 of the book — by

taking advantage of the fact that PennyLane implements automatic differentiation to com-

pute all the required derivatives. That is why we use requires_grad=True when defining

the initial angles, to inform PennyLane that these are parameters for which we will need

to compute gradients. We run the process for 10 steps and. . . voilá! We obtain some (close

to) optimal parameters. In this case, [0.78178403 0.7203965 1.17250771 1.27995423]

was the answer found by the optimizer. The angles and energy that you find can be highly

dependent on the initial parameters, so it is advisable to run your code with several different

choices of initial angles.

208 Chapter 5: QAOA: Quantum Approximate Optimization Algorithm

In any case, we can now sample from the QAOA circuit with the parameters that we have

found in order to obtain candidate solutions to our problem. We just need to modify slightly

the energy function that we defined previously. We can do it, for instance, as follows:

@qml.qnode(dev)

def sample_solutions(angles):

for w in wires:

qml.Hadamard(wires=w)

for i in range(p):

qaoa.cost_layer(angles[2*i+1], H1)

qaoa.mixer_layer(angles[2*i], H0)

return qml.sample()

print(sample_solutions(angles, shots = 5))

The output when you run these instructions will be something like the following:

[[0 1]

[0 1]

[0 1]

[1 0]

[0 1]]

The five samples are, indeed, ground states of 𝑍0𝑍1. Once more, we have been able to use

QAOA to solve the problem, this time with PennyLane!

You surely have noticed that we have run our code on the default.qubit device, which is

a simulator. Of course, you can replace it with a quantum device, as we learned to do in

Section 2.3.2. However, this will mean that you will have to wait on the quantum computer

execution queue every time the optimizer needs to evaluate the energy of some parameters.

Unfortunately, at the time of writing, PennyLane does not yet include an option to run

QAOA programs using Qiskit Runtime. However, do not despair! As we will learn in

Chapter 7, VQE: Variational Quantum Solver, there is a PennyLane implementation of

Using QAOA with PennyLane 209

Runtime programs for some other algorithms. Hopefully, QAOA will receive the same

treatment soon.

With this, we have now concluded our study of QAOA. In the next chapter, we will study a

different method for finding solutions to optimization problems, and it will be based on

one of the most famous of all quantum algorithms ever: Grover’s algorithm.

Summary
In this chapter, you have learned about QAOA, one of the most popular quantum algorithms

used to solve optimization problems with gate-based quantum computers. You now know

that QAOA is derived as a discretization of quantum annealing and that it is implemented

as a hybrid method that uses both a classical and a quantum computer to achieve its goal.

You also understand how to construct circuits for all the operations needed in the quantum

part of the algorithm. In particular, you know how to use these circuits to estimate

expectation values in an efficient way.

You have also mastered the tools that Qiskit provides in order to implement QAOA instances

and to run them on both quantum simulators and quantum computers. You even know

how to accelerate the process of running your code on quantum devices by using Qiskit

Runtime. And, should you need to use QAOA with PennyLane, you also know how to

do it with the help of some predefined utilities and PennyLane capabilities for automatic

differentiation. This gives you the flexibility to solve optimization problems with QAOA in

a number of different ways, depending on your needs and on the resources at your disposal.

Our next stop will be Grover’s Adaptive Search, also known as GAS, a quite different

quantum method that you can use to solve optimization problems, which we’ll cover in the

next chapter.

6
GAS: Grover Adaptive Search

If you do not expect the unexpected, you will not find it, for it is not to be reached by
search or trail.

— Heraclitus

In this chapter, we are going to introduce another quantum method for solving combi-

natorial optimization problems. In this case, we are going to take Grover’s algorithm —

one of the most famous and celebrated quantum methods out there — as a starting point.

Grover’s algorithm is used to find elements that satisfy specific conditions in unsorted data

structures. But, as we will soon see, it can be easily adapted to function minimization tasks

— exactly what we need for our optimization problems! The resulting method is sometimes

called Grover Adaptive Search or GAS.

It is important to note that GAS is essentially different from the kind of quantum algo-

rithms that we have been studying so far in this part of the book. This method is not

designed specifically for NISQ devices and would need fault-tolerant quantum computers

to fully realize its potential. However, we have still decided to cover it because it is readily

212 Chapter 6: GAS: Grover Adaptive Search

implemented in some quantum programming libraries — such as Qiskit — and it can be

helpful in comparing and benchmarking other quantum optimization algorithms.

We will start the chapter by refreshing some details about Grover’s algorithm, including

the circuits that we need in order to implement it and the role that oracles play in it. Then,

we will talk about the Dürr-Høyer method, which uses Grover’s techniques to find the

minimum of certain types of functions. After that, we will particularize the algorithm to

QUBO problems and we will study how to implement the kind of oracle that they require.

With all those tools, we will have everything that we need in order to formulate and

solve optimization problems with GAS, so we will turn to explain how to use Qiskit’s

implementation of the algorithm. We will study the different options that are available to

run the method and we will test it on several different examples.

After reading this chapter, you will understand the theoretical foundations of Grover Adap-

tive Search, you will know how to implement efficient oracles for optimization problems

and how to use them with GAS, and you will be able to run Qiskit’s implementation of the

algorithm to solve your own optimization problems.

The topics covered in this chapter are as follows:

• Grover’s algorithm

• Quantum oracles for combinatorial optimization

• Using GAS with Qiskit

6.1 Grover’s algorithm
In this section, we will cover the most important properties of Grover’s algorithm. We will

not cover all the theoretical details behind the procedure — for that, we recommend the

book by Nielsen and Chuang [16] and, especially, the lecture notes by John Watrous [46] —

but we need to at least get familiar with how the method operates, what oracles are and

how they are used in the algorithm, and what kind of circuits are needed to implement it.

Let’s start with the basics. Grover’s algorithm is used for searching elements that satisfy

certain conditions. More formally, the algorithm assumes that we have a collection of

Grover’s algorithm 213

elements indexed by strings of 𝑛 bits, and a Boolean function 𝑓 that takes those binary

strings and returns “true” (or 1) if the element indexed by the string satisfies the condition

and “false” (or 0) otherwise. For instance, imagine that we are searching among 8 different

elements and that the ones that satisfy the condition are indexed by the strings 010 and

100. Then, 𝑓 will be the Boolean function such that 𝑓 (𝑥) = 1 if 𝑥 = 010 or 𝑥 = 100, and

𝑓 (𝑥) = 0 otherwise. To simplify the notation, from now on we will identify an element

with the string 𝑥 that is used to index it.

It is important to notice that, in this setting, we have no access to the inner workings of

𝑓 . It acts like a black box. The only thing that we can do with the 𝑓 function is call it

on inputs and observe the outputs, thus checking whether the given input satisfies the

condition that we are considering or not. Since we do not have any information about the

indices of the elements that satisfy the condition, we cannot favour any position over any

other. Thus, with a classical algorithm, if we are searching among 𝑁 elements and only

one of them satisfies the condition we are interested in, we will need to call 𝑓 about 𝑁/2

times on average in order to find it. The element could be just anywhere! In fact, if we are

extremely unlucky, we might need to use 𝑁 − 1 calls (notice that we wouldn’t need 𝑁 calls:

if we don’t find the element after 𝑁 − 1 different calls, we already know the remaining

position to be the one where the element is located).

It may come as a big surprise, then, that with Grover’s algorithm it is possible to find the

hidden element with high probability (much more on this later in this section) by calling 𝑓

around

√
𝑁 times! This means that if we are searching among 1 000 000 elements, with a

classical computer you would need to check 𝑓 about 500 000 times on average, but calling 𝑓

less than 1000 times would suffice in order to solve the problem with a quantum computer,

at least with a high likelihood. What is more, the difference in the number of calls between

the classical and the quantum methods grows bigger if 𝑁 is higher.

How is this possible? It seems to defy all logic, but it rests on properties that we are already

familiar with, such as superposition and entanglement. In fact, Grover’s algorithm will

query 𝑓 with elements that are in superposition. But in order to understand this, we need

to explore what quantum oracles are and how they can be used, so let’s get to it!

214 Chapter 6: GAS: Grover Adaptive Search

6.1.1 Quantum oracles
We have mentioned that, in the setting of the search problem solved by Grover’s algorithm,

we are given a Boolean function 𝑓 that we can use to determine whether an element is the

one we are looking for or not. But what do we mean when we say that we are “given” this

function?

In the classical case, this is more or less straightforward. If we were writing our code in

Python, we could be given a function object that receives an 𝑛-bit string and returns True

or False. Then, we could use that function in our own code to check the elements that we

want to consider, without necessarily knowing how it is implemented.

But. . . what is the equivalent to that function definition when we are working with quantum

circuits? The most natural assumption is that we are provided with a new quantum gate

𝑂𝑓 that implements 𝑓 and that we can use in our circuits whenever we need it. However, a

quantum gate needs to be a unitary operation and, in particular, reversible, so we need to

be a little bit careful in how we design it.

In the classical case, we had 𝑛 inputs — the 𝑛 bits of the string — and just one output. In the

quantum case, we need at least 𝑛 inputs — 𝑛 qubits — but just one output would not work,

because then it would be impossible to make the operation reversible, let alone unitary.

In fact, as you surely remember, every quantum gate has the same number of inputs and

outputs.

The usual approach, then, is to consider a quantum gate on 𝑛+1 qubits. The first 𝑛 of these

qubits will serve as the input and the additional one will be used to store the output. More

formally, on any input |𝑥⟩ |𝑦⟩, where 𝑥 is an 𝑛-bit string and 𝑦 is a single bit, the output

of the 𝑂𝑓 gate will be |𝑥⟩ |𝑦 ⊕ 𝑓 (𝑥)⟩, where ⊕ denotes addition modulo 2 (see Appendix B,

Basic Linear Algebra, for a refresher on modular arithmetic). This defines the action of the

gate on the computational basis states and then we can extend it to the rest of the quantum

states by linearity, as usual.

This may look like an odd choice. The “natural” thing to do might seem to be requiring the

output to be |𝑥⟩ |𝑓 (𝑥)⟩, right? But that would not be reversible in general, because we would

Grover’s algorithm 215

obtain the same output over the inputs |𝑥⟩ |0⟩ and |𝑥⟩ |1⟩. With our choice, though, the

operation is reversible. If we applied𝑂𝑓 twice, we would obtain |𝑥⟩ |𝑦 ⊕ 𝑓 (𝑥) ⊕ 𝑓 (𝑥)⟩, which

is equal to |𝑥⟩ |𝑦⟩ because, when we are performing addition modulo 2, 𝑓 (𝑥)⊕ 𝑓 (𝑥) = 0 no

matter the value of 𝑓 (𝑥).

Exercise 6.1

Prove that 𝑂𝑓 is not only reversible but also unitary and hence it deserves the name

“quantum gate.”

Usually, 𝑂𝑓 is said to be a quantum oracle for 𝑓 , because we can consult it to get the value of

𝑓 on any input 𝑥 without having to worry about its internal workings. In fact, if the input

to 𝑂𝑓 is |𝑥⟩ |0⟩, then the output is |𝑥⟩ |0 ⊕ 𝑓 (𝑥)⟩ = |𝑥⟩ |𝑓 (𝑥)⟩ and we could hence recover

𝑓 (𝑥) just by measuring the last qubit.

For any 𝑓 , it is always possible to construct 𝑂𝑓 by using just NOT and multi-controlled

NOT gates — even if the resulting circuit is not the most efficient one in most cases. For

instance, if 𝑓 is a Boolean function on 3-bit strings such that 𝑓 takes value 1 just on 101

and 011, then we can use the circuit depicted in Figure 6.1. Notice how we have used NOT

gates before and after the multi-controlled gates to select those qubits that should be 0 in

the input and to restore them to their original values.

𝑋 𝑋

𝑋 𝑋

Figure 6.1: Oracle for the Boolean function 𝑓 that takes value 1 on 101 and 011, and value 0
on the rest of the 3-bit strings

216 Chapter 6: GAS: Grover Adaptive Search

Exercise 6.2

Construct a circuit for 𝑂𝑓 where 𝑓 is a 4-bit Boolean function that takes value 1 on

0111, 1110, and 0101, and value 0 on any other input.

This settles how we are going to receive the Boolean function 𝑓 that we can use to check

whether a given element satisfies the conditions that we are interested in: the function will

be given to us as a quantum oracle. Now it’s time for us to show how we can use these

quantum oracles in Grover’s algorithm.

6.1.2 Grover’s circuits
Let’s say that we want to apply Grover’s algorithm to a Boolean function 𝑓 which receives

binary strings of length 𝑛. In addition to the 𝑂𝑓 oracle described in the previous section, the

circuit used in Grover’s algorithm involves two other blocks, as you can see in Figure 6.2.

…

…

…

…

|0⟩ 𝐻

𝑂𝑓

𝐻 𝑋 𝑋 𝐻

|0⟩ 𝐻 𝐻 𝑋 𝑋 𝐻

|0⟩ 𝐻 𝐻 𝑋 𝑍 𝑋 𝐻

|0⟩ 𝑋 𝐻

Grover’s diffusion operator

Figure 6.2: Circuit for Grover’s algorithm in the case in which 𝑓 receives strings of length 3 as
input. The oracle 𝑂𝑓 and Grover’s diffusion operator are repeated, in that order, a number of
times before the final measurements

The first block is composed of one-qubit gates that are applied to the initial state |0⋯ 0⟩ |0⟩,

where the first register is of length 𝑛 and the second one is of length 1. Thus, the state just

Grover’s algorithm 217

before applying the oracle is

𝐻⊗𝑛+1 |0⟩⊗𝑛 |1⟩ = |+⟩⊗𝑛 |−⟩ =
1√
2𝑛

((|0⟩ + |1⟩)⋯ (|0⟩ + |1⟩)) |−⟩ =
1√
2𝑛

2𝑛−1
∑
𝑥=0

|𝑥⟩ |−⟩ ,

because we apply the first 𝑋 gate to |0⟩ to obtain |1⟩.

Notice that the first register of this state is a superposition of all basis states |𝑥⟩. This is

exactly what we will use in order to evaluate 𝑓 “in superposition” with our application

of the 𝑂𝑓 oracle. Indeed, by the definition of 𝑂𝑓 , the state that we will have after the

application of the oracle is

𝑂𝑓 (
1√
2𝑛

2𝑛−1
∑
𝑥=0

|𝑥⟩ |−⟩
)

= 𝑂𝑓 (
1√
2𝑛+1

2𝑛−1
∑
𝑥=0

|𝑥⟩ (|0⟩ − |1⟩)
)

=

1√
2𝑛+1

2𝑛−1
∑
𝑥=0

𝑂𝑓 |𝑥⟩ (|0⟩ − |1⟩) =
1√
2𝑛+1

2𝑛−1
∑
𝑥=0

|𝑥⟩ (|0 ⊕ 𝑓 (𝑥)⟩ − |1 ⊕ 𝑓 (𝑥)⟩),

where in the last two equalities he have used linearity together with the definition of 𝑂𝑓 .

Let’s focus on the |0 ⊕ 𝑓 (𝑥)⟩− |1 ⊕ 𝑓 (𝑥)⟩ term. If 𝑓 (𝑥) = 0, then it is just |0⟩− |1⟩. However,

if 𝑓 (𝑥) = 1, we have

|0 ⊕ 𝑓 (𝑥)⟩ − |1 ⊕ 𝑓 (𝑥)⟩ = |0 ⊕ 1⟩ − |1 ⊕ 1⟩ = |1⟩ − |0⟩ = −(|0⟩ − |1⟩),

because 1 ⊕ 1 = 0. In both cases, we can write

|0 ⊕ 𝑓 (𝑥)⟩ − |1 ⊕ 𝑓 (𝑥)⟩ = (−1)𝑓 (𝑥)(|0⟩ − |1⟩),

because (−1)0 = 1 and (−1)1 = −1.

Note how, thanks to these transformations, there is information about the value 𝑓 (𝑥) coded

into the amplitude of the state now. As you will soon see, this is a key ingredient of the

algorithm.

218 Chapter 6: GAS: Grover Adaptive Search

If we take this to our expression for the state after the oracle application, we get

𝑂𝑓 (
1√
2𝑛

2𝑛−1
∑
𝑥=0

|𝑥⟩ |−⟩
)

=
1√
2𝑛+1

2𝑛−1
∑
𝑥=0

|𝑥⟩ (|0 ⊕ 𝑓 (𝑥)⟩ − |1 ⊕ 𝑓 (𝑥)⟩) =

1√
2𝑛+1

2𝑛−1
∑
𝑥=0

(−1)𝑓 (𝑥) |𝑥⟩ (|0⟩ − |1⟩) =
1√
2𝑛

2𝑛−1
∑
𝑥=0

(−1)𝑓 (𝑥) |𝑥⟩
1√
2
(|0⟩ − |1⟩) =

1√
2𝑛

2𝑛−1
∑
𝑥=0

(−1)𝑓 (𝑥) |𝑥⟩ |−⟩ .

Notice how the application of 𝑂𝑓 has introduced a relative phase in some of the states |𝑥⟩

of the superposition. This technique is called phase kickback, because we have only used

the register in state |−⟩ to create the phase but it ends up affecting the whole state. It is used

in other famous quantum methods such as the Deutsch-Jozsa and Simon’s algorithms (see

the book by Yanofsky and Mannucci [47] for an excellent explanation of these methods).

As we have proved, the phase that goes with the basis state |𝑥⟩ depends only on 𝑓 (𝑥) and

it is 1 if 𝑓 (𝑥) = 0 and −1 if 𝑓 (𝑥) = 1. In this way, we say that we have marked those

elements that satisfy the conditions that we are interested in, that is, those elements 𝑥

such that 𝑓 (𝑥) = 1. Remarkably, we have done this with just one call to 𝑂𝑓 , exploiting the

possibility of evaluating it in superposition. That is an exponential number of function

evaluations with just one call! It sounds like magic, doesn’t it?

However, although after applying 𝑂𝑓 we have somehow separated the elements 𝑥 that

satisfy 𝑓 (𝑥) = 1 from the rest, we do not seem to be closer to finding one of them. If we

measure the state as it is, the probability of measuring an 𝑥 such that 𝑓 (𝑥) = 1 is the same

as it was before applying 𝑂𝑓 . The phase that we have introduced has an absolute value

equal to 1 and, consequently, does not affect the measurement probability.

But, wait! There is more to Grover’s algorithm. There is another circuit block that we

apply after 𝑂𝑓 : it’s called Grover’s diffusion operator and we will use it to increase the

probability of measuring the marked states. Describing its inner workings in full detail

would take us astray from our path — for that, we recommend checking out Dancing with

Grover’s algorithm 219

Qubits [7], by Robert Sutor, which offers a perfect explanation of its behaviour — but let’s

at least give a quick overview of what it does.

Grover’s diffusion operator implements an operation called inversion about the mean.

This may sound complicated, but in fact it is quite simple. First, the average value 𝑚 of

all the amplitudes of the states is computed. Then, every amplitude 𝑎 is replaced with

2𝑚 − 𝑎. After this transformation, the positive amplitudes will be a little bit smaller, but

the negative ones will be a little bit bigger. This is why the technique used by Grover’s

algorithm is called amplitude amplification. Again, we recommend you checking Sutor’s

book [7] for a detailed description of how this operation works.

So, after this first application of Grover’s diffusion operator, the amplitudes of the elements

that we are interested in finding are a little bit larger. But, in general, this will still not be

enough to guarantee a high probability of measuring one of them. For this reason, we will

need to mark the elements again with 𝑂𝑓 and then apply the diffusion operator once more.

We will repeat this procedure, applying first 𝑂𝑓 and then the diffusion operator, several

times until the probability of measuring one of the states we are looking for is high enough

(close to 1). And that is the moment when we can measure the whole state and observe the

result to, hopefully, obtain one element that satisfies the conditions.

But how many times should we apply 𝑂𝑓 followed by the diffusion operator? This is a

crucial point in Grover’s algorithm that we will study in more detail in the next subsection.

6.1.3 Probability of finding a marked element
As we have just seen, when using Grover’s algorithm, we are repeatedly applying for a

certain number of times the quantum oracle given to us followed by the diffusion operator.

Of course, we would like the number of repetitions to be as small as possible — so that the

algorithm runs faster — while guaranteeing a high probability of finding one of the marked

elements. How can we go about this?

One possible approach in order to analyze the behaviour of Grover’s algorithm could be

studying the properties of the inversion about the mean operation that we mentioned in

220 Chapter 6: GAS: Grover Adaptive Search

the previous subsection. However, there is a better way. It turns out that the combination

of 𝑂𝑓 and Grover’s diffusion operator acts like a rotation in a two-dimensional space. We

will not give the full details — check the lecture notes by John Watrous [46] for a very

thorough and readable explanation — but, if we have 𝑛-bit strings and there is only one

marked element 𝑥1, it can be proved that the state that we reach after 𝑚 applications of 𝑂𝑓
followed by the diffusion operator is

cos (2𝑚 + 1)𝜃 |𝑥0⟩ + sin (2𝑚 + 1)𝜃 |𝑥1⟩ ,

where

|𝑥0⟩ = ∑
𝑥∈{0,1}𝑛,𝑥≠𝑥1

√
1

2𝑛 − 1
|𝑥⟩

and 𝜃 ∈ (0, 𝜋/2) is such that

cos 𝜃 =
√
2𝑛 − 1
2𝑛

, sin 𝜃 =
√

1
2𝑛
.

Notice that |𝑥0⟩ is just the uniform superposition of the states |𝑥⟩ such that 𝑓 (𝑥) = 0. Then,

what we want to obtain is a state in which sin (2𝑚 + 1)𝜃 is close to 1, because then we

would have a high probability of finding 𝑥1 when we measure. For that, ideally, we would

like to have

(2𝑚 + 1)𝜃 ≈
𝜋
2
,

because sin𝜋/2 = 1.

Solving for 𝑚, we obtain

𝑚 ≈
𝜋
4𝜃

−
1
2
.

What is more, we know that sin 𝜃 =
√
1/2𝑛, so, for a big enough 𝑛, we will have

𝜃 ≈
√

1
2𝑛

Grover’s algorithm 221

and then we can choose

𝑚 = ⌊
𝜋
4
√
2𝑛⌋ ,

that is, the biggest integer that is less than or equal to (𝜋/4)
√
2𝑛.

Notice that there are exactly 2𝑛 elements but only one of them satisfies the conditions we

are interested in. This means that, with a classical algorithm, if we can only use 𝑓 to check

if an element 𝑥 is the one we are looking for — that is, to check if 𝑓 (𝑥) = 1 — then we

would need about 2𝑛/2 calls to 𝑓 on average to find 𝑥 . However, with Grover’s algorithm,

we only need about

√
2𝑛. That is a quadratic speedup!

Nevertheless, there is a subtlety here. In the classical setting, if we use 𝑓 more times, the

probability of finding the marked element increases. But with Grover’s algorithm, if 𝑚 is

not selected wisely, we can overshoot and actually decrease the success probability instead

of increasing it!

This sounds baffling. How is it possible that by searching more we find ourselves with

less possibilities of finding the hidden element? The key is that, as we have shown, the

probability of measuring 𝑥1 is (sin (2𝑚 + 1)𝜃)2. This function is periodic and oscillates

between 0 and 1, so after reaching values close to 1, it goes back down to 0.

Let’s illustrate this with an example. In Figure 6.3, we consider the case 𝑛 = 4 and we

show how the probability of finding exactly one marked element changes as we vary the

number of Grover iterations 𝑚, from 0 to 20. In this case, ⌊(𝜋/4)
√
2𝑛⌋ is 3 and, as you can

see, the success probability with 𝑚 = 3 is close to 1. However, for 𝑚 = 5 the probability

has decreased dramatically, and for 𝑚 = 6 it is nearly 0.

This shows that we need to be very careful when selecting the number of iterations 𝑚

in Grover’s algorithm. For the case in which there is only one marked element, we have

obtained a good choice for 𝑚. But what if there is more than one marked element? It turns

out — check the lecture notes by John Watrous [46] — that if there are 𝑘 marked elements,

222 Chapter 6: GAS: Grover Adaptive Search

Figure 6.3: Probability of finding one marked element among 16 when using Grover’s algorithm
with a number of iterations that varies from 0 to 20

we can repeat our previous reasoning and show that a good value for 𝑚 is

𝑚 =
⌊
𝜋
4

√
2𝑛

𝑘 ⌋
,

provided that 𝑘 is small compared to 2𝑛. If 𝑘 is not small compared to 2𝑛, don’t worry; then

the probability of finding a marked element just by choosing at random is 𝑘/2𝑛, which will

be sizeable, so you wouldn’t even need a quantum computer in the first place.

This solves our problem if we know how many marked elements there are. But, in the

most general case, we may lack that information. In that circumstance, we can apply the

results of a very useful paper by Boyer, Brassard, Høyer, and Tapp [48]. They showed that

by choosing 𝑚 at random in a range that increases dynamically, we can still be guaranteed

that will find a marked element with high probability while keeping the average number

of iterations as 𝑂(
√
2𝑛) (see Appendix C, Computational Complexity, for a refresher on

asymptotic notation).

Grover’s algorithm 223

In fact, they proved that the probability of finding a marked element with their method is

at least 1/4. This might seem unimpressive, but we can easily see how that is more than

enough. Indeed, the probability of not finding a marked element is then no more than

3/4. So, suppose that we repeat the process 1000 times. Then, the probability of failure is

at most (3/4)1000, which is extremely low. In fact, the chance of a meteorite hitting your

quantum computer while running your circuits is much, much bigger than that!

So far in this section, we have covered all that we need to know in order to apply Grover’s

algorithm in search problems. However, our main goal is solving optimization problems.

We explore the connection between both tasks in the next subsection.

6.1.4 Finding minima with Grover’s algorithm
Optimization problems are obviously related to search problems. In fact, when solving an

optimization problem, we are trying to find a value with a special property: it should be

a minimum or maximum among all the possible values. This connection was exploited

by Dürr and Høyer in a 1996 paper [49] in which they introduced a quantum algorithm,

based on Grover’s search, to find minima of functions. The main idea behind the algorithm

is quite straightforward. Suppose we want to find a minimum of a function 𝑔 that is

computed over binary strings of length 𝑛. We select one such string 𝑥0 at random and we

compute 𝑔(𝑥0). Now we apply Grover’s algorithm with an oracle that, on input 𝑥 , returns

1 if 𝑔(𝑥) < 𝑔(𝑥0) and 0 otherwise. If the element that we measure after applying Grover’s

search, call it 𝑥1, really achieves a value that is lower than 𝑔(𝑥0), we replace 𝑥0 with it and

repeat the process but now with an oracle that checks the condition 𝑔(𝑥) < 𝑔(𝑥1). If not,

we keep using 𝑥0. We repeat this process several times and we return the element with the

lowest value among the ones that we have considered.

There are a couple of details that we need to flesh out here. The first one is how to construct

the oracles. In general, of course, it will depend on the function 𝑔 . For that reason, in the

next section we will focus on circuits that we can use with the Dürr-Høyer algorithm to

solve QUBO and HOBO problems.

224 Chapter 6: GAS: Grover Adaptive Search

On the other hand, we should take care of the number of iterations that we will use in

each application of Grover’s algorithm and, also, of the number of times that we need

to repeat the procedure for selecting a new element and constructing a new oracle. The

original paper by Dürr and Høyer gives all the details, but let’s just mention that it uses

the method proposed by Boyer, Brassard, Høyer, and Tapp [48] that we explained in the

previous subsection, and it guarantees that a minimum will be found with a probability of

at least 1/2 with a number of calls to the oracle that is 𝑂(
√
2𝑛).

With this, we have now covered all the concepts that we need in order to apply this search

method to solve QUBO and HOBO problems. We will devote the next section to explaining

how to construct quantum oracles for these kinds of problems.

6.2 Quantum oracles for combinatorial
optimization

As we have seen, the Dürr-Høyer algorithm can be used to find the minimum of a function

𝑔 with high probability and with a quadratic speedup over brute force search. However,

in order to use it, we need a quantum oracle that, given binary strings 𝑥 and 𝑦, checks

whether 𝑔(𝑥) < 𝑔(𝑦).

In our case, we are interested in functions 𝑔 that can appear in QUBO and HOBO problems.

This means that 𝑔 will be a polynomial with real coefficients and binary variables, and we

could implement the quantum oracle with a straightforward approach: design a classical

circuit for it using AND, OR, and NOT gates, and then simulate the classical gates with the

Toffoli quantum gate, as we showed in Section 1.5.2.

However, in 2021, Gilliam, Woerner, and Gonciulea, introduced an improved way of

implementing quantum oracles for QUBO and HOBO problems in a paper titled Grover

adaptive search for constrained polynomial binary optimization [50].

In this section, we will study in detail the techniques that they proposed and how to use

them to implement our quantum oracles. We will start by considering the case in which all

the coefficients of the polynomial are integer numbers and, then, we will extend our study

Quantum oracles for combinatorial optimization 225

to the most general case when the coefficients are real numbers. But, before we get to that,

we need to take a brief detour to talk about one of the most important subroutines in all of

quantum computing: the quantum Fourier transform.

6.2.1 The quantum Fourier transform
The quantum Fourier transform (usually abbreviated as QFT) is, beyond any doubt, one of

the most useful tools in quantum computing. It is an essential part of Shor’s algorithm for

integer factorization [6] and it is behind the speedups of other famous quantum algorithms

such as HHL [14].

We will use the QFT to help us implement the arithmetical operations that we need to

compute the values of the polynomial function of our QUBO and HOBO problems. We

could, for instance, implement these operations in a basis representation. As an example,

we might design a unitary transformation taking |𝑥⟩ |𝑦⟩ |0⟩ to |𝑥⟩ |𝑦⟩ |𝑥 + 𝑦⟩, where 𝑥 and 𝑦

are binary numbers and 𝑥 + 𝑦 is their addition. However, this could involve a big number

of one- and two-qubit gates.

Instead, we will use the approach proposed by Gilliam, Woerner, and Gonciulea in [50] and

we will compute the arithmetical operations using the state amplitudes. We will explain in

detail how to do that in the next subsections. But, before that, we will study how to use

the QFT to recover information from the amplitudes of a quantum state.

The QFT on 𝑚 qubits is defined as the unitary transformation that takes the basis states |𝑗⟩

to

1√
2𝑚

2𝑚−1
∑
𝑘=0

𝑒
2𝜋𝑖𝑗𝑘
2𝑚 |𝑘⟩ ,

where 𝑖 is the imaginary unit. Its action is extended to the rest of the states by linearity.

We will not study the properties of the QFT in detail. For that, you can refer to Dancing with

Qubits, by Robert Sutor [7]. However, we need to know that the QFT can be implemented

with a number of one- and two-qubit gates that is quadratic in 𝑚. This is an exponential

speedup over the best algorithm that we have for the analogous classical operation (the

discrete Fourier transform).

226 Chapter 6: GAS: Grover Adaptive Search

For example, the circuit for the QFT on three qubits is shown in Figure 6.4. In it, the rightmost

gate, which acts on the top and bottom qubits, is the SWAP gate. As we mentioned in

Section 1.4.3, this gate swaps the states of two qubits and it can be implemented by means

of CNOT gates. Moreover, this QFT circuit uses the phase gate, denoted by 𝑃(𝜃). This is a

parametrized gate that depends on an angle 𝜃 and whose coordinate matrix is

(
1 0

0 𝑒𝑖𝜃)
.

𝐻 𝑃(𝜋2) 𝑃(𝜋4)

𝐻 𝑃(𝜋2)

𝐻

Figure 6.4: Circuit for the quantum Fourier transform on 3 qubits

Important note

The phase gate is very similar to the 𝑅𝑍 gate that we introduced in Section 1.3.4.

In fact, when applied on its own to a qubit, 𝑃(𝜃) is equivalent to 𝑅𝑍(𝜃) up to an

unimportant global phase. However, in the QFT circuit, we are using a controlled

version of the phase gate and the global phase becomes a relative one, which is not

unimportant at all!

As we have seen, the QFT acts by introducing phases of the form 𝑒2𝜋𝑖𝑗𝑘/2𝑚 when it is

applied on basis states |𝑗⟩. Nevertheless, for the purposes of our computations, we are more

interested in recovering the values 𝑗 from those phases. For that, we will need the inverse

quantum Fourier transform, usually denoted QFT
†
. Of course, its action is the inverse

Quantum oracles for combinatorial optimization 227

of that of the QFT, meaning that it takes a state such as

1√
2𝑚

2𝑚−1
∑
𝑘=0

𝑒
2𝜋𝑖𝑗𝑘
2𝑚 |𝑘⟩

to the basis state |𝑗⟩.

The circuit for the inverse QFT can be obtained from that of the QFT by reading the circuit

backwards and using the inverse of each gate we find. For example, the circuit for the

inverse QFT on 3 qubits is shown in Figure 6.5. Notice that the inverse of 𝑃(𝜃) is 𝑃(−𝜃),

while the 𝐻 and SWAP gates are their own inverses.

𝑃(−𝜋
4) 𝑃(−𝜋

2) 𝐻

𝑃(−𝜋
2) 𝐻

𝐻

Figure 6.5: Circuit for the inverse quantum Fourier transform on 3 qubits

When designing a quantum oracle to minimize a function 𝑔 , our goal will be to perform the

computation in such a way that the 𝑔(𝑥) values appear as exponents in the amplitudes of

our states so that we can later recover them by means of the inverse QFT. This may sound

like a difficult endeavour, but as we will show in the following subsections, we already

have all the tools that we need in order to succeed. We will start by showing how to encode

integer values in exactly the way that we require.

6.2.2 Encoding and adding integer numbers
As will become apparent soon in this section, the most convenient way of working with

integer numbers in the context of GAS oracles is using their two’s complement repre-

sentation. In it, we can encode numbers from −2𝑚−1 to 2𝑚−1 − 1 by using 𝑚-bit strings.

228 Chapter 6: GAS: Grover Adaptive Search

Positive numbers are represented in the usual way for binary numbers, but a negative

number 𝑥 is represented by 2𝑚 − 𝑥 .

For instance, if 𝑚 = 4, we represent 3 by 0011, and −5 by 1011 (which is the binary

representation of 11 = 16 − 5). One advantage of this representation is that the most

significant bit indicates the sign of the encoded number: positive numbers always start

with 0, while negative numbers start with 1.

Another perk of two’s complement representation is that, with it, we can compute additions

involving both positive and negative numbers by simply performing regular binary addition

and discarding the last carry-out, if it exists. For instance, if we add 0011 (which is 3) and

1011 (which is−5), we obtain 1110which is, indeed, the encoding of−2 (because 14 = 16−2).

Similarly, if we add 0110 (which is 6) and 1100 (which is −4) we obtain 0010 (after discarding

the last carry-out), which is 2, as expected. These facts about two’s complement arithmetic

will be very helpful in implementing our quantum oracle, as we show next.

Exercise 6.3

Using two’s complement with 5 qubits, represent 10 and −7 and perform their

addition.

As we have mentioned in the previous subsection, when computing 𝑔(𝑥) with an oracle,

we are interested in obtaining the state

1√
2𝑚

2𝑚−1
∑
𝑘=0

𝑒
2𝜋𝑖𝑔(𝑥)𝑘

2𝑚 |𝑘⟩

so that we can then apply the inverse QFT to get |𝑔(𝑥)⟩. We will achieve this step by step.

Notice that 𝑔(𝑥) is always a sum of products of integer values. So, let’s first deal with

integer addition, and leave multiplication for the next subsection.

Quantum oracles for combinatorial optimization 229

Following the notation of [51], we will call the state

1√
2𝑚

2𝑚−1
∑
𝑘=0

𝑒
2𝜋𝑖𝑗𝑘
2𝑚 |𝑘⟩

the phase encoding of 𝑗 . Then, for our purposes, it is enough to be able to know how to

prepare the phase encoding of 0 and to know how to add a given integer 𝑙 to the phase

encoding of any other integer. In that way, we can start from 0 and add all the terms in the

polynomial expression of 𝑔 one by one.

Preparing the phase encoding of 0 could not be easier. We just need to apply the Hadamard

gate to each and every qubit that we are using to represent the integer values. In this way,

we will obtain the state

1√
2𝑚

2𝑚−1
∑
𝑘=0

|𝑘⟩ =
1√
2𝑚

2𝑚−1
∑
𝑘=0

𝑒
2𝜋𝑖0𝑘
2𝑚 |𝑘⟩ ,

which is, indeed, the phase encoding of 0.

Suppose now that we have a state that phase-encodes 𝑗 and we want to add 𝑙 to it. We first

assume that 𝑙 is non-negative and, later, we will deal with negative numbers. To add 𝑙 in

phase encoding, we just need to apply the gates shown in Figure 6.6.

⋮

𝑃(𝜋𝑙)

𝑃(𝜋2 𝑙)

𝑃(𝜋
2𝑚−2 𝑙)

𝑃(𝜋
2𝑚−1 𝑙)

Figure 6.6: Circuit for adding 𝑙 to a state in phase encoding when we have 𝑚 qubits

230 Chapter 6: GAS: Grover Adaptive Search

Indeed, when we apply those gates to a basis state |𝑘⟩, we obtain 𝑒2𝜋𝑖𝑘𝑙/2𝑚 |𝑘⟩. To prove it,

just notice how, if the ℎ-th qubit of |𝑘⟩ is 1, the circuit of Figure 6.6 adds a phase of value

𝑒𝜋𝑖𝑙/2ℎ = 𝑒2𝑚−ℎ𝜋𝑖𝑙/2𝑚 (we start counting qubits from 0) and no phase otherwise. When we

sum all these phases over the qubits of |𝑘⟩ that have value 1, we obtain exactly 𝑒2𝜋𝑖𝑙𝑘/2𝑚 .

Thus, by linearity, when we apply the circuit to the phase encoding of 𝑗 , we get

1√
2𝑚

2𝑚−1
∑
𝑘=0

𝑒
2𝜋𝑖𝑗𝑘
2𝑚 𝑒

2𝜋𝑖𝑙𝑘
2𝑚 |𝑘⟩ =

1√
2𝑚

2𝑚−1
∑
𝑘=0

𝑒
2𝜋𝑖(𝑗+𝑙)𝑘

2𝑚 |𝑘⟩ ,

which is the phase encoding of 𝑗 + 𝑙, as desired.

So, this works beautifully for non-negative numbers. But, what about negative ones? It

turns out that, if 𝑙 is negative, we can again use the very circuit in Figure 6.6 — no further

adjustments required. The key observation is that, for any integer 0 ≤ ℎ ≤ 𝑚 − 1, it holds

that

𝑒
𝜋𝑖(2𝑚+𝑙)

2ℎ = 𝑒
𝜋𝑖𝑙
2ℎ 𝑒

𝜋𝑖2𝑚
2ℎ = 𝑒

𝜋𝑖𝑙
2ℎ 𝑒𝜋𝑖2

𝑚−ℎ
= 𝑒

𝜋𝑖𝑙
2ℎ ,

because 𝑚 − ℎ > 0, making 2𝑚−ℎ even and implying 𝑒𝜋𝑖2𝑚−ℎ = 1.

This means that if we plug in 𝑙 or 2𝑚 + 𝑙 in the gates of Figure 6.6, we obtain exactly the

same circuit. Thus, we can work with the two’s complement representation of 𝑙 instead

of 𝑙 and the results for the addition that we proved previously for non-negative integers

will also hold for negative integers. The only concern could be that, when adding in two’s

complement a positive and a negative number, we get a carry-out (like, for instance, when

we added 6 and −4 in a previous example). However, in that case, the carry-out will give

us an even power of two and, again, the corresponding phase will be 1, leaving the result

unchanged. Effectively, we are performing arithmetic modulo 2𝑚, so we are safe. Notice,

nevertheless, that, if we add two positive or two negative integers and we get a carry-out,

then we will get a wrong result — in this case, modular arithmetic turns against us!

Quantum oracles for combinatorial optimization 231

Important note

You always need to use a number of qubits that is large enough to represent, in

two’s complement, any integer number that may arise from the computations. If

you are working with a polynomial 𝑔(𝑥), you can simply add up the absolute value

of all the coefficients in 𝑔(𝑥) to obtain a constant 𝐾 . Then, you can choose any 𝑚

such that −2𝑚−1 ≤ −𝐾 ≤ 𝐾 ≤ 2𝑚−1 − 1. If you want to be even more precise, you

can select 𝐾 as the maximum between the sum of all positive coefficients and the

sum of the absolute value of all the negative coefficients.

As an example, in Figure 6.7, we present a circuit that prepares the phase representation

of 0, adds 3 to it, and then adds −5 (or, equivalently, subtracts 5). Notice that some of the

gates could be simplified. For instance, 𝑃(3𝜋) is just 𝑃(𝜋). We could also merge consecutive

𝑃 gates into single gates by adding their angles together (for instance, 𝑃(−5𝜋2)𝑃(3
𝜋
2) =

𝑃(−2𝜋2) = 𝑃(𝜋)). For the sake of clarity, throughout this section, we will keep the gates in

their original form, without any simplification.

𝐻 𝑃(3𝜋) 𝑃(−5𝜋)

𝐻 𝑃(3𝜋2) 𝑃(−5𝜋2)

𝐻 𝑃(3𝜋4) 𝑃(−5𝜋4)

𝐻 𝑃(3𝜋8) 𝑃(−5𝜋8)

Figure 6.7: Circuit for preparing the phase representation of 0, adding 3 to it and then sub-
tracting 5

Exercise 6.4

Derive a circuit that prepares the phase representation of 0, adds 6 to it and then

subtracts 4. Use 4 qubits.

232 Chapter 6: GAS: Grover Adaptive Search

We now have the first ingredient that we need in order to compute the 𝑔(𝑥) polynomial:

adding integers in phase encoding. In the next subsection, we will learn how to deal with

the product of binary variables.

6.2.3 Computing the whole polynomial
You may be tempted to think that performing the multiplications that we need to compute

our polynomial 𝑔(𝑥) will be much harder than performing the additions. But not quite!

Let’s look into this.

All the variables that we are considering are binary, and this means that, when we perform

a multiplication such as 𝑥0𝑥1, we always obtain either 0 or 1 as a result. Thus, if 𝑔(𝑥) is, for

example, 3𝑥0𝑥1 − 2𝑥1𝑥2 + 1, we will need to add 1 always (because it is the independent

term and, as the name suggests, does not depend on the value of the variables), but we will

only need to add 3 when both 𝑥0 and 𝑥1 are 1 and we will only need to subtract 2 when

both 𝑥1 and 𝑥2 take value 1.

Does this sound familiar? Well, it should, because these computations that we have

described correspond, precisely, to the application of controlled operations. Therefore, in

order to calculate the contribution of a term such as 3𝑥0𝑥1, we can use the circuit that we

derived in the previous subsection to add 3 in phase encoding, but with each gate controlled

by both 𝑥0 and 𝑥1. Notice that there is nothing special in using just two qubits as the

controls, so we could also consider polynomials with terms such as −2𝑥0𝑥2𝑥4 or 5𝑥1𝑥2𝑥3𝑥5.

To better illuminate these techniques, in Figure 6.8, we show a circuit that computes

3𝑥0𝑥1 − 2𝑥1𝑥2 + 1. The first column of gates prepares the phase encoding of 0. The

second one adds the independent term of the polynomial. The next one adds 3, but only if

𝑥0 = 𝑥1 = 1 (that is why all the gates are controlled by the |𝑥0⟩ and |𝑥1⟩ qubits). Similarly,

the last column subtracts 2, but only when 𝑥1 = 𝑥2 = 1.

There are a couple of technical details to discuss about the circuit in Figure 6.8. First, we

have adopted the usual convention of setting all the one-qubit gates that are controlled by

the same qubits in a single column. In fact, we could consider them as a single multi-qubit

Quantum oracles for combinatorial optimization 233

|𝑥0⟩

|𝑥1⟩

|𝑥2⟩

|0⟩ 𝐻 𝑃(𝜋) 𝑃(3𝜋) 𝑃(−2𝜋)

|0⟩ 𝐻 𝑃(𝜋2) 𝑃(3𝜋2) 𝑃(−2𝜋2)

|0⟩ 𝐻 𝑃(𝜋4) 𝑃(3𝜋4) 𝑃(−2𝜋4)

Figure 6.8: Circuit for computing 3𝑥0𝑥1 − 2𝑥1𝑥2 + 1 in phase encoding

gate, but in some quantum computers you may need to separate them and apply them

in sequence (in any case, this is something that the transpiler should take care of, don’t

worry). Also, notice that these gates are multi-controlled, but — using techniques like the

ones described in Section 4.3 of [16] — you can transform them into a combination of one-

and two-qubit gates with Toffoli gates, which, in turn, can be decomposed into just one-

and two-qubit gates.

Exercise 6.5

Design a circuit for computing 𝑥1𝑥2 − 3𝑥0 + 2 in phase encoding. Use multi-qubit

and multi-controlled gates.

So now we know how to compute, in phase encoding, the values of polynomials on binary

variables with integer coefficients. But what about the case in which the coefficients are real

numbers? We have two options to deal with that situation. The first one is to approximate

them by using fractions with the same denominator. For instance, if your coefficients are

0.25 and −1.17, you can represent them by 25/100 and −117/100. Then, you can multiply

the whole polynomial by 100 without changing the variable values at which the minimum

is attained and work with 25 and −117, which are integers. The other option is to use

234 Chapter 6: GAS: Grover Adaptive Search

the real numbers directly in the encoding. For instance, in the circuit of Figure 6.6, you

would use 𝑙 even if it is not an integer. In this case, you will work with a superposition of

approximations of the real coefficient, with the better approximations having the larger

amplitudes (see the discussion in [50] for all the details).

This completes our discussion on how to compute, in phase encoding, the value of any

polynomial on binary variables. However, we are not quite done yet! In the next subsection,

we will use our newly-acquired knowledge to finally implement the oracles that we need

for the GAS algorithm.

6.2.4 Constructing the oracle
So far in this section we have covered a lot of ground. However, we should not forget what

our final goal is: we want to implement an oracle that, given 𝑥 and 𝑦, returns whether

𝑔(𝑥) < 𝑔(𝑦) or not. This is what we need in order to use the Dürr-Høyer algorithm to

find a minimum of 𝑔 . In the previous subsection, we showed how to build a circuit that,

given 𝑥 , computes 𝑔(𝑥) in phase encoding. For the sake of simplicity, in the circuits that

we will use in this subsection, we will denote the sequence of gates that implements 𝑔(𝑥),

excluding the initial column of 𝐻 gates, by just a big box with 𝑔(𝑥) inside. In a similar way,

when we need to use the QFT or its inverse, we will use a box labeled QFT or QFT
†
.

Using this notation, an oracle to determine whether 𝑔(𝑥) < 𝑔(𝑦) can be implemented by

using the circuit depicted in Figure 6.9.

Let’s explain bit by bit the elements of the circuit. First, notice that the upper qubits are

reserved for the inputs 𝑥 and 𝑦 and, consequently, are registers of 𝑛 qubits each. Next,

we have 𝑚 auxiliary qubits that we will use to compute the values of the polynomials (as

we mentioned previously, you need to select 𝑚 so that it is big enough to store all the

intermediate results). Finally, the bottom qubit will store the result of checking whether

𝑔(𝑥) < 𝑔(𝑦).

From what we have studied in this section and under the assumption that all the coefficients

in 𝑔 are integers, we know that the state just before the CNOT gate is |𝑥⟩ |𝑦⟩ |𝑔(𝑥) − 𝑔(𝑦)⟩ |0⟩.

Quantum oracles for combinatorial optimization 235

𝑛

𝑛

|𝑥⟩

𝑔(𝑥) − 𝑔(𝑦) 𝑔(𝑦) − 𝑔(𝑥)

|𝑥⟩

|𝑦⟩ |𝑦⟩

|0𝑚⟩

𝐻

𝑄𝐹𝑇 † 𝑄𝐹𝑇

𝐻 |0⟩

𝐻 𝐻 |0⟩

𝐻 𝐻 |0⟩

|0⟩ |𝑧⟩

Figure 6.9: Oracle to determine whether 𝑔(𝑥) < 𝑔(𝑦)

Now, if 𝑔(𝑥) < 𝑔(𝑦), then 𝑔(𝑥) − 𝑔(𝑦) < 0 and the most significant bit of 𝑔(𝑥) − 𝑔(𝑦) will

be 1, because we are working with two’s complement representation. Thus, when we apply

the CNOT gate, we will set the bottom qubit to |1⟩ if 𝑔(𝑥) < 𝑔(𝑦), and we will leave it in

state |0⟩ otherwise. This is the value that we will denote |𝑧⟩.

It would be natural to think that we could end the circuit after applying the CNOT gate.

After all, we have already computed the result that we needed: 𝑧 will be 1 if 𝑔(𝑥) < 𝑔(𝑦)

and it will be 0 otherwise. Nevertheless, we need to set the 𝑚 auxiliary qubits back to |0⟩.

This is the value that is expected for the correct behaviour of the subsequent applications

of the oracle (remember that we are using Grover’s algorithm, so there will be several

repetitions of the oracle circuit). What is more, we also need to set these qubits back to

|0⟩ to disentangle them from the rest of the qubits in the circuit. If they remain entangled,

they may prevent the rest of the circuit from working correctly.

The process of setting the qubits back to |0⟩ is known as uncomputation and it is a very

important technique in many quantum algorithms. Since all quantum gates are reversible,

we cannot just “erase” the content of some qubits (that would be extremely irreversible,

because we would be forgetting the original values and it would be impossible to restore

them). We need to perform the same computations that we carried out, but in reverse: hence

236 Chapter 6: GAS: Grover Adaptive Search

the name “uncomputation.” In our case, we use the QFT to go back to phase encoding and

then we add 𝑔(𝑦)−𝑔(𝑥), which, of course, is the inverse of adding 𝑔(𝑥)−𝑔(𝑦). Consequently,

after the 𝑔(𝑦) − 𝑔(𝑥) gate, the auxiliary qubits contain the phase encoding of 0 and, when

we apply the column of 𝐻 gates, we obtain |0⟩, as desired.

We have, finally, completed our construction of the oracle that we need for GAS. However,

there are a couple of additional details that may be useful in practice. On the one hand,

notice that, in each application of Grover’s algorithm in GAS, the value of 𝑦 is fixed (it

is 𝑥0, the best solution that we have found by then). Thus, we can simplify the design of

the oracle in Figure 6.9 by eliminating the qubits reserved for |𝑦⟩, computing 𝑔(𝑥0) with a

classical computer, and using 𝑔(𝑥) − 𝑔(𝑥0) and 𝑔(𝑥0) − 𝑔(𝑥) in the gates that compute the

values of the polynomial.

On the other hand, using techniques similar to the ones that we have studied in this section,

we can create oracles to check whether polynomial constraints are met or not. For instance,

if one of the constraints in our problem is 3𝑥0 − 2𝑥0𝑥1 < 3, we can easily adapt our oracle

construction to check whether that condition is met. Thus, we do not always need to

transform our optimization problems into a pure QUBO form, but we can keep (some of)

the constraints and check them directly. This might be more convenient than working

with penalty terms in some cases.

But enough of theoretical considerations for now. In the next section, we will explain how

to use GAS in Qiskit in order to solve combinatorial optimization problems.

6.3 Using GAS with Qiskit
If you want to practice what you have learned in this chapter about Grover’s search, the

Dürr-Høyer algorithm, and the construction of oracles, you can try to implement your

own version of GAS in Qiskit from scratch. It is not a difficult project and it can be very

satisfactory. However, there is no need for that. In the Qiskit Optimization module, you can

find a ready-to-use implementation of Grover Adaptive Search (we will be using version

0.4.0 of the package). Let’s see how to use it.

Using GAS with Qiskit 237

One additional advantage of working with Qiskit’s GAS implementation is that it accepts

the optimization problem format that we used with QAOA in Section 5.2.2. The simplest

way of using it is by defining a QUBO problem like the one that we can create with the

following piece of code:

from qiskit_optimization.problems import QuadraticProgram

qp = QuadraticProgram()

qp.binary_var('x')

qp.binary_var('y')

qp.minimize(linear = {'x':2,'y':2}, quadratic = {('x','y'):-3})

print(qp.export_as_lp_string())

The output of the execution is the following:

\ This file has been generated by DOcplex

\ ENCODING=ISO-8859-1

\Problem name: CPLEX

Minimize

obj: 2 x + 2 y + [- 6 x*y]/2

Subject To

Bounds

0 <= x <= 1

0 <= y <= 1

Binaries

x y

End

238 Chapter 6: GAS: Grover Adaptive Search

As you surely recognize, this is the type of problem that we have been extensively work-

ing with in the last few chapters. To solve it with GAS in Qiskit, we need to define a

GroverOptimizer object as follows:

from qiskit_optimization.algorithms import GroverOptimizer

from qiskit import Aer

from qiskit.utils import algorithm_globals, QuantumInstance

seed = 1234

algorithm_globals.random_seed = seed

quantum_instance = QuantumInstance(Aer.get_backend("aer_simulator"),

shots = 1024, seed_simulator = seed, seed_transpiler=seed)

grover_optimizer = GroverOptimizer(num_value_qubits = 3, num_iterations=2,

quantum_instance=quantum_instance)

Notice that we have set seed values for reproducibility and we have created a quantum

instance based on the Aer simulator. Of course, if you want to use a real quantum computer,

you just need to create the quantum instance from one of the quantum devices, as we

have seen in previous chapters. Then, we have defined a GroverOptimizer object that

uses 3 qubits to represent the values of the polynomial (what we have denoted as 𝑚 in

the previous section) and that stops the execution if it has seen no improvement in 2

consecutive iterations (the num_iterations parameter). Notice that 3 qubits are enough

to represent all the possible values of our polynomial in two’s complement, but 2 qubits

would be too few.

To use this GroverOptimizer object to solve our problem, we can run the following in-

structions:

results = grover_optimizer.solve(qp)

print(results)

This will give us the following output:

fval=0.0, x=0.0, y=0.0, status=SUCCESS

Using GAS with Qiskit 239

This is, indeed, the optimal solution to the problem, as you can check by trying the 4

possible options. That was easy, wasn’t it?

Exercise 6.6

Write the code needed to use GAS in Qiskit to find the solution of the QUBO problem

with binary variables 𝑥 , 𝑦, and 𝑧 and objective function 3𝑥 + 2𝑦 − 3𝑧 + 3𝑥𝑦.

But what if you want to solve a more complicated problem? It turns out that the Grover

Optimizer class also can work with problems with constraints. Imagine that we define a

problem with the following instructions:

qp = QuadraticProgram()

qp.binary_var('x')

qp.binary_var('y')

qp.binary_var('z')

qp.minimize(linear = {'x':2}, quadratic = {('x','z'):1, ('z','y'):-2})

qp.linear_constraint(linear = {'x':2, 'y':-1, 'z':1},

sense ="<=", rhs = 2)

print(qp.export_as_lp_string())

If we execute the code, we obtain the following output, which corresponds to a quadratic

program with linear constraints:

\ This file has been generated by DOcplex

\ ENCODING=ISO-8859-1

\Problem name: CPLEX

Minimize

obj: 2 x + [2 x*z - 4 y*z]/2

Subject To

c0: 2 x - y + z <= 2

240 Chapter 6: GAS: Grover Adaptive Search

Bounds

0 <= x <= 1

0 <= y <= 1

0 <= z <= 1

Binaries

x y z

End

We could create a GroverOptimizer object and directly use its solve method with qp. Then,

the GroverOptimizer object will convert the constrained problem into a QUBO one and

solve it. Easy peasy. However, there is a small problem: how can we know how many

qubits we should use for the polynomial values? Since we don’t know the penalty terms

that will be introduced in the conversion, we don’t know the coefficients of the polynomial.

Of course, we could use a big enough value to be sure that there will be no problems, but

that will make the execution slower, especially in the simulator. And if we use too few

qubits, our results could be erroneous.

For that reason, we recommend converting the problem first into QUBO form and then

solving it with GAS. In this way, we can more accurately determine the number of qubits

that we need. For instance, for the problem that we have just defined, we can obtain the

transformed QUBO problem with the following instructions:

from qiskit_optimization.converters import QuadraticProgramToQubo

qp_to_qubo = QuadraticProgramToQubo()

qubo = qp_to_qubo.convert(qp)

print(qubo.export_as_lp_string())

The output is the following:

\ This file has been generated by DOcplex

\ ENCODING=ISO-8859-1

Using GAS with Qiskit 241

\Problem name: CPLEX

Minimize

obj: - 46 x + 24 y - 24 z - 24 c0@int_slack@0 - 48 c0@int_slack@1 + [48 x^2

- 48 x*y + 50 x*z + 48 x*c0@int_slack@0 + 96 x*c0@int_slack@1 + 12 y^2

- 28 y*z - 24 y*c0@int_slack@0 - 48 y*c0@int_slack@1 + 12 z^2

+ 24 z*c0@int_slack@0 + 48 z*c0@int_slack@1 + 12 c0@int_slack@0^2

+ 48 c0@int_slack@0*c0@int_slack@1 + 48 c0@int_slack@1^2]/2 + 24

Subject To

Bounds

0 <= x <= 1

0 <= y <= 1

0 <= z <= 1

0 <= c0@int_slack@0 <= 1

0 <= c0@int_slack@1 <= 1

Binaries

x y z c0@int_slack@0 c0@int_slack@1

End

As you can see, this is now a bona fide QUBO problem. Moreover, by inspecting the

polynomial coefficients, we can notice that 10 qubits, for instance, are enough to store the

polynomial values. Thus, we can solve the problem with the following piece of code:

grover_optimizer = GroverOptimizer(10,

num_iterations=4, quantum_instance=quantum_instance)

results = grover_optimizer.solve(qubo)

print(results)

If we run it, we obtain the following, which is indeed the solution to the problem:

242 Chapter 6: GAS: Grover Adaptive Search

fval=-2.0, x=0.0, y=1.0, z=1.0, c0@int_slack@0=0.0, c0@int_slack@1=1.0,

status=SUCCESS

However, this involves the slack variables used in the transformation. If you don’t want to

see them, you can alternatively run GAS on the original problem, now that we know how

many qubits to use:

grover_optimizer = GroverOptimizer(10, num_iterations=4,

quantum_instance=quantum_instance)

results = grover_optimizer.solve(qp)

print(results)

In this case, the output is the following:

fval=-2.0, x=0.0, y=1.0, z=1.0, status=SUCCESS

This is exactly the same solution that we obtained with the transformed problem, but now

without the slack variables.

This is all you need to know if you want to use GAS in Qiskit. In the next chapter, we will

study the Variational Quantum Eigensolver, a generalization of QAOA that will allow

us to solve many interesting optimization problems.

Summary
In this chapter, we have learned about Grover’s search algorithm and how it can be adapted

to find minima of functions with the Dürr-Høyer algorithm. We have also learned about

quantum oracles and their role in these two methods.

After that, we learned how to perform arithmetic in phase encoding and how to retrieve

the results by using the mighty Quantum Fourier Transform. We also studied how to use

all these techniques to implement oracles that can be used in Grover’s Adaptive Search to

solve combinatorial optimization problems.

Using GAS with Qiskit 243

Finally, we also learned how to use GAS with Qiskit to obtain solutions of both QUBO

problems and constrained quadratic programs.

Now, get ready for the next chapter: we will be studying the Variational Quantum Eigen-

solver and some of its most important applications!

7
VQE: Variational Quantum
Eigensolver

From so simple a beginning endless forms most beautiful and most wonderful have
been, and are being, evolved.

— Charles Darwin

In the previous chapters of this part of the book, we have studied how quantum algorithms

can help us solve combinatorial optimization problems, but there are many other important

types of optimization problems out there! This chapter will broaden the scope of our

optimization methods to cover more general settings, including applications in fields such

as chemistry and physics.

We will achieve this by studying the famous Variational Quantum Eigensolver (VQE)

algorithm, which can be seen as a generalization of the Quantum Approximate Optimization

Algorithm that we studied back in Chapter 5, QAOA: Quantum Approximate Optimization

Algorithm. Actually, it would be more precise to say that we can see QAOA as a particular

246 Chapter 7: VQE: Variational Quantum Eigensolver

case of VQE; in fact, VQE was introduced earlier than QAOA in a now famous paper by

Peruzzo et al. [52].

We shall begin by expanding our knowledge of Hamiltonians and by better understanding

how to estimate their expectation values with quantum computers. That will allow us to

define VQE in all its glory and to appreciate both the simplicity of its formulation and its

wide applicability for finding the ground state of different types of Hamiltonians.

We will then show how to use VQE with both Qiskit and PennyLane using examples from

the field of chemistry. We will also show how to study the influence of errors on the

algorithm by running simulations of noisy quantum computers, and we will even discuss

some techniques to mitigate the adverse effect of readout errors.

After reading this chapter, you will know both the theoretical foundations of VQE and how

to use it in a wide variety of practical situations, on simulators and on actual quantum

computers.

The topics that we will cover in this chapter are as follows:

• Hamiltonians, observables, and their expectation values

• Introducing the Variational Quantum Eigensolver

• Using VQE with Qiskit

• Using VQE with PennyLane

We have quite a lot to learn and, in fact, endless forms most beautiful to discover. So, let’s

not waste time and get started right away!

7.1 Hamiltonians, observables, and their
expectation values

So far, we’ve found in Hamiltonians a way to encode combinatorial optimization problems.

As you surely remember, in these optimization problems, we start with a function 𝑓 that

assigns real numbers to binary strings of a certain length 𝑛, and we seek to find a binary

string 𝑥 with minimum cost 𝑓 (𝑥). In order to do that with quantum algorithms, we define

Hamiltonians, observables, and their expectation values 247

a Hamiltonian 𝐻𝑓 such that

⟨𝑥 |𝐻𝑓 |𝑥⟩ = 𝑓 (𝑥)

holds for every binary string 𝑥 of length 𝑛. Then, we can solve our original problem by

finding a ground state of 𝐻𝑓 (that is, a state |𝜓⟩ such that the expectation value ⟨𝜓|𝐻𝑓 |𝜓⟩

is minimum).

This was just a very quick summary of Chapter 3, Working with Quadratic Unconstrained

Binary Optimization Problems. When you read that chapter, you may have noticed that

the Hamiltonian associated to 𝑓 has an additional, very remarkable property. We have

mentioned this a couple of times already, but it is worth remembering that, for every

computational basis state |𝑥⟩, it holds that

𝐻𝑓 |𝑥⟩ = 𝑓 (𝑥) |𝑥⟩ .

This means that each |𝑥⟩ is an eigenvector of 𝐻𝑓 with associated eigenvalue 𝑓 (𝑥) (if you do

not remember what eigenvectors and eigenvalues are, check Appendix B, Installing the Tools,

for all the relevant definitions and concepts). In fact, this is easy to see because we have

always used Hamiltonians that are sums of tensor products of 𝑍 matrices, which are clearly

diagonal. But tensor products of diagonal matrices are diagonal matrices themselves, and

sums of diagonal matrices are still diagonal. Thus, since these Hamiltonians are diagonal,

the computational basis states are their eigenvectors.

What is more, if we have a state |𝜓⟩, we can always write it as a linear combination of the

computational basis states. In fact, it holds that

|𝜓⟩ = ∑
𝑥
𝛼𝑥 |𝑥⟩ ,

where the sum is over all the computational basis states |𝑥⟩ and 𝛼𝑥 = ⟨𝑥 |𝜓⟩. This is easy to

check, because

⟨𝑥 |𝜓⟩ = ⟨𝑥 |∑
𝑦
𝛼𝑦 |𝑦⟩ = ∑

𝑦
𝛼𝑦 ⟨𝑥 |𝑦⟩ = 𝛼𝑥 .

248 Chapter 7: VQE: Variational Quantum Eigensolver

The last identity follows from the fact that ⟨𝑥 |𝑦⟩ is 1 if 𝑥 = 𝑦 and 0 otherwise (remember

that the computational basis is an orthonormal basis).

Then, the expectation value of 𝐻𝑓 in the state |𝜓⟩ can be computed as

⟨𝜓|𝐻𝑓 |𝜓⟩ = ∑
𝑦
𝛼∗𝑦 ⟨𝑦 |𝐻𝑓 ∑

𝑥
𝛼𝑥 |𝑥⟩ = ∑

𝑥,𝑦
𝛼∗𝑦𝛼𝑥 ⟨𝑦 |𝐻𝑓 |𝑥⟩ = ∑

𝑥,𝑦
𝛼∗𝑦𝛼𝑥𝑓 (𝑥) ⟨𝑦 |𝑥⟩

= ∑
𝑥
𝛼∗𝑥𝛼𝑥𝑓 (𝑥) = ∑

𝑥
|𝛼𝑥 |2𝑓 (𝑥).

Moreover, we know that |𝛼𝑥 |2 = |⟨𝑥 |𝜓⟩|2 is the probability of obtaining |𝑥⟩ when measuring

|𝜓⟩ in the computational basis; in this way, the expectation value matches the statistical

expected value of the measurement. As you surely remember, this is exactly the fact that we

used back in Chapter 5, QAOA: Quantum Approximate Optimization Algorithm, to estimate

the value of the cost function when running QAOA circuits in a quantum computer.

These properties may seem dependent on the particular form of the Hamiltonians that we

have been using. But, in fact, they are very general results, and we will use them extensively

in our study of the VQE algorithm. But before we get to that, we will need to introduce the

general notion of “observable”, which is precisely the topic of the next subsection.

7.1.1 Observables
Up until this point, we have only considered measurements in the computational basis.

This has worked well enough for our purposes, but, in doing so, we’ve ignored some details

about how measurements are truly understood and described in quantum mechanics. We

are now going to fill that gap.

We encourage you to go slowly through this section. Take your time and maybe prepare

yourself a good cup of your favourite hot beverage. The ideas presented here may seem a

little bit strange at first, but you will soon realize that they fit nicely with what we have

been doing so far.

In quantum mechanics, any physical magnitude that you can measure — also known as

a (physical) observable — is represented by a Hermitian operator. In case you don’t

Hamiltonians, observables, and their expectation values 249

remember, these are linear operators 𝐴 that are equal to their adjoints (their conjugate

transposes), that is, they satisfy 𝐴† = 𝐴.

To learn more. . .

You may remember how in Chapter 3, Working with Quadratic Unconstrained Binary

Optimization Problems, we worked extensively with Hamiltonians. These, in general,

are Hermitian operators that are, indeed, associated with an observable magnitude.

That magnitude is none other than the energy of the system!

The nice thing about Hermitian operators is that, for them, one can always find an orthonor-

mal basis of eigenvectors with real eigenvalues (please, check Appendix B, Basic Linear

Algebra, if you need to review these notions). This means that there exist real numbers 𝜆𝑗 ,

𝑗 = 1,… , 𝑙, all of them different, and states
|||𝜆
𝑘
𝑗⟩, where 𝑗 = 1,… , 𝑙 and 𝑘 = 1,… , 𝑟𝑗 , such

that the states {|||𝜆
𝑘
𝑗⟩}𝑗 ,𝑘 form an orthonormal basis and

𝐴 |||𝜆
𝑘
𝑗⟩ = 𝜆𝑗

|||𝜆
𝑘
𝑗⟩ ,

for every 𝑗 = 1,… , 𝑙 and for every 𝑘 = 1,… , 𝑟𝑗 .

Here, we are considering the possibility of having several eigenvectors
|||𝜆
𝑘
𝑗⟩ associated

with the same eigenvalue 𝜆𝑗 , hence the use of the superindices 𝑘 = 1,… , 𝑟𝑗 , where 𝑟𝑗 is

the number of eigenvectors associated with the 𝜆𝑘𝑗 eigenvalue. If all the eigenvalues are

different (a quite common case), then we will have 𝑟𝑗 = 1 for every 𝑗 and we can simply

drop the 𝑘 superindices.

What is the connection of these Hermitian operators with physical measurements? Let’s

consider an observable represented by a Hermitian operator 𝐴, and also an orthonormal

basis of eigenvectors {|||𝜆
𝑘
𝑗⟩}𝑗 ,𝑘 such that 𝐴 |||𝜆

𝑘
𝑗⟩ = 𝜆𝑗

|||𝜆
𝑘
𝑗⟩. This representation must be

chosen to take the following into account:

• The possible outcomes of the measurement of the observable must be represented

by the different eigenvalues 𝜆𝑗

250 Chapter 7: VQE: Variational Quantum Eigensolver

• The probability that a state |𝜓⟩ will, upon measurement, yield 𝜆𝑗 must be ∑𝑘
|||⟨𝜆

𝑘
𝑗
|||𝜓⟩

|||
2

All of this is axiomatic. It is a fact of life that any physical observable can be represented by

a Hermitian operator in such a way that those are requirements are satisfied. Moreover, it

is a postulate of quantum mechanics that if the measurement returns the result associated

to an eigenvalue 𝜆𝑗 , the state of the system will then become the normalized projection of

|𝜓⟩ onto the space of eigenvectors with eigenvalue 𝜆𝑗 . This means that if we measure a

state in a superposition such as

∑
𝑗 ,𝑘

𝛼𝑘𝑗
|||𝜆
𝑘
𝑗⟩

and we obtain 𝜆𝑗 as the result, then the new state will be

∑𝑘 𝛼𝑘𝑗
|||𝜆
𝑘
𝑗⟩

√
∑𝑘

|||𝛼
𝑘
𝑗
|||
2
.

This is what we call the collapse of the original state and it is exactly the same phenomenon

that we considered when studied measurements in the computational basis back in Chapter 1,

Foundations of Quantum Computing.

The word “observable” is often used for both physical observables and for any Hermitian

operators that represent them. Thus, we may refer to a Hermitian operator itself as an

observable. To avoid confusions, we will usually not omit the “physical” adjective when

referring to physical observables.

As a simple example, whenever we measure in the computational basis, we are indeed

measuring some physical observable, and this physical observable can, of course, be

represented by a Hermitian operator. This is, in a certain sense, the simplest observable in

quantum computing and it is natural that it arises as a particular case of this, more general

theory of quantum measurements.

Hamiltonians, observables, and their expectation values 251

The coordinated matrix of this measurement operator with respect to the computational

basis could be the diagonal matrix

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

1

⋱

2𝑛 − 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Exercise 7.1

Prove that, indeed, the previous matrix is the coordinate matrix on the computational

basis of a Hermitian operator that represents a measurement in the computational

basis.

When we measure a single qubit in the computational basis, the coordinate matrix with

respect to the computational basis of the associated Hermitian operator could well be either

of

𝑁 =
(
0 0

0 1)
, 𝑍 =

(
1 0

0 −1)
.

Yes, that last matrix was the unmistakable Pauli 𝑍 matrix. Both of these operators represent

the same observable; they only differ in the eigenvalues that they associate to the distinct

possible outcomes. The first operator associates the eigenvalues 0 and 1 to the qubit’s value

being 0 and 1 respectively, while the second observable associates the eigenvalues 1 and

−1 to these outcomes.

Important note

Measurements in quantum mechanics are represented by Hermitian operators,

which we refer to as observables. One possible operator corresponding to measuring

a qubit in the computational basis can be the Pauli 𝑍 matrix.

252 Chapter 7: VQE: Variational Quantum Eigensolver

Now that we know what an observable is, we can study what its expectation value is and

how it can be computed. The expectation value of any observable under a state |𝜓⟩ can be

defined as

⟨𝐴⟩𝜓 = ∑
𝑗 ,𝑘

|||⟨𝜆
𝑘
𝑗
|||𝜓⟩

|||
2
𝜆𝑗 ,

which is a natural definition that agrees with the statistical expected value of the results

obtained when we measure |𝜓⟩ according to 𝐴. As intuitive as this expression may be, we

can further simplify it as follows:

⟨𝐴⟩𝜓 = ∑
𝑗 ,𝑘

|||⟨𝜆
𝑘
𝑗
|||𝜓⟩

|||
2
𝜆𝑗 = ∑

𝑗 ,𝑘
⟨𝜓

|||𝜆
𝑘
𝑗⟩⟨𝜆𝑘𝑗

|||𝜓⟩ 𝜆𝑗 = ∑
𝑗 ,𝑘

⟨𝜆𝑘𝑗
|||𝜓⟩⟨𝜓

|||𝜆
𝑘
𝑗⟩ 𝜆𝑗

= ∑
𝑗 ,𝑘

⟨𝜆𝑘𝑗
|||𝜓⟩ ⟨𝜓|𝐴 |||𝜆

𝑘
𝑗⟩ = ⟨𝜓|𝐴∑

𝑗 ,𝑘
⟨𝜆𝑘𝑗

|||𝜓⟩
|||𝜆
𝑘
𝑗⟩ = ⟨𝜓|𝐴 |𝜓⟩ .

Notice that we have used the fact that 𝐴 |||𝜆
𝑘
𝑗⟩ = 𝜆𝑗

|||𝜆
𝑘
𝑗⟩ and that |𝜓⟩ = ∑𝑗 ,𝑘 ⟨𝜆𝑘𝑗

|||𝜓⟩
|||𝜆
𝑘
𝑗⟩.

This latter identity follows from the fact that {|||𝜆
𝑘
𝑗⟩}𝑗 ,𝑘 is an orthonormal basis and, in fact, it

can be proved in exactly the same way we did for the computational basis at the beginning

of this section.

This expression for the expectation value agrees with our previous work in Chapter 3,

Working with Quadratic Unconstrained Binary Optimization Problems.

Important note

The expectation value of any Hermitian operator (observable) 𝐴 is given by

⟨𝐴⟩𝜓 = ∑
𝑗 ,𝑘

|||⟨𝜆
𝑘
𝑗
|||𝜓⟩

|||
2
𝜆𝑗 = ⟨𝜓|𝐴 |𝜓⟩ .

Notice that, from the very definition of the expectation value of an observable, we can easily

derive the variational principle. This principle states, as you may recall from Chapter 3,

Working with Quadratic Unconstrained Binary Optimization Problems, that the smallest

Hamiltonians, observables, and their expectation values 253

expectation value of an observable𝐴 is always achieved at an eigenvector of that observable.

To prove it, suppose that 𝜆0 is minimal among all the eigenvalues of 𝐴. Then, for any state

𝜓 it holds that

⟨𝐴⟩𝜓 = ∑
𝑗 ,𝑘

|||⟨𝜆
𝑘
𝑗
|||𝜓⟩

|||
2
𝜆𝑗 ≥ ∑

𝑗 ,𝑘

|||⟨𝜆
𝑘
𝑗
|||𝜓⟩

|||
2
𝜆0 = 𝜆0,

where the last equality follows from the fact that ∑𝑗 ,𝑘
|||⟨𝜆

𝑘
𝑗
|||𝜓⟩

|||
2
= 1, since the sum of the

probabilities of all the outcomes must add up to 1.

If we now take any eigenvector
||𝜆
𝑘
0⟩ associated to 𝜆0, its expectation value will be

⟨𝜆𝑘0
|||𝐴

|||𝜆
𝑘
0⟩ = 𝜆0 ⟨𝜆𝑘0

|||𝜆
𝑘
0⟩ = 𝜆0,

proving that the minimum expectation value is indeed achieved at an eigenvector of 𝐴.

Obviously, if there were several orthogonal eigenvectors associated to 𝜆0, any normalized

linear combination of them would also be a ground state of 𝐴.

In this subsection, we have studied the mathematical expression for the expectation of any

observable. But we don’t yet know how to estimate these expectation values with quantum

computers. How could we do that? Just keep reading, because we will be exploring it in

the next subsection.

7.1.2 Estimating the expectation values of observables
In the context of the VQE algorithm, we will need to estimate the expectation value of a

general observable 𝐴. That is, we will no longer assume that 𝐴 is diagonal, as we have

done in all the previous chapters. For this reason, we will need to develop a new method

for estimating the expectation value ⟨𝜓|𝐴 |𝜓⟩.

We know that, for a given state |𝜓⟩, the expectation value of 𝐴 can be computed by

∑
𝑗 ,𝑘

|||⟨𝜆
𝑘
𝑗
|||𝜓⟩

|||
2
𝜆𝑗 .

254 Chapter 7: VQE: Variational Quantum Eigensolver

Thus, if we knew the eigenvalues 𝜆𝑗 and the eigenvectors {|||𝜆
𝑘
𝑗⟩}𝑗 ,𝑘 of 𝐴, we could try to

compute
|||⟨𝜆

𝑘
𝑗
|||𝜓⟩

|||
2

and, hence, the expectation value of 𝐴. However, this is information

that we usually don’t know. In fact, the purpose of VQE is, precisely, finding certain

eigenvalues and eigenvectors of a Hamiltonian! Moreover, the number of eigenvectors

grows exponentially with the number of qubits of our system, so, even if we knew them,

computing expectation values in this way might be very computationally expensive.

Thus, we need to take an indirect route. For this, we will use the fact that we can always

express an observable 𝐴 on 𝑛 qubits as a linear combination of tensor products of Pauli

matrices (see, for example, Chapter 7 on the famous lecture notes by John Preskill [53]).

Actually, 𝐴 will be, in most cases, given to us in such a form, in the same way that the

Hamiltonians of our combinatorial optimization problems were always expressed as sums

of tensor products of 𝑍 matrices.

So, consider, for example, that we are given an observable

𝐴 =
1
2
𝑍 ⊗ 𝐼 ⊗ 𝑋 − 3𝐼 ⊗ 𝑌 ⊗ 𝑌 + 2𝑍 ⊗ 𝑋 ⊗ 𝑍.

Notice that, thanks to linearity,

⟨𝜓|𝐴 |𝜓⟩ = ⟨𝜓| (
1
2
𝑍 ⊗ 𝐼 ⊗ 𝑋 − 3𝐼 ⊗ 𝑌 ⊗ 𝑌 + 2𝑍 ⊗ 𝑋 ⊗ 𝑍) |𝜓⟩

= ⟨𝜓| (
1
2
(𝑍 ⊗ 𝐼 ⊗ 𝑋) |𝜓⟩ − 3 (𝐼 ⊗ 𝑌 ⊗ 𝑌) |𝜓⟩ + 2 (𝑍 ⊗ 𝑋 ⊗ 𝑍) |𝜓⟩)

=
1
2
⟨𝜓| (𝑍 ⊗ 𝐼 ⊗ 𝑋) |𝜓⟩ − 3 ⟨𝜓| (𝐼 ⊗ 𝑌 ⊗ 𝑌) |𝜓⟩ + 2 ⟨𝜓| (𝑍 ⊗ 𝑋 ⊗ 𝑍) |𝜓⟩ .

Then, in order to compute the expectation value of 𝐴, we can compute the expectation

values of 𝑍 ⊗ 𝐼 ⊗𝑋 , 𝐼 ⊗ 𝑌 ⊗ 𝑌 , and 𝑍 ⊗𝑋 ⊗𝑍 and combine their results. But wait a minute!

Isn’t that even more complicated? After all, we would need to compute three expectation

values instead of just one, right?

Hamiltonians, observables, and their expectation values 255

The key observation here lies in the fact that, while we may not know the eigenvalues and

eigenvectors of 𝐴 in advance, we can very easily obtain those of 𝑍 ⊗ 𝐼 ⊗ 𝑋 or any other

tensor product of Pauli matrices. It is so easy, in fact, that you will now learn how to do it

yourself in the following two exercises.

Exercise 7.2

Suppose that
||𝜆𝑗⟩ is an eigenvector of 𝐴𝑗 with associated eigenvalue 𝜆𝑗 for 𝑗 =

1,… , 𝑛. Prove that |𝜆1⟩⊗⋯⊗ |𝜆𝑛⟩ is an eigenvector of 𝐴1 ⊗⋯⊗𝐴𝑛 with associated

eigenvalue 𝜆1 ⋅… ⋅ 𝜆𝑛.

Exercise 7.3

Prove that:

1. The eigenvectors of 𝑍 are |0⟩ (with associated eigenvalue 1) and |1⟩ (with

associated eigenvalue −1).

2. The eigenvectors of 𝑋 are |+⟩ (with associated eigenvalue 1) and |−⟩ (with

associated eigenvalue −1).

3. The eigenvectors of 𝑌 are (1/
√
2) (|0⟩ + 𝑖 |1⟩) (with associated eigenvalue 1)

and (1/
√
2) (|0⟩ − 𝑖 |1⟩) (with associated eigenvalue −1).

4. Any non-null state is an eigenvector of 𝐼 with associated eigenvalue 1.

Using the results in these exercises, we can readily deduce that |0⟩ |+⟩ |0⟩, |0⟩ |−⟩ |1⟩, |1⟩ |+⟩ |1⟩,

and |1⟩ |−⟩ |0⟩ are eigenvectors of 𝑍 ⊗𝑋 ⊗𝑍 with eigenvalue 1 and that |0⟩ |+⟩ |1⟩, |0⟩ |−⟩ |0⟩,

|1⟩ |+⟩ |0⟩, and |1⟩ |−⟩ |1⟩ are eigenvectors of 𝑍 ⊗𝑋 ⊗ 𝑍 with eigenvalue −1. All these states

together form an orthonormal basis of eigenvectors of 𝑍 ⊗ 𝑋 ⊗ 𝑍 , as you can easily check

if you compute their inner products.

Exercise 7.4

Find orthonormal bases of eigenvectors for 𝑍 ⊗ 𝐼 ⊗𝑋 and 𝐼 ⊗ 𝑌 ⊗ 𝑌 . Compute their

associated eigenvalues.

256 Chapter 7: VQE: Variational Quantum Eigensolver

So, now we know how to obtain the eigenvalues and eigenvectors of any tensor product of

Pauli matrices. How can we use this to estimate their expectation values? Remember that,

given a Hermitian matrix 𝐴, we can compute ⟨𝜓|𝐴 |𝜓⟩ by

∑
𝑗 ,𝑘

|||⟨𝜆
𝑘
𝑗
|||𝜓⟩

|||
2
𝜆𝑗 ,

where the eigenvalues of 𝐴 are 𝜆𝑗 and the associated eigenvectors are {|||𝜆
𝑘
𝑗⟩}𝑗 ,𝑘 . In our case,

we only have two eigenvalues: 1 and −1. So, if we are able to estimate the values
|||⟨𝜆

𝑘
𝑗
|||𝜓⟩

|||
2
,

we will have all the ingredients needed to “cook” our expectation values.

A priori, trying to get the values
|||⟨𝜆

𝑘
𝑗
|||𝜓⟩

|||
2

out of a quantum computer can seem like a

difficult task. For example, you may wonder whether it will be necessary to perform some

weird fancy measurements on our quantum device in order to get these probabilities! Well,

it turns out that we can easily estimate them on any quantum computer using ordinary

measurements in the computational basis and a bunch of quantum gates. So, don’t worry.

If you’ve just bought yourself a flashy quantum computer, there’s no need for a hardware

upgrade just yet.

In any case, how can we actually estimate these
|||⟨𝜆

𝑘
𝑗
|||𝜓⟩

|||
2

values with the tools that we

have? Let’s first work with an example.

Let’s consider the observable𝑍⊗𝑋⊗𝑍 . We have previously in this section obtained its eigen-

vectors, so let’s focus on one of them: |0⟩ |+⟩ |0⟩. If we wanted to compute |(⟨0| ⟨+| ⟨0|) |𝜓⟩|2,

where |𝜓⟩ is a certain 3-qubit state, we could just notice that

|0⟩ |+⟩ |0⟩ = (𝐼 ⊗ 𝐻 ⊗ 𝐼) |0⟩ |0⟩ |0⟩

and hence

⟨0| ⟨+| ⟨0| = (|0⟩ |+⟩ |0⟩)† = ((𝐼 ⊗ 𝐻 ⊗ 𝐼) |0⟩ |0⟩ |0⟩)† = ⟨0| ⟨0| ⟨0| (𝐼 ⊗ 𝐻 ⊗ 𝐼)†

= ⟨0| ⟨0| ⟨0| (𝐼 ⊗ 𝐻 ⊗ 𝐼) ,

Hamiltonians, observables, and their expectation values 257

where we have used the fact that 𝐼 and 𝐻 are self-adjoint, and hence so is 𝐼 ⊗ 𝐻 ⊗ 𝐼 . Keep

in mind, however, that we will still write daggers throughout this example whenever we

mean to consider the adjoint of 𝐼 ⊗ 𝐻 ⊗ 𝐼 — even if it still represents the same operator.

From this, it follows directly that

|(⟨0| ⟨+| ⟨0|) |𝜓⟩|2 = |||⟨0| ⟨0| ⟨0| (𝐼 ⊗ 𝐻 ⊗ 𝐼)† |𝜓⟩|||
2
.

But for any state |𝜑⟩, we know that |(⟨0| ⟨0| ⟨0|) |𝜑⟩|2 is the probability of obtaining |0⟩ |0⟩ |0⟩

when measuring it in the computational basis. As a consequence, we can estimate the

value |(⟨0| ⟨+| ⟨0|) |𝜓⟩|2 by repeatedly preparing the state (𝐼 ⊗ 𝐻 ⊗ 𝐼) |𝜓⟩ = (𝐼 ⊗ 𝐻 ⊗ 𝐼)† |𝜓⟩,

measuring it in the computational basis, and then computing the relative frequency of

|0⟩ |0⟩ |0⟩.

And this is not the only eigenvector for which this works. It turns out that for each and

every eigenvector |𝜆𝐴⟩ of 𝑍 ⊗𝑋 ⊗𝑍 , there is a unique state in the computational basis |𝜆𝐶⟩

such that

|𝜆𝐴⟩ = (𝐼 ⊗ 𝐻 ⊗ 𝐼) |𝜆𝐶⟩ .

Actually, the correspondence is bijective: for every state in the computational basis |𝜆𝐶⟩,

there is also a unique eigenvector |𝜆𝐴⟩ of 𝑍 ⊗ 𝑋 ⊗ 𝑍 such that |𝜆𝐶⟩ = (𝐼 ⊗ 𝐻 ⊗ 𝐼)† |𝜆𝐴⟩,

where we have used the fact that, for unitary operators, 𝑈† = 𝑈−1
. For example,

|1⟩ |−⟩ |1⟩ = (𝐼 ⊗ 𝐻 ⊗ 𝐼) |1⟩ |1⟩ |1⟩ , |1⟩ |1⟩ |1⟩ = (𝐼 ⊗ 𝐻 ⊗ 𝐼)† |1⟩ |−⟩ |1⟩ .

This is the reason why we call 𝐼 ⊗ 𝐻 ⊗ 𝐼 the change of basis operator between the

computational basis and the basis of eigenvectors of 𝑍 ⊗ 𝑋 ⊗ 𝑍 .

In this way, if we want to estimate the probabilities
|||⟨𝜆

𝑘
𝑗
|||𝜓⟩

|||
2

when the states
|||𝜆
𝑘
𝑗⟩ happen

to be the eigenvectors of 𝑍⊗𝑋 ⊗𝑍 , we just need to prepare (𝐼 ⊗ 𝐻 ⊗ 𝐼)† |𝜓⟩ and measure it

in the computational basis. Then, given any eigenvector |𝜆𝐴⟩ of 𝑍 ⊗ 𝑋 ⊗ 𝑍 , the probability

|⟨𝜆𝐴|𝜓⟩|2 can be estimated by the relative frequency of the measurement outcome associated

258 Chapter 7: VQE: Variational Quantum Eigensolver

to the eigenstate |𝜆𝐶⟩ = (𝐼 ⊗ 𝐻 ⊗ 𝐼)† |𝜆𝐴⟩ in the computational basis. That’s because

⟨𝜆𝐶 | ((𝐼 ⊗ 𝐻 ⊗ 𝐼)† |𝜓⟩) = ⟨𝜆𝐴| ((𝐼 ⊗ 𝐻 ⊗ 𝐼)(𝐼 ⊗ 𝐻 ⊗ 𝐼)† |𝜓⟩) = ⟨𝜆𝐴|𝜓⟩ ,

where we have used the fact that, for any operator 𝐿 and any states |𝛼⟩ and |𝛽⟩, if |𝛽⟩ = 𝐿 |𝛼⟩,

then ⟨𝛽| = ⟨𝛼| 𝐿†, and 𝐿†† = 𝐿.

As a final note, in this example, when we set out to compute the probabilities |⟨𝜆𝐴|𝜓⟩|2, we

don’t have to run executions for each of the probabilities individually: we can compute

them all simultaneously. All we have to do is measure (𝐼 ⊗𝐻 ⊗ 𝐼)† |𝜓⟩ in the computational

basis a bunch of times and then retrieve the relative frequency of every outcome. This

works because (𝐼 ⊗ 𝐻 ⊗ 𝐼)† transforms all the eigenvectors of 𝐴 into the states of the

computational basis. Then, the probability |⟨𝜆𝐴|𝜓⟩|2 will be the relative frequency of the

outcome, in the computational basis, associated to (𝐼 ⊗ 𝐻 ⊗ 𝐼)† |𝜆𝐴⟩. Of course, the higher

the number of preparations and measurements, the more accurate our estimates will be.

To learn more. . .

Notice the similarity of this kind of procedure with the standard measurement in

the computational basis. When we measure |𝜓⟩ in the computational basis, we have

probability |⟨𝑥 |𝜓⟩|2 of obtaining the outcome associated to |𝑥⟩. If we were measuring

an observable that had all the
|||𝜆
𝑘
𝑗⟩ as eigenvectors with a distinct eigenvalue for

each of them — this is an observable that’s able to distinguish all the eigenvectors in

the basis — we would have probability
|||⟨𝜆

𝑘
𝑗
|||𝜓⟩

|||
2

of getting the outcome associated

to
|||𝜆
𝑘
𝑗⟩.

This is why we refer to the process of changing basis and, then, measuring in the

computational basis, as performing a measurement in the eigenvector basis

{|||𝜆
𝑘
𝑗⟩} of 𝐴. It is exactly the same as if we had an observable that’s able to measure

and distinguish all the eigenvectors of 𝐴.

But wait, there’s more! Our being able to change bases in this case is by no means a happy

coincidence. It turns out that for every tensor product of Pauli matrices 𝐴, there is a simple

Hamiltonians, observables, and their expectation values 259

change of basis matrix that defines a perfect correspondence between the states in the

computational basis and the eigenvectors of 𝐴. Again, this can be readily verified, and we

invite you to do it in the following two exercises.

Exercise 7.5

Since the computational basis is an eigenvector basis of 𝑍 , a change of basis operator

of 𝑍 can be the identity 𝐼 . Check that, in order to change from the computational

basis to the basis of eigenvectors of the 𝑋 , you can use the Hadamard matrix 𝐻 , and

that to change to the basis of eigenvectors of 𝑌 you can use 𝑆𝐻 .

Exercise 7.6

Prove that if 𝑈1 and 𝑈2 are the respective change of basis operators from the compu-

tational basis to the eigenvector basis of two observables 𝐴1 and 𝐴2, then 𝑈1 ⊗ 𝑈2 is

the change of basis operator from the computational basis to the eigenvector basis

of 𝐴1 ⊗ 𝐴2.

Putting everything together, we can easily deduce that, for instance, 𝐼 ⊗ 𝐼 ⊗ 𝐻 takes the

eigenvectors of 𝑍 ⊗ 𝐼 ⊗𝑋 to the computational basis and that 𝐼 ⊗ (𝑆𝐻)† ⊗ (𝑆𝐻)† takes the

eigenvectors of 𝐼 ⊗ 𝑌 ⊗ 𝑌 to states in the computational basis as well.

Therefore, in order to estimate the expectation value ⟨𝜓| (𝑍 ⊗ 𝐼 ⊗ 𝑋) |𝜓⟩, we can use what-

ever circuit we need to prepare |𝜓⟩ followed by (𝐼 ⊗𝐼 ⊗𝐻)† = 𝐼 ⊗𝐼 ⊗𝐻 , then measure in the

computational basis, and then get the probabilities as we have just discussed. In a similar

way, to estimate ⟨𝜓| (𝐼 ⊗ 𝑌 ⊗ 𝑌) |𝜓⟩, we will first prepare |𝜓⟩, then apply 𝐼 ⊗ 𝐻𝑆† ⊗ 𝐻𝑆†

and, finally, measure in the computational basis.

Notice, by the way, how 𝐼 and 𝐻 are self-adjoint, so, when we took their adjoints, there

was no observable (no pun intended) effect. That’s not the case with 𝑆𝐻 , because (𝑆𝐻)† =

𝐻†𝑆† = 𝐻𝑆†.

260 Chapter 7: VQE: Variational Quantum Eigensolver

To learn more. . .

For any Hermitian operator 𝐴, there is always a unitary transformation that takes

any basis of eigenvectors of 𝐴 to the computational basis, and vice versa. However,

this transformation could very well be difficult to implement. In the case where 𝐴

is a tensor product of Pauli matrices we have just proved that we can always obtain

the transformation as the tensor product of very simple one-qubit operations.

Finally, after we have estimated the expectation value of every Pauli term in our observable

(in our case, 𝑍⊗𝐼 ⊗𝑋 , 𝐼 ⊗𝑌 ⊗𝑌 , and 𝑍⊗𝑋⊗𝑍) we can multiply them by the corresponding

coefficients in the linear combination and add everything together to get the final result.

And we are done!

Now you know how to estimate the expectation value of an observable by measuring in

different bases. You can proudly say, as the famous internet meme goes, “All your base are

belong to us.” And, in fact, this was the last technical element that we needed in order to

introduce VQE, something we will immediately do in the next section.

7.2 Introducing VQE
The goal of the Variational Quantum Eigensolver (VQE) is to find a ground state of

a given Hamiltonian 𝐻1. This Hamiltonian can describe, for instance, the energy of a

certain physical or chemical process, and we will use some such examples in the following

two sections, which will cover how to execute VQE with Qiskit and PennyLane. For the

moment, however, we will keep everything abstract and focus on finding a state |𝜓⟩ such

that ⟨𝜓|𝐻1 |𝜓⟩ is minimum. Note that in this section, we will be using 𝐻1 to refer to the

Hamiltonian so that it does not get confused with the Hadamard matrix that we will also

be using in our computations.

To learn more. . .

VQE is by no means the only quantum algorithm that has been proposed to find

the ground states of Hamiltonians. Some very promising options use a quantum

Introducing VQE 261

subroutine known as Quantum Phase Estimation (QPE) (see, for instance, the

excellent surveys by McArdle et al. [54] and by Cao et al. [55]). The main dis-

advantage of these approaches is that QPE uses the Quantum Fourier Transform

that we studied in Chapter 6, GAS: Grover Adaptative Search, and, thus, requires

quantum computers that are resilient to noise. An experimental demonstration of

these limitations (and of the relative robustness of VQE) can be found, for instance,

in the paper by O’Malley et al. [56]. For this reason, we will focus mainly on VQE

and its applications, which seem to obtain better results with the NISQ computers

that are available today.

The general structure of VQE is very similar to that of QAOA, which you surely remember

from Chapter 5, QAOA: Quantum Approximate Optimization Algorithm: we prepare a

parameterized quantum state, we measure it, we estimate its energy, and we change the

parameters in order to minimize it; then, we repeat this process several times until some

stopping criteria are met. The preparation and measurement of the state are done on the

quantum computer, while the energy estimation and parameter minimization are handled

by a classical computer.

The parametrized circuit, usually called variational form or ansatz, is usually chosen

taking into account information from the problem domain. For instance, you could consider

ansatzes that parametrize typical solutions to the kind of problem under study. We will

show some examples of this in the last two sections of this same chapter. In any case, the

ansatz is selected in advance and it is usually easy to implement on a quantum circuit.

Important note

In many applications, we can distinguish two parts in the creation of the parame-

terized state: the preparation of an initial state |𝜓0⟩, that does not depend on any

parameters, and then the variational form 𝑉 (𝜃) itself, that obviously depends on

𝜃. Thus, if we have |𝜓0⟩ = 𝑈 |0⟩, for some unitary transformation 𝑈 implemented

262 Chapter 7: VQE: Variational Quantum Eigensolver

with some quantum gates, the ansatz gives us the state 𝑉 (𝜃)𝑈 |0⟩. Notice, however,

that we can always consider the whole operation 𝑉 (𝜃)𝑈 as the ansatz and require

the initial state to be |0⟩. To simplify our notation, this is what we will usually do,

although we will explicitly distinguish between initial state and ansatz in some

practical examples that we will consider later in the chapter.

Algorithm 7.1 gives the pseudocode for VQE. Notice the similarities with Algorithm 5.1

from Chapter 5, QAOA: Quantum Approximate Optimization Algorithm.

Algorithm 7.1 (VQE).

Require: 𝐻1 given as a linear combination of tensor products of Pauli matrices

Choose a variational form (ansatz) 𝑉 (𝜃)

Choose a starting set of values for 𝜃

while the stopping criteria are not met do

Prepare the state |𝜓(𝜃)⟩ = 𝑉 (𝜃) |0⟩ ⊳ This is done on the quantum computer!

From the measurements of |𝜓(𝜃)⟩ in different bases, estimate ⟨𝜓(𝜃)|𝐻1 |𝜓(𝜃)⟩

Update 𝜃 according to the minimization algorithm

Prepare the state |𝜓(𝜃)⟩ = 𝑉 (𝜃) |0⟩ ⊳ This is done on the quantum computer!

From the measurements of |𝜓(𝜃)⟩ in different bases, estimate ⟨𝜓(𝜃)|𝐻1 |𝜓(𝜃)⟩

Let’s remark on a couple of things about this pseudocode. Notice that we require that 𝐻1 be

given as a linear combination of tensor products of Pauli matrices; this is so that we can use

the techniques that we introduced in the previous section to estimate ⟨𝜓|𝐻1 |𝜓⟩. Of course,

the more terms we have in the linear combination, the bigger the number of bases in which

we may need to perform measurements. Nevertheless, in some cases, we may group several

measurements together. For example, if we have terms such as 𝐼 ⊗𝑋 ⊗𝐼 ⊗𝑋 , 𝐼 ⊗ 𝐼 ⊗𝑋 ⊗𝑋 ,

and 𝐼 ⊗ 𝐼 ⊗ 𝑋 ⊗ 𝑋 , we can use 𝐼 ⊗ 𝐻 ⊗ 𝐻 ⊗ 𝐻 as our change of basis matrix (be careful!

This 𝐻 is the Hadamard matrix, not the Hamiltonian!) because it works for the three terms

at the same time — keep in mind that any orthonormal basis is an eigenvector basis for 𝐼 ,

Introducing VQE 263

not just {|0⟩ , |1⟩}. Obviously, another hyperparameter that will impact the execution time

of VQE is the number of times that we measure |𝜓⟩ in each basis. The higher this number,

the more precise the estimation, but also the higher the time needed to estimate ⟨𝜓|𝐻1 |𝜓⟩.

Notice also that the pseudocode of Algorithm 7.1 concludes by estimating ⟨𝜓(𝜃)|𝐻1 |𝜓(𝜃)⟩

for the last state |𝜓(𝜃)⟩ found by the minimization algorithm. This is a quite common use

case, for instance, if we want to determine the ground state energy for a particular system.

However, you are not restricted to just that. At the end of the VQE execution, you also

know the 𝜃0 parameters that were used to build the ground state, and you could use them

to reconstruct |𝜓(𝜃0)⟩ = 𝑉 (𝜃0) |0⟩. This state could then be used for other purposes, such as

being sent into another quantum algorithm.

In fact, in the next subsection, we are going to explore one of such uses: the computation of

additional eigenstates (another name for our old friends, the eigenvectors) of Hamiltonians.

You should be excited!

7.2.1 Getting excited with VQE
As we have just explained, VQE is used to search for a ground state of a given Hamiltonian

𝐻 . However, with a small modification, we can also use it to find excited states: eigenstates

with higher energies. Let’s explain how to achieve this.

Suppose that you have been given a Hamiltonian𝐻 and you have used VQE to find a ground

state |𝜓0⟩ = 𝑉 (𝜃0) |0⟩ with energy 𝜆0. Then, we may consider the modified Hamiltonian

𝐻 ′ = 𝐻 + 𝐶 |𝜓0⟩ ⟨𝜓0| ,

where 𝐶 is a positive real number.

Before we move on to detailing why 𝐻 ′
can enable us to find excited states, let’s explain

what the term |𝜓0⟩ ⟨𝜓0| in that expression means. First of all, notice that this term represents

a square matrix: it is the product of a column vector (|𝜓0⟩) and a row vector (⟨𝜓0|) of the

264 Chapter 7: VQE: Variational Quantum Eigensolver

same length. Moreover, it is a Hermitian matrix, because

(|𝜓0⟩ ⟨𝜓0|)† = ⟨𝜓0|† |𝜓0⟩† = |𝜓0⟩ ⟨𝜓0| .

Then, 𝐻 ′
is the sum of two Hermitian matrices and is, therefore, also Hermitian. And what

is its expectation value? If we have a generic quantum state |𝜓⟩, then

⟨𝜓|𝐻 ′ |𝜓⟩ = ⟨𝜓|𝐻 |𝜓⟩ + 𝐶 ⟨𝜓|𝜓0⟩ ⟨𝜓0|𝜓⟩ = ⟨𝜓|𝐻 |𝜓⟩ + 𝐶|⟨𝜓0|𝜓⟩|2.

That is, the expectation value of 𝐻 ′
in a state |𝜓⟩ is the expectation value of 𝐻 plus a

non-negative value that quantifies the overlap of |𝜓⟩ and |𝜓0⟩. Hence we have two extreme

cases for 𝐶|⟨𝜓0|𝜓⟩|2. If |𝜓⟩ = |𝜓0⟩, this term will be 𝐶. If |𝜓⟩ and |𝜓0⟩ are orthogonal, the

term will be 0.

Thus, if we make 𝐶 big enough, |𝜓0⟩ will no longer be a ground state of 𝐻 ′
. Let’s prove

this is in a more formal way. To this end, let 𝜆0 ≤ 𝜆1 ≤ … ≤ 𝜆𝑛 be the eigenvalues of 𝐻

associated to each eigenvector in an orthonormal eigenvector basis {||𝜆𝑗⟩} (since different

eigenvectors may have the same eigenvalue, some of the energies may be repeated). As

|𝜓0⟩ is, by hypothesis, a ground state, we shall assume that |𝜆0⟩ = |𝜓0⟩. The states {||𝜆𝑗⟩}

are also eigenvectors of 𝐻 ′
because, on the one hand, if 𝑗 ≠ 0,

𝐻 ′ ||𝜆𝑗⟩ = 𝐻 ||𝜆𝑗⟩ + 𝐶 |𝜓0⟩ ⟨𝜓0||𝜆𝑗⟩ = 𝐻 ||𝜆𝑗⟩ + 𝐶 |𝜆0⟩ ⟨𝜆0||𝜆𝑗⟩ = 𝐻 ||𝜆𝑗⟩ = 𝜆𝑗 ||𝜆𝑗⟩ ,

since |𝜆0⟩ and
||𝜆𝑗⟩ are orthogonal. On the other hand,

𝐻 ′ |𝜆0⟩ = 𝐻 |𝜆0⟩ + 𝐶 |𝜓0⟩ ⟨𝜓0|𝜆0⟩ = 𝐻 |𝜆0⟩ + 𝐶 |𝜆0⟩ ⟨𝜆0|𝜆0⟩ = 𝐻 |𝜆0⟩ + 𝐶 |𝜆0⟩ = (𝜆0 + 𝐶) |𝜆0⟩ .

Thus, it follows that ⟨𝜆𝑗 ||𝐻
′ ||𝜆𝑗⟩ = 𝜆𝑗 when 𝑗 ≠ 0 and that ⟨𝜆0|𝐻 ′ |𝜆0⟩ = 𝐶 + 𝜆0. Hence, if

𝐶 > 𝜆1 − 𝜆0, then |𝜓0⟩ = |𝜆0⟩ will no longer be a ground state of 𝐻 ′
, because the energy of

|𝜆1⟩ will be lower than that of |𝜓0⟩. Thanks to the variational principle, we know that the

minimum energy is attained at an eigenvector of 𝐻 ′
, so |𝜆1⟩ must be a ground state of 𝐻 ′

.

Introducing VQE 265

We can then use VQE to search for a ground state of 𝐻 ′
and obtain the state |𝜆1⟩, as we

intended.

To learn more. . .

Notice that it could be the case that 𝜆1 = 𝜆0. In that situation, |𝜆1⟩ would be another

ground state of 𝐻 . Otherwise, it will be the first excited state of 𝐻 .

You may have also noticed that, even if the ground state is unique, the first excited

eigenstate may not be so. This happens if and only if |𝜆2⟩ (and possibly other states in

the basis) has the same energy as |𝜆1⟩, (that is, 𝜆2 = 𝜆1). In that case, any normalized

linear combination of those eigenvectors will be a ground state of 𝐻 ′
. Any of them

will serve our purposes equally well.

Of course, once you obtain |𝜆1⟩, you can consider 𝐻 ′′ = 𝐻 ′ + 𝐶′ |𝜆1⟩ ⟨𝜆1| and use VQE to

search for |𝜆2⟩, and so on and so forth. Keep in mind that, in this process, we would have

to pick the constants 𝐶, 𝐶′,… properly — just to make sure that none of the eigenstates

that we already know becomes a ground state again!

With this, our problem of finding eigenvectors of increasing energy is solved. Or is it?

There is just one little implementation detail that might be bothering you. In the previous

section, we discussed how to estimate the expectation value of a Hamiltonian under the

assumption that it was given as a sum of tensor products of Pauli matrices. However, the

|𝜓0⟩ ⟨𝜓0| term is not of that form. In fact, we know |𝜓0⟩ only as the result of applying VQE,

so it is very likely that we will not know |𝜓0⟩ explicitly; instead, we will have nothing

more than some parameters 𝜃0 such that 𝑉 (𝜃0) |0⟩ = |𝜓0⟩. This, nonetheless, is enough to

compute the expectation values that we need.

Let’s step back a little bit and take a look at what we need to compute. At a given moment in

the application of VQE, we have some parameters 𝜃 and we want to estimate the expectation

value of |𝜓0⟩ ⟨𝜓0| with respect to |𝜓(𝜃)⟩ = 𝑉 (𝜃) |0⟩. This quantity is

⟨𝜓(𝜃)|𝜓0⟩ ⟨𝜓0|𝜓(𝜃)⟩ = |⟨𝜓0|𝜓(𝜃)⟩|2 =
|||⟨0| 𝑉 (𝜃0)

†𝑉 (𝜃) |0⟩|||
2
.

266 Chapter 7: VQE: Variational Quantum Eigensolver

But this is just the probability of obtaining |0⟩ as the outcome of measuring 𝑉 (𝜃0)†𝑉 (𝜃) |0⟩

in the computational basis! This is something that we can easily estimate because we can

prepare 𝑉 (𝜃0)†𝑉 (𝜃) |0⟩ by first applying our ansatz 𝑉 , using 𝜃 as the parameters, to |0⟩, and

then applying the inverse of our ansatz, with parameters 𝜃0, to the resulting state. We will

repeat this process several times, always measuring the resulting state 𝑉 (𝜃0)†𝑉 (𝜃) |0⟩ in

the computational basis and computing the relative frequency of the outcome |0⟩. This is

illustrated in Figure 7.1.

|0⟩

𝑉 (𝜃) 𝑉 (𝜃0)†|0⟩

|0⟩

Figure 7.1: Circuit to compute ||⟨0| 𝑉 (𝜃0)
†𝑉 (𝜃) |0⟩||

2.

The only thing that may, at first, seem difficult with this method is to obtain the circuit for

𝑉 (𝜃0)†. However, this is fairly easy. You just need to remember that every unitary gate

is reversible. Thus, you can take the circuit for 𝑉 (𝜃) and read the gates from right to left,

reversing each one of them. As a simple example, if 𝜃0 = (𝑎, 𝑏) and 𝑉 (𝜃0) = 𝑋𝑅𝑍(𝑎)𝑅𝑋 (𝑏)𝑆,

then 𝑉 (𝜃0)† = 𝑆†𝑅𝑋 (−𝑏)𝑅𝑍(−𝑎)𝑋 .

Do not forget about this technique for estimating
||⟨0| 𝑉 (𝜃0)

†𝑉 (𝜃) |0⟩||
2

because we will be

using it again in Chapter 9, Quantum Support Vector Machines, in a completely different

context.

This concludes our theoretical study of VQE. In the next section, we will learn how to use

this algorithm with Qiskit.

Using VQE with Qiskit 267

7.3 Using VQE with Qiskit
In this section, we will show how we can use Qiskit to run VQE on both simulators and

actual quantum hardware. To do that, we will use a problem taken from quantum chemistry:

determining the energy of the H2 or dihydrogen molecule. Our first subsection is devoted

to defining this problem.

7.3.1 Defining a molecular problem in Qiskit
To illustrate how we can use VQE with Qiskit, we will consider a simple quantum chemistry

problem. We will imagine that we have two atoms of hydrogen forming an H2 molecule

and that we want to compute its ground state and its energy. For that, we need to obtain

the Hamiltonian of the system, which is a little bit different from the kind of Hamiltonian

that we are used to. The Hamiltonians that we have considered so far are called qubit

Hamiltonians, while the one that we need to describe the energy of the H2 molecule is

called a fermionic Hamiltonian — the name comes from the fact that it involves fermions,

that is, particles such as electrons, protons, and neutrons.

We do not need to go into all the details of the computation of this type of Hamiltonian

(if you are curious, you can refer to Chapter 4 in the book by Sharkey and Chancé [57]),

because all the necessary methods are provided in the Qiskit Nature package. What is

more, no quantum computer is involved in the process; it is all computed and estimated

classically.

To obtain the fermionic Hamiltonian for the dihydrogen molecule with Qiskit, we need

to install the Qiskit Nature package as well as the pyscf library, which is used for the

computational chemistry calculations (please, refer to Appendix D, Installing the Tools, for

the installation procedure and note that we will be using version 0.4.5 of the package).

Then, we can execute the following instructions:

from qiskit_nature.drivers import Molecule

from qiskit_nature.drivers.second_quantization import \

ElectronicStructureMoleculeDriver, ElectronicStructureDriverType

268 Chapter 7: VQE: Variational Quantum Eigensolver

from qiskit_nature.problems.second_quantization import \

ElectronicStructureProblem

mol = Molecule(geometry=[['H', [0., 0., -0.37]],

['H', [0., 0., 0.37]]])

driver = ElectronicStructureMoleculeDriver(mol, basis='sto3g',

driver_type=ElectronicStructureDriverType.PYSCF)

problem = ElectronicStructureProblem(driver)

secqop = problem.second_q_ops()

print(secqop[0])

Here, we are defining a molecule consisting of two hydrogen atoms located at coordinates

(0, 0,−0.37) and (0, 0, 0.37) (measured in angstroms), which is close to an equilibrium state

for this molecule. We are using the default parameters, such as, for instance, establishing

that the molecule is not charged. Then, we define an electronic structure problem; that is,

we ask the pyscf library, through the Qiskit interface, to compute the fermionic Hamiltonian

that takes into account the different possible configurations for the electrons of the two

hydrogen atoms. This is done with something called second quantization (hence the

name second_q_ops for the method that we use).

When we run this piece of code, we obtain the following output:

Fermionic Operator

register length=4, number terms=36

-1.2533097866459775 * (+_0 -_0)

+ -0.47506884877217725 * (+_1 -_1)

+ -1.2533097866459775 * (+_2 -_2)

+ -0.47506884877217725 * (+_3 -_3)

+ -0.3373779634072241 * (+_0 +_0 -_0 -_0)

+ -0.0 ...

Using VQE with Qiskit 269

This is a truncated view of the fermionic Hamiltonian, involving something called creation

and annihilation operators that describe how electrons move from one orbital to another

(more details can be found in Chapter 4 of the book by Sharkey and Chancé [57]).

That is all very nice, but we can’t yet use it on our shiny quantum computers. For that, we

need to transform the fermionic Hamiltonian into a qubit Hamiltonian, involving Pauli

gates. There are several ways to do this. One of the most popular ones is the Jordan-

Wigner transformation (again, see the book by Sharkey and Chancé [57] for a thorough

explanation), that we can use in Qiskit with the following instructions:

from qiskit_nature.converters.second_quantization import QubitConverter

from qiskit_nature.mappers.second_quantization import JordanWignerMapper

qconverter = QubitConverter(JordanWignerMapper())

qhamiltonian = qconverter.convert(secqop[0])

print("Qubit Hamiltonian")

print(qhamiltonian)

Upon running this code, we will obtain the following output:

Qubit Hamiltonian

-0.8121706072487122 * IIII

+ 0.17141282644776915 * IIIZ

- 0.22343153690813483 * IIZI

+ 0.17141282644776915 * IZII

- 0.22343153690813483 * ZIII

+ 0.12062523483390415 * IIZZ

+ 0.16868898170361205 * IZIZ

+ 0.04530261550379923 * YYYY

+ 0.04530261550379923 * XXYY

+ 0.04530261550379923 * YYXX

+ 0.04530261550379923 * XXXX

270 Chapter 7: VQE: Variational Quantum Eigensolver

+ 0.16592785033770338 * ZIIZ

+ 0.16592785033770338 * IZZI

+ 0.1744128761226159 * ZIZI

+ 0.12062523483390415 * ZZII

Now we are back on known territory once again! This is, indeed, one of the Hamilto-

nians that we have come to know and love. In fact, this is a Hamiltonian on 4 qubits,

involving tensor products of 𝐼 , 𝑋 , 𝑌 and 𝑍 gates, as the ones appearing in terms such as

0.17141282644776915 * IIIZ or 0.04530261550379923 * XXYY.

What is more important to us: this is the kind of Hamiltonian to which we can apply the

VQE algorithm in order to obtain its ground state. And, without further ado, that is exactly

what we will be doing in the next subsection.

7.3.2 Using VQE with Hamiltonians
Now that we have a qubit Hamiltonian describing our electronic problem, let’s see how

we can use VQE with Qiskit to find its ground state. Remember that, to use VQE, we first

need to choose an ansatz. To start with, we will use something simple. We will select one

of the variational forms provided by Qiskit: the EfficientSU2 form. We can define it and

draw its circuit for 4 qubits with the following instructions (remember that you need to

install the pylatexenc library to draw with the "mpl" option; please, refer to Appendix D,

Installing the Tools):

from qiskit.circuit.library import EfficientSU2

ansatz = EfficientSU2(num_qubits=4, reps=1, entanglement="linear",

insert_barriers = True)

ansatz.decompose().draw("mpl")

Here, we have specified that we are using the variational form on 4 qubits, that we only

use one repetition (that is, a single layer of CNOT gates) and that the entanglement that

we want to use is linear: this means that each qubit is entangled with a CNOT gate to

Using VQE with Qiskit 271

the following one. After running this piece of code, we will obtain the image depicted in

Figure 7.2. As you can see, we are using 𝑅𝑌 and 𝑅𝑍 gates, together with entangling gates

(CNOT gates, in this case). In total, we have 16 different tunable parameters, represented

by 𝜃[0],… , 𝜃[15] in the figure. We will discuss more variational forms, similar to this one,

in Chapters 9 and 10. For now, it is enough to notice that this is a circuit that we can

easily implement in current quantum hardware (because it only involves simple one and

two-qubit gates), but that allows us to create somewhat complicated quantum states, with

entanglement among all the qubits.

Figure 7.2: The EfficientSU2 variational form on 4 qubits.

Once we have selected our ansatz, we can define a VQE instance. In order to do that, we

can use the following instructions:

from qiskit.algorithms import VQE

from qiskit import Aer

from qiskit.utils import QuantumInstance, algorithm_globals

import numpy as np

from qiskit.algorithms.optimizers import COBYLA

seed = 1234

np.random.seed(seed)

272 Chapter 7: VQE: Variational Quantum Eigensolver

algorithm_globals.random_seed = seed

optimizer = COBYLA()

initial_point = np.random.random(ansatz.num_parameters)

quantum_instance = QuantumInstance(backend =

Aer.get_backend('aer_simulator_statevector'))

vqe = VQE(ansatz=ansatz, optimizer=optimizer,

initial_point=initial_point,

quantum_instance=quantum_instance)

After the necessary imports, we set a seed for reproducibility. Then, we selected COBYLA

as our classical optimizer; that is, the algorithm in charge of varying the parameters in

order to find those that achieve the minimum energy. We also set some random initial

values for our parameters and we declared a QuantumInstance that encapsulates a state

vector simulator. Finally, we declared our VQE instance with the ansatz, optimizer, initial

values, and quantum instance options.

Running the VQE is now very easy. We only need to execute the following instructions:

result = vqe.compute_minimum_eigenvalue(qhamiltonian)

print(result)

After a few seconds, we obtain the following output:

{ 'aux_operator_eigenvalues': None,

'cost_function_evals': 888,

'eigenstate': array([1.55163279e-09+7.04522580e-10j,

1.17994431e-06+6.29389934e-07j,

-6.87287902e-05-1.19175176e-04j, 9.01607105e-09+1.75153048e-10j,

3.17070261e-06-2.71251777e-05j, -9.23514532e-01-3.66685696e-01j,

Using VQE with Qiskit 273

-6.50833666e-07-1.04178617e-06j, -6.40877389e-06-1.04499914e-05j,

-1.33988128e-06+3.63309921e-07j, 1.08441415e-05+7.61755332e-08j,

1.04578392e-01+4.15432635e-02j, -5.85921512e-06+4.47076415e-06j,

-1.01179799e-09+1.85616927e-09j, 5.57085679e-05+5.29593190e-05j,

1.47630244e-07+4.00357904e-08j, 1.51330159e-10+9.41869390e-10j]),

'eigenvalue': (-1.8523881417094914+0j),

'optimal_circuit': None,

'optimal_parameters': {

ParameterVectorElement(𝜃[7]): -0.10263498379273155,

ParameterVectorElement(𝜃[6]): -0.13154223054201972,

ParameterVectorElement(𝜃[8]): 3.1416468430294864,

ParameterVectorElement(𝜃[13]): 0.6426987629297032,

ParameterVectorElement(𝜃[9]): 2.4674114077579344e-05,

ParameterVectorElement(𝜃[14]): -0.11387081297526412,

ParameterVectorElement(𝜃[15]): 2.525254909939928,

ParameterVectorElement(𝜃[12]): 1.8446272942674344,

ParameterVectorElement(𝜃[11]): -0.0011789455587669483,

ParameterVectorElement(𝜃[10]): 2.7179451047891577e-06,

ParameterVectorElement(𝜃[3]): 3.1403232388683655,

ParameterVectorElement(𝜃[1]): 9.061128731357842e-06,

ParameterVectorElement(𝜃[2]): 3.141570826032646,

ParameterVectorElement(𝜃[0]): -0.22553325325129397,

ParameterVectorElement(𝜃[5]): 2.1513214842441912,

ParameterVectorElement(𝜃[4]): 1.7045601611970793},

'optimal_point': array([-2.25533253e-01, 9.06112873e-06,

3.14157083e+00, 3.14032324e+00,

1.70456016e+00, 2.15132148e+00, -1.31542231e-01, -1.02634984e-01,

3.14164684e+00, 2.46741141e-05, 2.71794510e-06, -1.17894556e-03,

1.84462729e+00, 6.42698763e-01, -1.13870813e-01, 2.52525491e+00]),

274 Chapter 7: VQE: Variational Quantum Eigensolver

'optimal_value': -1.8523881417094914,

'optimizer_evals': None,

'optimizer_result': None,

'optimizer_time': 3.0011892318725586}

This may seem like a lot of information but, in fact, some data is presented several times

in different ways and, all in all, the format is quite similar to what we are used to from

our experience using QAOA in Qiskit back in Chapter 5, QAOA: Quantum Approximate

Optimization Algorithm. As you can see, we have obtained the optimal values for the circuit

parameters, the state that is generated with those parameters (the 'eigenstate' field) and

what we were looking for: the energy of that state, which happens to be about −1.8524

hartrees (the unit of energy commonly used in molecular orbital calculations). This means

that. . .we have solved our problem! Or have we? How can we be sure that the value that

we have obtained is correct?

In this case, the Hamiltonian that we are using is quite small (only 4 qubits), so we can

check our result using a classical solver that finds the exact ground state. We will use

NumPyMinimumEigensolver, just as we did with the combinatorial optimization problems

that we considered back in Chapter 5, QAOA: Quantum Approximate Optimization Algorithm.

For that, we can run the following piece of code:

from qiskit.algorithms.minimum_eigensolvers import \

NumPyMinimumEigensolver

solver = NumPyMinimumEigensolver()

result = solver.compute_minimum_eigenvalue(qhamiltonian)

print(result)

The output of these instructions is the following:

{ 'aux_operators_evaluated': None,

'eigenstate': Statevector([-1.53666363e-17-4.93701060e-20j,

-4.57234900e-16-4.65250782e-16j,

Using VQE with Qiskit 275

1.25565337e-17-2.11612780e-17j,

4.73690908e-16-1.33060132e-16j,

1.52564317e-16-1.40021223e-16j,

-6.67316913e-01-7.36221442e-01j,

-1.62999711e-16-2.24584031e-16j,

-8.42710421e-17+6.43081213e-17j,

-7.98957973e-17-1.35250844e-17j,

1.90408979e-16+3.25517112e-16j,

7.55826341e-02+8.33870007e-02j,

-3.56170534e-17+9.82948865e-17j,

-4.51619835e-16+1.70721750e-16j,

1.91645940e-17-1.45775129e-16j,

-4.79331105e-17+5.57184037e-17j,

-3.62080563e-17+4.86380668e-17j],

dims=(2, 2, 2, 2)),

'eigenvalue': -1.852388173569583}

This is certainly more concise than the VQE output, but the final energy is almost equal

to the one we had obtained previously. Now we can really say it: we did it! We have

successfully solved a molecular problem with VQE!

Of course, we can use VQE with any type of Hamiltonian, not just with the ones that come

from quantum chemistry problems. We can even use it with Hamiltonians for combina-

torial optimization problems, as we did back in Chapter 5, QAOA: Quantum Approximate

Optimization Algorithm. With what we already know, this is easy. . . so easy that we entrust

it to you as an exercise.

Exercise 7.7

Use Qiskit’s VQE implementation to solve the Max-Cut problem for a graph of 5

vertices in which the connections are (0, 1), (1, 2), (2, 3), (3, 4) and (4, 0).

276 Chapter 7: VQE: Variational Quantum Eigensolver

Once we know how to find the ground state of a Hamiltonian with VQE, why not be a little

more ambitious? In the next subsection, we will also be looking for excited states!

7.3.3 Finding excited states with Qiskit
Back in Section 7.2.1, we learned how to use VQE iteratively to find not only the ground

state of a Hamiltonian, but also states of higher energy that we call excited states. The

algorithm that we studied is sometimes called Variational Quantum Deflation (this was

the name used by Higgot, Wang, and Brierley when they introduced it [58]) or VQD, and

it is implemented by Qiskit in the VQD class.

Using VQD in Qiskit is almost the same as using VQE. The only difference is that we need

to specify how many eigenstates we want to obtain (of course, if we only request 1 this

will be exactly like applying VQE). For instance, if we want to obtain two eigenstates (the

ground state and the first excited state) in our molecular problem, we can use the following

instructions:

from qiskit.algorithms import VQD

vqd = VQD(ansatz=ansatz,

optimizer=optimizer,

initial_point=initial_point,

quantum_instance=quantum_instance,

k = 2)

result = vqd.compute_eigenvalues(qhamiltonian)

print(result)

The k parameter is the one that we use to specify the number of eigenstates. Upon running

these instructions, we obtain the following output (we have omitted part of it for brevity):

{ 'aux_operator_eigenvalues': None,

'cost_function_evals': array([888, 1000]),

'eigenstates': ListOp([VectorStateFn(Statevector(

[1.55163279e-09+7.04522580e-10j,

Using VQE with Qiskit 277

1.17994431e-06+6.29389934e-07j,

...

1.51330159e-10+9.41869390e-10j],

dims=(2, 2, 2, 2)), coeff=1.0,

is_measurement=False),

VectorStateFn(Statevector(

[-5.01605162e-02+4.38928908e-02j,

-7.31117975e-01-3.69461649e-02j,

-6.34876999e-03-5.19845422e-03j,

...

-4.10301081e-02+2.77415065e-02j],

dims=(2, 2, 2, 2)), coeff=1.0,

is_measurement=False)], coeff=1.0,

abelian=False),

'eigenvalues': array([-1.85238814-1.11e-16j, -1.19536442+0.00e+00j]),

'optimal_circuit': None,

'optimal_parameters': [

{ ParameterVectorElement(𝜃[0]): -0.22553325325129397,

ParameterVectorElement(𝜃[1]): 9.061128731357842e-06,

...

ParameterVectorElement(𝜃[15]): 2.525254909939928},

{ ParameterVectorElement(𝜃[0]): 0.012174657752649348,

ParameterVectorElement(𝜃[1]): -0.056812096977499754,

...

ParameterVectorElement(𝜃[15]): 1.522408417522795}],

'optimal_point':

array([[-2.25533253e-01, 9.06112873e-06, 3.14157083e+00,

3.14032324e+00, 1.70456016e+00, 2.15132148e+00,

...

278 Chapter 7: VQE: Variational Quantum Eigensolver

2.52525491e+00],

[1.21746578e-02, -5.68120970e-02, 1.31641034e+00,

4.59223490e-01, 7.25749716e-01, 9.54546607e-02,

...

1.52240842e+00]]),

'optimal_value': array([-1.85238814, -1.1952203]),

'optimizer_evals': None,

'optimizer_result': None,

'optimizer_time': array([2.32541203, 53.26829457])}

As you can see, this output is structured like that of the VQE execution. However, in this

case, we get two entries in each field, one for each of the eigenstates that we requested.

So far, we have learned how to use both VQE and VQD with Hamiltonians that may

have come from any source. However, the use case of finding ground states of molecular

Hamiltonians is so important that Qiskit provides special methods for dealing with them

in particular. We will learn how in the next subsection.

7.3.4 Using VQE with molecular problems
In addition to using VQE to find ground states of any given Hamiltonian, we can use it

directly with molecular problems that we define with the help of the Qiskit Nature utilities.

For instance, we can use a VQE instance to solve the electronic problem that we defined in

the previous subsection. To do that, we only need to run the following instructions:

from qiskit_nature.algorithms import GroundStateEigensolver

solver = GroundStateEigensolver(qconverter, vqe)

result = solver.solve(problem)

print(result)

As you can see, we have defined a GroundStateEigensolver object that we then use to

solve our problem. This object, in turn, uses two objects that we had defined previously —

Using VQE with Qiskit 279

qconverter, which is used to transform the fermionic Hamiltonian into a qubit Hamiltonian,

and the instance of VQE that we used two subsections ago. When we run these instructions,

we get the following output:

=== GROUND STATE ENERGY ===

* Electronic ground state energy (Hartree): -1.852388141709

- computed part: -1.852388141709

~ Nuclear repulsion energy (Hartree): 0.715104339081

> Total ground state energy (Hartree): -1.137283802628

=== MEASURED OBSERVABLES ===

0: # Particles: 2.000 S: 0.000 S^2: 0.000 M: 0.000

=== DIPOLE MOMENTS ===

~ Nuclear dipole moment (a.u.): [0.0 0.0 0.0]

0:

* Electronic dipole moment (a.u.): [0.0 0.0 0.00001495]

- computed part: [0.0 0.0 0.00001495]

> Dipole moment (a.u.): [0.0 0.0 -0.00001495] Total: 0.00001495

(debye): [0.0 0.0 -0.000038] Total: 0.000038

The information that we get in this case is at a higher level of abstraction than the one we

obtained before. For instance, we get data about the number of particles, dipole moments,

and so on (don’t worry if you do not understand these concepts; they are meant to make

sense to chemists and physicists that work with this kind of problem). However, the

numerical result of the electronic ground state energy is the same that we obtained with

our previous application of VQE. The difference is that now, we are providing the solver

280 Chapter 7: VQE: Variational Quantum Eigensolver

not only with the Hamiltonian, but with the whole problem, and it can use that information

to reconstruct the meaning of the calculations in physical terms. For instance, we now get

some bonus information such as the total ground state energy, which is the sum of the

energy due to the electronic structure (the one that we had computed previously) and the

energy due to nuclear repulsion.

This type of output is much more legible. That’s why we will use this solver for the rest of

this section.

As an additional example of how to use VQE to solve molecular problems, we are now

going to consider a different, more elaborate ansatz. Earlier in this chapter, we mentioned

how, when selecting the variational form and initial state to be used with VQE, it could

prove useful to take into account information from the problem domain. This is the case of

the Unitary Coupled-Cluster Singles and Doubles or UCCSD ansatz, which is widely

used for molecular computations (see the survey by McArdle et al. [54] for more details).

In Qiskit, we can use the UCSSD ansatz with the following instructions:

from qiskit_nature.algorithms import VQEUCCFactory

vqeuccf = VQEUCCFactory(quantum_instance = quantum_instance)

The VQEUCCFactory class creates a whole VQE instance, with the UCSSD ansatz as the

default variational form. Here, we are using the quantum_instance object that we had

defined previously. We can visualize the circuit for the ansatz created by VQEUCCFactory

with the following instruction:

vqeuccf.get_solver(problem, qconverter).ansatz.decompose().draw("mpl")

Notice that we are calling the get_solver method, to which we pass the problem object

defined previously to provide the information about the Hamiltonian involved in the

computation. Then, we access the ansatz circuit through the ansatz attribute and we

proceed to draw it. Upon running this instruction, we obtain the circuit depicted in

Figure 7.3. As you can see, the ansatz involves exponential functions of tensor products

Using VQE with Qiskit 281

of Pauli matrices. There are also two 𝑋 gates at the beginning of the circuit that set the

initial state to which the variational form is later applied. In this case, the state is called the

Hartree-Fock state, again a widely used option when solving molecular problems with

quantum computers — and the default value with VQEUCCFactory.

Figure 7.3: UCCSD ansatz for our problem

Now, we can easily use VQE to solve our problem with the selected ansatz by running the

following piece of code:

solver = GroundStateEigensolver(qconverter, vqeuccf)

result = solver.solve(problem)

print(result)

This will give us the following output:

=== GROUND STATE ENERGY ===

* Electronic ground state energy (Hartree): -1.852388173513

- computed part: -1.852388173513

~ Nuclear repulsion energy (Hartree): 0.715104339081

> Total ground state energy (Hartree): -1.137283834432

=== MEASURED OBSERVABLES ===

0: # Particles: 2.000 S: 0.000 S^2: 0.000 M: 0.000

=== DIPOLE MOMENTS ===

282 Chapter 7: VQE: Variational Quantum Eigensolver

~ Nuclear dipole moment (a.u.): [0.0 0.0 0.0]

0:

* Electronic dipole moment (a.u.): [0.0 0.0 -0.00000013]

- computed part: [0.0 0.0 -0.00000013]

> Dipole moment (a.u.): [0.0 0.0 0.00000013] Total: 0.00000013

(debye): [0.0 0.0 0.00000033] Total: 0.00000033

This result is very similar to the one that we obtained with the EfficientSU2 ansatz.

Exercise 7.8

Write code to use VQE with the UCCSD ansatz to compute the total ground state

energy for two atoms of hydrogen that are at distances ranging from 0.2 to 2.0

angstroms, in steps of 0.01 angstroms. Plot the energy against the distance. This

kind of plot is sometimes known as the dissociation profile of the molecule. Hint:

when running VQE on a molecular problem, you can access the total ground state

energy through the total_energies attribute of the result object.

Now that we know how to use VQE in different ways with simulators, we could try to run

the algorithm on actual quantum computers. Nevertheless, before doing that, we will learn

how to incorporate noise to our quantum simulator.

7.3.5 Simulations with noise
Going from a perfect, classical simulation of an algorithm to an execution on an actual

quantum device can, sometimes, be too big a step. As we have mentioned in many occasions,

current quantum computers suffer from the effect of different types of noise, including

readout errors, imperfections in gate implementation, and decoherence, the loss of quantum

properties of our states if the circuits are too deep.

Using VQE with Qiskit 283

For this reason, it is usually a good idea to perform a simulation of our algorithm under

the effects of noise before going to the actual quantum device. In this way, we can study

the performance of our algorithms in a controlled environment, and calibrate and adjust

some of their parameters before running them on a quantum computer. For instance, if we

observe that the results differ much from ideal simulation, we could decide to reduce the

depth of our circuits by using a simpler ansatz.

There are several ways of conducting noisy simulations with Qiskit. Here, we will show

how to use one that is both easy and very useful. We will create a simulator that mimics

the behaviour of a real device, including the noise it is affected by. We can do this with the

help of the AerSimulator class in the following way:

from qiskit.providers.aer import AerSimulator

from qiskit import IBMQ

provider = IBMQ.load_account()

backend = provider.get_backend('ibmq_manila')

quantum_instance = QuantumInstance(

backend = AerSimulator.from_backend(backend),

seed_simulator=seed, seed_transpiler = seed, shots = 1024)

Notice that we need to load an IBM account in order to access the calibration of a real

device (ibmq_manila, in our example). This calibration is updated periodically to stay real

to the state of the quantum computer and includes, among other things, information about

readout errors, gate errors, and coherence times. Of course, this data will change from time

to time, but we have decided to include seeds for our QuantumInstance object to make the

result reproducible given the same calibration data. Notice that we are now specifying the

number of shots, because we are not using state vector simulation anymore.

Now, we can run the VQE algorithm exactly as before:

vqe = VQE(

ansatz=ansatz,

284 Chapter 7: VQE: Variational Quantum Eigensolver

optimizer=optimizer,

initial_point=initial_point,

quantum_instance=quantum_instance

)

solver = GroundStateEigensolver(qconverter, vqe)

result = solver.solve(problem)

print(result)

When we ran this code, we obtained the following output (your results may be different,

depending on the device calibration):

=== GROUND STATE ENERGY ===

* Electronic ground state energy (Hartree): -1.763282965888

- computed part: -1.763282965888

~ Nuclear repulsion energy (Hartree): 0.715104339081

> Total ground state energy (Hartree): -1.048178626807

=== MEASURED OBSERVABLES ===

0: # Particles: 1.978 S: 0.080 S^2: 0.086 M: 0.001

=== DIPOLE MOMENTS ===

~ Nuclear dipole moment (a.u.): [0.0 0.0 0.0]

0:

* Electronic dipole moment (a.u.): [0.0 0.0 0.04634607]

- computed part: [0.0 0.0 0.04634607]

Using VQE with Qiskit 285

> Dipole moment (a.u.): [0.0 0.0 -0.04634607] Total: 0.04634607

(debye): [0.0 0.0 -0.11779994] Total: 0.11779994

Observe how the effect of noise has affected the performance of the algorithm and degraded

it, giving a result for the total ground state energy that is not that close to the correct one.

To learn more. . .

An alternative way of mimicking the behavior of real quantum computers is using

objects of the FakeProvider class. The difference is that they use snapshots of past

calibrations of the devices instead of the latest ones. You can find more details at

https://qiskit.org/documentation/apidoc/providers_fake_provider.html.

Additionally, you can create custom noise models that include the different noise

types implemented in the qiskit_aer.noise package. Check the documentation

at https://qiskit.org/documentation/apidoc/aer_noise.html for further

explanation.

A way to try of reducing the adverse effects of noise in our computations is using readout

error mitigation methods. The idea behind the particular method that we are going to

use is very simple. Imagine that we know that, when the state of our qubit is |0⟩, there is a

certain percentage of times it in which we obtain the incorrect value 1 when we measure

it. Then, we can take into account this information to correct the measurement results that

we have obtained.

In Qiskit, using readout error mitigation is very easy. We only need to create our Quantum

Instance object in the following way:

from qiskit.utils.mitigation import CompleteMeasFitter

quantum_instance = QuantumInstance(

backend = AerSimulator.from_backend(backend),

measurement_error_mitigation_cls=CompleteMeasFitter,

seed_simulator=seed, seed_transpiler = seed, shots = 1024)

https://qiskit.org/documentation/apidoc/providers_fake_provider.html
https://qiskit.org/documentation/apidoc/aer_noise.html

286 Chapter 7: VQE: Variational Quantum Eigensolver

Then, we can run VQE as usual, using this new QuantumInstance variable. In our case, that

led to the following result (again, yours will likely differ because of the device calibration):

=== GROUND STATE ENERGY ===

* Electronic ground state energy (Hartree): -1.827326686753

- computed part: -1.827326686753

~ Nuclear repulsion energy (Hartree): 0.715104339081

> Total ground state energy (Hartree): -1.112222347671

=== MEASURED OBSERVABLES ===

0: # Particles: 1.991 S: -0.000 S^2: -0.000 M: -0.006

=== DIPOLE MOMENTS ===

~ Nuclear dipole moment (a.u.): [0.0 0.0 0.0]

0:

* Electronic dipole moment (a.u.): [0.0 0.0 -0.05906852]

- computed part: [0.0 0.0 -0.05906852]

> Dipole moment (a.u.): [0.0 0.0 0.05906852] Total: 0.05906852

(debye): [0.0 0.0 0.15013718] Total: 0.15013718

As you can see, our current result — compared with our previous simulation with noise

and no error mitigation — is now much closer to the real ground state energy (although

you have surely noticed that there is still room for improvement).

In order to run this kind of error mitigation, we need to know the probability of measuring

𝑦 when we actually have |𝑥⟩ for every pair of binary strings 𝑥 and 𝑦. Of course, estimating

these values is computationally very expensive, because the number of strings grows

Using VQE with Qiskit 287

exponentially with the number of qubits. Alternatively, we could assume that the readout

errors are local and estimate instead the probability of obtaining an incorrect result for

each individual qubit only. In Qiskit, you choose to take this approach by replacing

CompleteMeasFitter with TensoredMeasFitter. However, at the time of writing, not all

backends support this possibility, so you’d better be careful if you decide to use it.

To learn more. . .

There is much more to say about trying to mitigate the effects of noise in quantum

computations. Unfortunately, studying error mitigation further would make this

chapter much, much longer (and it is already fairly long!). Should you be interested

in this topic, we can recommend that you check the paper by Bravyi et al. [59]

to learn more about measurement error mitigation and the papers by Temme et

al. [60] and by Endo et al. [61] to learn more about how to mitigate errors in general,

including the ones causes by imperfect gate implementation. You may also want to

take a look at Mitiq, a very easy-to-use software package for error mitigation that

is compatible with Qiskit and other quantum computing libraries [62].

The techniques that we have introduced to simulate noisy devices and to mitigate readout

errors are not only applicable to the VQE algorithm. In fact, noisy simulation can be

used when running any circuit, because we can just use a backend object created with the

AerSimulator.from_backend function and a real quantum computer.

Moreover, readout error mitigation can be used with any algorithm that uses an object

of the class QuantumInstance to run circuits. This includes QAOA and GAS, which we

studied in Chapters 5 and 6, respectively, as well as the QSVMs, the QNNs and the QGANs

that we will study in Chapters 9, 10, 11, and 12.

But the possibilities don’t end there. In fact, every QuantumInstance object provides an

execute method that receives quantum circuits and executes them. So, you can create

a QuantumInstance with a noisy backend and the measurement_error_mitigation_cls

argument, and then invoke execute to obtain results with error mitigation.

288 Chapter 7: VQE: Variational Quantum Eigensolver

Exercise 7.9

Create a noisy backend from a real quantum computer. Then, use it to run a simple

two-qubit circuit consisting of a Hadamard gate on the first qubit, a CNOT gate

with control on the first qubit and target in the second, and a final measurement

of both qubits. Compare the results to those of ideal simulation. Then, create a

QuantumInstance from your backend and using readout error mitigation. Run the

circuit with it. Compare the results to what you obtained before.

Exercise 7.10

Run QAOA with a simple Hamiltonian on a noisy simulator with and without

readout error mitigation. Compare the results.

Now that we know how to run simulations with noise, we are ready for the next big step:

let’s run VQE on actual quantum devices.

7.3.6 Running VQE on quantum computers
By now, you surely have guessed what we are going to say about running VQE on quantum

devices. If you were thinking that we could just use a real backend when creating our

QuantumInstance object, but that it would involve waiting multiple queues and that there

must be a better way, you were completely spot on. In fact, we can use Runtime to send

our VQE jobs to IBM’s quantum computers, waiting only in one execution queue. The way

in which we can use VQE with Runtime is very similar to what we showed in Section 5.2.1

for QAOA. We can use the VQEClient as follows:

from qiskit_nature.runtime import VQEClient

backend = provider.get_backend('ibmq_manila')

vqe = VQEClient(

ansatz=ansatz,

provider=provider,

Using VQE with Qiskit 289

backend=backend,

shots=1024,

initial_point = initial_point,

measurement_error_mitigation=False

)

solver = GroundStateEigensolver(qconverter, vqe)

result = solver.solve(problem)

print(result)

This is completely analogous to how we run VQE on local simulators, but now we are

sending the task to the real quantum device called ibmq_manila. Notice that we have

specified the number of shots and that we have opted to use the default optimizer since

we haven’t provided a value for the optimizer argument. The default optimizer for this

algorithm is SPSA.

The results that we obtained (after waiting some time in the queue) were the following:

=== GROUND STATE ENERGY ===

* Electronic ground state energy (Hartree): -1.745062049527

- computed part: -1.745062049527

~ Nuclear repulsion energy (Hartree): 0.715104339081

> Total ground state energy (Hartree): -1.029957710446

=== MEASURED OBSERVABLES ===

0: # Particles: 1.988 S: 0.131 S^2: 0.149 M: -0.005

=== DIPOLE MOMENTS ===

290 Chapter 7: VQE: Variational Quantum Eigensolver

~ Nuclear dipole moment (a.u.): [0.0 0.0 0.0]

0:

* Electronic dipole moment (a.u.): [0.0 0.0 0.01726618]

- computed part: [0.0 0.0 0.01726618]

> Dipole moment (a.u.): [0.0 0.0 -0.01726618] Total: 0.01726618

(debye): [0.0 0.0 -0.04388625] Total: 0.04388625

We can observe again the effect of noise in this execution. Of course, we can try to reduce it

by setting measurement_error_mitigation=True and running the same code again. When

we did that, we obtained the following output:

=== GROUND STATE ENERGY ===

* Electronic ground state energy (Hartree): -1.830922842008

- computed part: -1.830922842008

~ Nuclear repulsion energy (Hartree): 0.715104339081

> Total ground state energy (Hartree): -1.115818502927

=== MEASURED OBSERVABLES ===

0: # Particles: 2.020 S: 0.035 S^2: 0.036 M: 0.010

=== DIPOLE MOMENTS ===

~ Nuclear dipole moment (a.u.): [0.0 0.0 0.0]

0:

* Electronic dipole moment (a.u.): [0.0 0.0 -0.00999621]

- computed part: [0.0 0.0 -0.00999621]

Using VQE with Qiskit 291

> Dipole moment (a.u.): [0.0 0.0 0.00999621] Total: 0.00999621

(debye): [0.0 0.0 0.02540783] Total: 0.02540783

That is a little bit better, right?

With this, we have covered everything we wanted to tell you about how to run VQE with

Qiskit. . . or almost everything. In the next subsection, we will show you some new features

that are being added to Qiskit and that can change the way in which algorithms such as

VQE are used.

7.3.7 The shape of things to come: the future of Qiskit
Quantum computing software libraries are in constant evolution and Qiskit is no exception

to this rule. Although everything that we have studied in this section is the main way of

running VQE with the latest version of Qiskit (which is 0.39.2 at the time of writing this

book), a new way of executing the algorithm is also being introduced and it will likely

become the default one in the not-so-distant future.

This new way of doing things involves some modifications, the most important of which

is replacing the use of QuantumInstance objects with Estimator variables. An Estimator

is an object that is capable running a parametrized circuit to obtain a quantum state and

then estimate (who would have guessed?) the expectation value of some observable on

that state. Of course, this is exactly what we need in order to be able to run VQE, as you

surely remember from Section 7.2.

Let’s see an example of how this would work. The following code is a possible way

of running VQE to solve the same molecular problem that we have been considering

throughout this section with the new implementations that are being introduced in Qiskit:

from qiskit.algorithms.minimum_eigensolvers import VQE

from qiskit.primitives import Estimator

estimator= Estimator()

292 Chapter 7: VQE: Variational Quantum Eigensolver

vqe = VQE(

ansatz=ansatz,

optimizer=optimizer,

initial_point=initial_point,

estimator=estimator

)

result = vqe.compute_minimum_eigenvalue(qhamiltonian)

print(result)

Notice that we are importing VQE from qiskit.algorithms.minimum_eigensolvers, not

from qiskit.algorithms as before. Also notice how the Estimator object has replaced

the QuantumInstance one that we used to use.

Running these instructions will give an output like the following one (shortened here for

brevity):

{ 'aux_operators_evaluated': None,

'cost_function_evals': 1000,

'eigenvalue': -1.8523881060316512,

'optimal_circuit':

<qiskit.circuit.library.n_local.efficient_su2.EfficientSU2

object at 0x7f92367aac90>,

'optimal_parameters': {

ParameterVectorElement(𝜃[10]): -5.6469331359894016e-05,

ParameterVectorElement(𝜃[7]): -0.07317113283182797,

...

ParameterVectorElement(𝜃[15]): 2.5406547025358206},

'optimal_point': array(

[-2.25566150e-01, -3.48673819e-05, 3.14159358e+00, 3.13967948e+00,

Using VQE with Qiskit 293

1.74766932e+00, 2.19381131e+00, -1.17362733e-01, -7.31711328e-02,

3.14163959e+00, -5.24406909e-05, -5.64693314e-05, -1.86976530e-03,

1.95315840e+00, 6.62795965e-01, -1.43666055e-01, 2.54065470e+00]),

'optimal_value': -1.8523881060316512,

'optimizer_evals': None,

'optimizer_result':

<qiskit.algorithms.optimizers.optimizer.OptimizerResult

object at 0x7f9240af82d0>,

'optimizer_time': 6.93215799331665}

This should sound familiar because it is the same kind of result that we obtained when

using the current VQE implementation directly on a Hamiltonian.

As you can see, things are not going to change a lot in this new version. The main novelty

is the use of Estimator objects. So, how do they work? Well, it depends. For instance,

the one that we have imported from qiskit.primitives uses a state vector simulator to

obtain a quantum state from a circuit. Then, it computes its expectation value by calling the

expectation_value method, as we did back in Section 3.2.2. However, the Estimator class

implemented in qiskit_aer.primitives uses the method that we explained in Section 7.1.2

by appending additional gates to the parametrized circuit in order to perform measurements

in different bases.

Unfortunately, at the time of writing this book, some of the features that we have covered

in this section, such as noisy simulation and error mitigation, are still not completely

supported by the new version of the algorithms. Moreover, some of the Estimator classes

are not fully compatible with the new VQE implementation yet.

However, Qiskit changes rapidly, so maybe, in the future, you can fully reproduce our code

with Estimator objects instead of QuantumInstance ones by the time you will be reading

these lines. Time will tell!

294 Chapter 7: VQE: Variational Quantum Eigensolver

Important note

The changes that we have described in this subsection are expected to also affect

other algorithms implemented in Qiskit, such as VQD or QAOA. In the case of

QAOA, instead of Estimator objects, you will need to use Sampler objects. As you

can imagine, they will let you obtain samples from parametrized circuits, which can

later be used by QAOA to estimate the value of the cost function.

And now, we promise, this is really all we wanted to tell you about running VQE with

Qiskit. Our next stop is PennyLane.

7.4 Using VQE with PennyLane
In this section, we will illustrate how to run VQE with PennyLane. The problem that we

will work with will be, again, finding the ground state of the dihydrogen molecule. This is

a task we are already familiar with and, moreover, this will allow us to compare our results

with those that we obtained with Qiskit in the previous section. So, without further ado,

let’s start by showing how to define the problem in PennyLane.

7.4.1 Defining a molecular problem in PennyLane
As with Qiskit, PennyLane provides methods to work with quantum chemistry problems.

To study the H2 molecule, we can use the following instructions:

import pennylane as qml

from pennylane import numpy as np

seed = 1234

np.random.seed(seed)

symbols = ["H", "H"]

coordinates = np.array([0.0, 0.0, -0.6991986158, 0.0, 0.0, 0.6991986158])

Using VQE with PennyLane 295

H, qubits = qml.qchem.molecular_hamiltonian(symbols, coordinates)

print("Qubit Hamiltonian: ")

print(H)

You may be thinking that there is something fishy here. When we defined this same

molecule in Qiskit, we used coordinates [0., 0., -0.37],[0., 0., 0.37], which seem

different from the ones that we are using now. The explanation for this change is that,

while Qiskit uses angstroms to measure atomic distances, PennyLane expects the values to

be in atomic units. An angstrom is worth 1.8897259886 atomic units, hence the difference.

We can now obtain the qubit Hamiltonian that we need to use with VQE by running the

following piece of code:

H, qubits = qml.qchem.molecular_hamiltonian(symbols, coordinates)

print("Qubit Hamiltonian: ")

print(H)

The output that we obtain is the following:

Qubit Hamiltonian:

(-0.22343155727095726) [Z2]

+ (-0.22343155727095726) [Z3]

+ (-0.09706620778626623) [I0]

+ (0.17141283498167342) [Z1]

+ (0.1714128349816736) [Z0]

+ (0.12062523781179485) [Z0 Z2]

+ (0.12062523781179485) [Z1 Z3]

+ (0.16592785242008765) [Z0 Z3]

+ (0.16592785242008765) [Z1 Z2]

+ (0.16868898461469894) [Z0 Z1]

+ (0.17441287780052514) [Z2 Z3]

+ (-0.04530261460829278) [Y0 Y1 X2 X3]

296 Chapter 7: VQE: Variational Quantum Eigensolver

+ (-0.04530261460829278) [X0 X1 Y2 Y3]

+ (0.04530261460829278) [Y0 X1 X2 Y3]

+ (0.04530261460829278) [X0 Y1 Y2 X3]

If you compare this Hamiltonian to the one that we obtained with Qiskit for the same

problem you will notice that they are very different. But don’t panic yet. While Qiskit gave

us the Hamiltonian for the electronic structure of the molecule, PennyLane is accounting

for the total energy, including nuclear repulsion. We will run the algorithm in a moment

and, trust us, we will see how everything adds up.

7.4.2 Implementing and running VQE
Before using VQE, we need to decide what variational form we are going to use as the

ansatz. To keep things simple, we will stick with the EfficientSU2 that we used in the

previous section.

This variational form is not included in PennyLane at the time of writing this book, but we

can easily implement it with the following code:

nqubits = 4

def EfficientSU2(theta):

for i in range(nqubits):

qml.RY(theta[i], wires = i)

qml.RZ(theta[i+nqubits], wires = i)

for i in range(nqubits-1):

qml.CNOT(wires = [i, i + 1])

for i in range(nqubits):

qml.RY(theta[i+2*nqubits], wires = i)

qml.RZ(theta[i+3*nqubits], wires = i)

Notice that we have fixed the number of repetitions to 1, which was the case that we were

using with Qiskit in the previous section.

Using VQE with PennyLane 297

Now that we have our variational form, we can use it to implement the VQE algorithm in

PennyLane. To do that, we will define the energy function, which we compile as a quantum

node because it needs to be evaluated on a device capable of running quantum circuits. We

can do that with the following instructions:

dev = qml.device("lightning.qubit", wires=qubits)

@qml.qnode(dev)

def energy(param):

EfficientSU2(param)

return qml.expval(H)

Notice how we have used the EfficientSU2 ansatz followed by an evaluation of the

expectation value of our Hamiltonian (by using the qml.expval function that we introduced

in Chapter 5, QAOA: Quantum Approximate Optimization Algorithm). Now, to execute VQE,

we only need to select some initial values for the ansatz parameters and use a minimizer to

find their optimal values. We can achieve that with the following piece of code:

from scipy.optimize import minimize

theta = np.array(np.random.random(4*nqubits), requires_grad=True)

result = minimize(energy, x0=theta)

print("Optimal parameters", result.x)

print("Energy", result.fun)

We have imported the minimize function from the scipy.optimize package (scipy is a pow-

erful and very popular Python library for scientific computing). We have chosen at random

some initial values for the variational form parameters. We have used requires_grad=True

to allow the minimizer to compute gradients in order to optimize the parameters (we will

have much more to say about this in Part 3 of the book). Then, we have minimized the

energy function using the default parameters of the minimize method. Notice how the x0

argument is used to specify the initial values.

298 Chapter 7: VQE: Variational Quantum Eigensolver

The result we obtain upon running this code is the following:

Optimal parameters

[2.25573385e-01 3.14158133e+00 1.91103424e-07 -1.88149577e-06

-2.71613763e-03 -7.94107899e-01 4.52510610e-01 6.17686238e-01

3.14158772e+00 6.28319382e+00 3.14158403e+00 3.14160984e+00

2.21495304e-01 5.01302639e-01 6.51839333e-01 7.36625551e-02]

Energy -1.137283835001276

This includes the optimal values found by the optimizer (the x field) as well as the minimum

energy. As you can check, this fits nicely with the results that we have obtained with Qiskit

for the total molecular energy.

Now that we know how to run VQE on a simulator with PennyLane, we will turn to the

task of executing the algorithm on actual quantum computers.

7.4.3 Running VQE on real quantum devices
You may remember that, back in Section 5.3, we mentioned that there is a PennyLane

Runtime client that can be used to run VQE programs. This is exactly what we need now,

so it is the perfect moment to learn how to use it.

In fact, using this Runtime implementation is very easy, because it is quite similar to the

one we used with Qiskit. First, we need be sure that we have pennylane_qiskit installed

and our IBM Quantum account enabled (see Appendix D, Installing the Tools, for directions).

Then, we can run the following instructions:

from pennylane_qiskit import upload_vqe_runner, vqe_runner

program_id = upload_vqe_runner(hub="ibm-q", group="open", project="main")

job = vqe_runner(

program_id=program_id,

backend="ibm_oslo",

Using VQE with PennyLane 299

hamiltonian=H,

ansatz=EfficientSU2,

x0=np.array(np.random.random(4*nqubits)),

shots=1024,

optimizer="SPSA",

kwargs={"hub": "ibm-q", "group": "open", "project": "main"}

)

print(job.result())

The code is pretty much self-explanatory: we are just selecting the options for our VQE

execution, including the device to run the circuits which, in this case, happens to be

ibm_oslo. After waiting for the job to finish running, we will obtain an output similar the

following:

fun: -1.0125211856761642

message: 'Optimization terminated successfully.'

nfev: 300

nit: 100

success: True

x: array([-0.02558326, 0.50137847, 1.49781722, 2.83016638,

1.50688742, -0.00830098, 1.56006908, -0.01401641, -0.08208851,

2.71490414, 1.39380584, 1.30662208, 1.5691855 , 1.34979806,

1.50345895, 0.39946571])

You may be wondering if we can also use error mitigation to try to improve our results.

The answer is yes, of course. In fact, it is straightforward to set up, because we only need to

include the additional parameter use_measurement_mitigation = True when creating the

vqe_runner object. Running with this option will give you a result similar to the following

one, which is closer to the real optimal value:

fun: -1.0835711819668128

message: 'Optimization terminated successfully.'

300 Chapter 7: VQE: Variational Quantum Eigensolver

nfev: 300

nit: 100

success: True

x: array([-0.06213913, 2.62825807, 2.85476345, -0.2260965,

-0.07639407, -1.51018602, 1.73431192, -0.07301669, -0.16907148,

2.60134032, 3.29831133, -0.2912491 , 0.33893055, 1.90085806,

1.7206114 , -1.49009082])

With this, we conclude our study of VQE and, in fact, we conclude the part of the book

devoted to optimization problems. Starting with the next chapter, we will dive into the

fascinating world of quantum machine learning. Hang tight and prepare for the ride!

Summary
In this chapter, we have studied Hamiltonians and observables in detail. In particular, we

have learned how to derive mathematical expressions for their expectation values and how

to estimate these quantities using quantum computers.

Then, we studied the VQE algorithm and how it can be used to find ground states of general

Hamiltonians. We also described a modification of VQE called VQD that can also be used

to compute excited states and not just states of minimum energy.

Then, we moved to practical matters and learned how to use Qiskit to run VQE and VQD.

We illustrated this with a very interesting problem: that of finding the ground state of

a simple molecule. We then introduced methods to simulate the behavior of quantum

algorithms when there is noise and how to reduce the adverse effect of readout errors with

some mitigation techniques. We also studied how to run VQE problems on actual quantum

computers with IBM runtime.

After that, we also learned how to implement and run VQE on PennyLane, again solving a

molecular structure problem. We even studied how to use Runtime from PennyLane to

send VQE instances to real quantum computers.

Using VQE with PennyLane 301

After reading this chapter, you are now able to understand all the mathematical details

behind the VQE algorithm. You also know how to run it on different types of problems

with both Qiskit and PennyLane. Moreover, you now can run noisy simulations of all the

algorithms that we have studied (and of any other quantum algorithm that you may learn

in the future) as well as perform readout error mitigation on simulated and actual quantum

devices.

In the next chapter, we will start studying the second big topic of the book: quantum

machine learning. Prepare to learn how (quantum) machines learn!

Part 3

A Match Made in Heaven:
Quantum Machine Learning

This part is devoted to studying different quantum machine learning models. You will learn

how to implement and run Quantum Support Vector Machines and Quantum Neural Net-

works, and how to combine them with classical models to obtain interesting architectures,

such as Quantum Generative Adversarial Networks.

This part includes the following chapters:

• Chapter 8, What is Quantum Machine Learning?

• Chapter 9, Quantum Support Vector Machines

• Chapter 10, Quantum Neural Networks

• Chapter 11, The Best of Both Worlds: Hybrid Architectures

• Chapter 12, Quantum Generative Adversarial Networks

8
What Is Quantum Machine
Learning?

Tell me and I forget. Teach me and I remember. Involve me and I learn.

— Benjamin Franklin

We now begin our journey through Quantum Machine Learning (QML). In this chapter,

we will set the foundation for the remainder of this part of the book. We will begin by

reviewing some general notions from classical machine learning, and then we will introduce

the basic ideas that underlie QML as a whole.

We’ll cover the following topics in this chapter:

• The basics of machine learning

• Do you wanna train a model?

• Quantum-classical models

306 Chapter 8: What Is Quantum Machine Learning?

In this chapter, you will learn the basic principles behind general machine learning, and

you will understand how to construct, train, and assess some simple classical models using

industry-standard frameworks and tools. We will also present a general picture of the

world of QML.

8.1 The basics of machine learning
Before discussing quantum machine learning, it may be a good idea to review some basic

notions of Machine Learning (ML), in general. If you are familiar with the subject, feel

free to skip this section. Please, keep in mind that the world of machine learning is

extraordinarily vast; so much so that sometimes it is difficult to make general statements

that can do justice to the overwhelming diversity of this field. For this reason, we will

highlight those elements that will be more relevant for our purposes, while other aspects

of machine learning — which are also of significant importance on their own — will be

barely covered.

In addition to this, please keep in mind that this will be a very condensed and hands-

on introduction to machine learning. If you’d like to dive deeper into this field, we can

recommend some very good books, such as the one by Abu-Mostafa, Magdon-Ismail, and

Lin [63], or the one by Aurélien Géron [64].

As mysterious as machine learning may seem, the ideas that underlie it are fairly simple. In

broad terms, we could define the purpose of machine learning to be the design of algorithms

that can make a “computational system” aware of patterns in data. These patterns can be

truly anything. Maybe you want to design a system that can distinguish pictures of cats

from pictures of rabbits. Maybe you would like to come up with a computational model

that can transcribe verbal speech in English spoken with an Irish accent. Maybe you want

to create a model able to generate realistic pictures of faces of people who do not exist,

but that are indistinguishable from the real deal. The possibilities, as you surely know, are

endless! What will be common to all these algorithms is that they will not be explicitly

programmed to solve those tasks; instead, they will “learn” how to do it from data. . . hence

the name “machine learning!”

The basics of machine learning 307

The cats versus rabbits example is a particular case of an interesting type of model: a

classifier. As the name suggests, a classifier is any kind of system that assigns, to every

input, one label out of a finite set of possibilities. In many cases, there are just two of these

labels, and they are commonly represented by 0 (read as positive) and 1 (negative); in

physics applications, for instance, these labels are often read, respectively, as signal and

background. In this situation, we say that the classifier is binary. Keep this in mind, for

we will use this terminology in a few of the coming examples!

So now that we know where we are heading, we need to answer one basic question: how

can we make machine learning a reality?

8.1.1 The ingredients for machine learning
In most machine learning setups, there are three basic ingredients:

• First of all, we need some sort of computational model that is “powerful enough” to

tackle our problem. By this, we will often mean an algorithm that can be configured

to solve the task at hand — at least to some level of accuracy.

• Then, if we want our model to capture patterns, we need to feed it some data so that

it can do that. We will thus need data, preferably lots of it. The nature of this data will

depend on the approach that we take, but, in most cases, we will need to transform

it into numerical form. Most models expect data to be represented as vectors of real

numbers called attributes, so this is what we will usually assume that we have.

• And, lastly, we need a training procedure that will allow us to optimize the config-

uration of our model to make it solve the task (or, at least, come close to solving it!).

In ML jargon, we could say that we need to find a way to make our model learn in

order to identify the patterns that hide behind the data in our problem.

That is a pretty solid — yet somewhat oversimplified — wish-list. Let’s see how we can

make more sense out of this.

308 Chapter 8: What Is Quantum Machine Learning?

The model

Let us first analyze that computational model that we have talked about. We said that it

had to be “powerful enough,” and this means that there should be a way to configure the

model in such a way that it behaves as we intend it to.

At first sight, this requirement may seem suspicious: how can we possibly be sure that

such a configuration exists? In most real-life problems, we can never be fully sure. . . but we

can be certain to some degree! This certainty may come from experience or, desirably, also

from some theoretical results that justify it. For instance, you may have heard of neural

networks. We will discuss them shortly, but, for now, you should know that they are

models that have been proven to be universal function approximators. That is, any

function can be approximated up to any given accuracy, no matter its complexity, by a

large-enough neural network. That makes neural networks natural good choices for many

problems.

We will later discuss neural networks — and many other interesting models — in detail,

but, to start with, we can consider a simplified version that, in fact, could be considered the

grandparent of neural networks: the perceptron.

A perceptron is a computational model that takes 𝑁 numerical inputs and returns a single

bit as output. This model depends on a collection of weights 𝑤𝑖 for 𝑖 = 1,… , 𝑁 and on a

bias 𝑏, and it behaves as follows: for any input 𝑥1,… , 𝑥𝑁 , if

𝑁
∑
𝑖=1

𝑥𝑖𝑤𝑖 + 𝑏 ≥ 0,

then the model returns 1, and otherwise it returns 0.

This is a very simple computational model, but we could use it to set up a basic binary

classifier by looking for some appropriate values for the weights and bias. That is, given a

set of points on which we want the output to be 1 and another set of points on which the

output should be 0, we can try to search for some values for the 𝑤𝑖 and 𝑏 coefficients that

would make the perceptron return the desired outputs. In fact, in the dawn of the machine

The basics of machine learning 309

learning age, it was already proven that there is a simple learning algorithm that, under

the condition that the problem data can be linearly separated, finds coefficients that can

effectively classify the data.

There you have it, that could be your first baby machine learning model! Needless to say, a

perceptron — at least on its own — is not a particularly powerful model, but it is, at least, a

promising beginning!

Exercise 8.1

We can all agree that perceptrons are cute models. But just to get an idea of their

limitations, prove that they cannot implement an XOR gate. That is, if you are given

inputs {(0, 1), (1, 0)} with desired output 1 and inputs {(0, 0), (1, 1)} with desired

output 0, there is no choice of perceptron weights and bias that works in this case.

The training procedure

Alright, so let’s say that we have a model that we believe is just powerful enough to

approach our problem (and not too powerful either. . . more on that later!). We will restrict

ourselves to assuming that the configuration of our model depends on some numerical

parameters 𝜃; this would mean that we would be looking for some choice 𝜃0 of those

parameters that will make our model work as well as possible. So, how do we find those

parameters?

To learn more. . .

We will only discuss models whose behavior can be adjusted and defined solely by

tweaking some numerical parameters, as in the case of the perceptron. Nevertheless,

there also exist non-parametric models that don’t behave in this manner. A popular

example is the 𝑘-nearest neighbours algorithm; you can find some information in

the references [64, Chapter 1].

To illustrate all of this, we will discuss how to train a parametric model to implement a

binary classifier. That is, we aim to build a binary classifier on a certain domain 𝐷 with

310 Chapter 8: What Is Quantum Machine Learning?

some elements 𝑥 that should be each classified as a certain 𝑦 (where 𝑦 can be either 0 or

1). For this, we will use a model 𝑀 that depends on some parameters in a way that, for

any choice 𝜃 of these parameters, it returns a label 𝑀𝜃(𝑥) for every element 𝑥 ∈ 𝐷 in the

dataset.

In this scenario, our goal is to look for a choice of parameters 𝜃 that can minimize the

probability that any random input 𝑥 be misclassified. To put it in slightly more formal terms,

if 𝑦 is the correct label to be assigned to an input 𝑥 , we want to minimize 𝑃(𝑀𝜃(𝑥) ≠ 𝑦),

that is, the probability of assigning an incorrect label to 𝑥 . In this way, we have reduced the

problem of training our model to the problem of finding some parameters 𝜃 that minimize

𝑃(𝑀𝜃(𝑥) ≠ 𝑦). This probability is known as the generalization error or the true error.

Now, if we had access to all the possible inputs in our domain 𝐷 and we knew all their

expected outputs, we would simply have to minimize the true error. . . and we would be

done! Nevertheless, this is neither an interesting situation nor a common one.

If we had a problem in which we already knew all the possible inputs and their out-

puts. . .why should we bother with all this machine learning business? We could just

implement an old-school algorithm! Indeed, the whole point of “learning” is being able to

predict correct outputs for unseen data. Thus, when we resort to machine learning, we do

so because we do not have full access to all the possible inputs and outputs in our domain

— either because it is unfeasible or because such a domain might be infinite!

So now we are faced with a problem. We have a (potentially infinite) domain of data over

which we have to minimize the true error, yet we only have access to a finite subset of it.

But. . . how on earth can we compute the true error in order to minimize it? The answer is

that, in general, we can’t, because we would need complete information on how all the

data and the labels of our problem are distributed, something that we usually don’t have.

Nevertheless, we still have access to a — presumably large — subset of data. Can we use it

to our advantage? Yes, we surely can! The usual strategy is to divide the dataset that we

have in two separate sets: a training dataset and a test dataset. The training set, usually

much bigger than the test set, will be used to adjust the parameters of our model in an

The basics of machine learning 311

attempt to minimize the true error, while the test set will be used to estimate the true error

itself.

Thus, what we can do is just take whichever training dataset 𝑇 we are using, and — instead

of minimizing the true error, to which we simply don’t have access — we can try to

minimize the empirical error: the probability of misclassifying an element within the

training dataset. This empirical error would be computed as the proportion of misclassified

elements in 𝑇 :

𝑅emp(𝜃) =
1
|𝑇 |

∑
(𝑥,𝑦)∈𝑇

1 − 𝛿(𝑀𝜃(𝑥), 𝑦),

where |𝑇 | is the size of the training dataset and 𝛿(𝑎, 𝑏) is 1 if 𝑎 = 𝑏 and 0 otherwise (this 𝛿

function is known as the Kronecker delta). We would do all of this, of course, hoping that

the real error would take similar values to the empirical error. Naturally, this hope will

have to be justified and rest on some evidence, and we will soon see how the test dataset

can help us with that. In any case, if we want all this setup to work, we will need to use a

large enough dataset.

Our goal then is to minimize the true error, and, so far, our only strategy is trying to

achieve it by minimizing the empirical error. Nevertheless, in practice, we don’t often

work with these magnitudes directly. Instead, we take a more “general” approach: we seek

to minimize the expected value of a loss function, which is defined for every choice of

parameters 𝜃 and every possible input 𝑥 and its desired output 𝑦. For instance, we could

define the 0-1 loss function as

𝐿01(𝜃; 𝑥, 𝑦) = 1 − 𝛿(𝑀𝜃(𝑥), 𝑦).

With this definition, it is trivial to see that the expected value, taken over the whole domain,

of 𝐿01 is exactly the true error; this expected value is known as the true risk. In the same

way, the expected value of this loss function over the training sample is the empirical error.

312 Chapter 8: What Is Quantum Machine Learning?

Important note

Keep in mind that the expected value of a loss function over a finite dataset will just

be its average value.

So, in practice, our strategy for minimizing the true error will be minimizing the expected

value of a suitable loss function over the training dataset. We will refer to this expected

value as the empirical risk. For reasons that we will discuss later, we will usually consider

loss functions different from 𝐿01.

Assessing a trained model

We now have to address an important question. How can we be sure that — once we

have trained a model — it will perform well on data outside the training dataset? For that,

we cannot solely rely on 𝑅emp(𝜃) because that average loss is computed on data that the

classifier has already seen. That would be like testing a student only on problems that the

teacher has already solved in class!

Thankfully, there’s something that can save the day. Do you remember that test dataset

we talked about before? This is its time to shine! In fact, we have kept this test set in a

safe-deposit box to ensure that none of its examples were ever used in the training process.

We can think of them as completely new problems that the student has never seen, so

we can use them to assess their understanding of the subject. Thus, we can compute the

average loss of 𝑀𝜃 on the examples of the test set — this is sometimes called the test error.

Provided that they are representative of the classification problem as a whole and that the

number of examples is big enough, we can be quite confident that the test error will be

close to the true error of the model. This is just an application of some central theorems in

statistics!

Now, if the test error is similar to the empirical risk (and if they are low enough), we are

done. That’s it! We have successfully trained a model. Nonetheless, as you can imagine,

things can also go wrong. Terribly wrong.

The basics of machine learning 313

What if the test error is much bigger than the empirical error, the one computed on the

training set? This would be similar to having a student who knows how to repeat the

solution to problems already solved by the teacher but who is unable to solve new problems.

In our case, this would mean having a classifier that works beautifully on the training

dataset but makes a lot of errors on any inputs outside of it.

This situation is called overfitting, and it is one of the biggest risks (no pun intended) in

machine learning. It occurs whenever, somehow, our model has learned the particularities

of the data it has seen but not the general patterns; that is, it has fitted the training data too

well, hence the name “overfitting.” This problem usually occurs when the training dataset

is too small or when the model is too powerful. In the first case, there is simply not enough

information to extract general patterns. That is why, in this chapter, we have insisted that

the more data we have, the better. But what about the second case? Why can having a very

powerful model end up being something bad?

An example can be very illustrative here. Let’s say that we want to use machine learning

to approximate some unknown real function. We haven’t discussed how this setup would

work, but the core ideas would be analogous to the ones we have seen (we would seek

to minimize the expected value of a loss function, and so on). If we have a sample of

1000 points in the plane, we can always find a polynomial of degree 999 that fits the data

perfectly, in the same way that we can always fit a line to just two points. However, if

the points are just samples of 𝑓 (𝑥) = 𝑥 with some noise (which could result from some

empirical sampling errors or some other reason), our polynomial will go out of its way to

fit those points perfectly and will quickly deviate from the linear shape that it should have

learned. In this way, being able to fit too much information can sometimes go against the

goal of learning the general patterns of data. This is illustrated in Figure 8.1. In it, the degree

of the “fitting” polynomial is so big that it can fit the training data perfectly, including its

noise, but it misses the implicit linear pattern and performs very badly on test data.

314 Chapter 8: What Is Quantum Machine Learning?

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Polynomial fit
Training dataset
Test dataset
Real function

Figure 8.1: A simple example of overfitting that results from using too powerful a model.

Important note

Sometimes a machine learning model may only work properly on its training dataset.

This phenomenon is known as overfitting. It usually occurs when the training

dataset is too small or when the model is too powerful.

If you find yourself in a situation in which your model has overfitted the data, you can try

obtaining more data — something that is not always possible — or somehow reducing the

power of your model. For instance, with the neural networks that we will be studying later

in the chapter, you can try reducing their size.

To learn more. . .

Another popular technique for avoiding overfitting is using regularization. Roughly

speaking, regularization restricts the values that some of the parameters of your

model can take, effectively making it less powerful and less prone to fit every single

detail of the training data.

The basics of machine learning 315

To learn more about regularization techniques and their use in machine learning,

we highly recommend checking the book by Aurélien Géron [64].

You may also want to know that your models can exhibit a type of problem that is the

opposite of overfitting and has been aptly named underfitting. If your model is not

expressive enough, you can find yourself with both a high error rate on the training set

and a high error rate on the test set. For instance, if you are using a linear function to try to

fit points that come from a quadratic polynomial and, thus, follow a parabolic shape, you

will surely experience some form of underfitting. To fix this problem, use a more powerful

model — or reduce regularization if you happen to be using it.

To summarize what we have discussed so far, remember that we want to obtain a model

that has a low generalization error; that is, a model that works well even on data it has

not been trained with. In order to achieve this, we consider a parametric model and

look for those model parameters that minimize the error on the training set, because we

cannot easily compute the true error. And to be sure that the model will behave well when

confronted with new data, we compute the error on the test dataset as a way of assessing

how representative the empirical risk is of the error on unseen data.

With this strategy, however, we may still be vulnerable to an additional problem. If we

train a lot of different models, there is a risk that — just by pure chance! — one of them has

great performance on the test dataset but not on the rest of the domain. In fact, this risk

is higher the more models you train. Imagine that a thousand students take a test of 10

questions with 2 possible answers each. Even if they have not studied for the test and they

answer completely at random, there is a very high probability that at least one of them will

nail it. For this reason, you should never use the test dataset to select among your models,

only to assess if their behavior is similar to the behavior they show during training.

This is definitely a problem because we usually want to train many different models and

select the one we believe to be the best. What is more, many models have what are called

hyperparameters. These are parameters that fix some property of the model, such as

316 Chapter 8: What Is Quantum Machine Learning?

the size and number of layers in a neural network (more on that later), that cannot be

optimized during training. Usually, we train many different models with different values of

these hyperparameters, and then we select the best model from them.

This is where a third type of dataset comes into the equation: the validation dataset. This

is an additional dataset that we could construct when splitting our global dataset; it should,

of course, be fully independent of the training and test datasets.

What do we want the validation set for? Once we have trained our models with different

choices of hyperparameters and configurations, we can compute the empirical risk on the

validation set, and we may select the best one or maybe a handful of the best ones. Then,

we could train those models again on the union of the training set and the validation set —

to better extract all the information from our data — and then compute the error of the

models on the test set, which we have held back until this very moment so that it remains

a good estimator of the generalization error. In this way, we can select the best choice of

hyperparameters or models while keeping the test dataset in pristine condition to be used

in a final assessment process.

To learn more. . .

You may also want to know that, instead of using a fixed validation set, a popular

way of selecting hyperparameters is to use 𝑘-fold cross-validation. With this

technique, the training dataset is divided into 𝑘 subsets or folds of equal size. The

training of the model is repeated 𝑘 times, each one with a different subset acting as

a validation dataset and the rest used as the training dataset. The performance is

computed over each validation set and averaged over the 𝑘 repetitions. Of course,

the estimation obtained with cross-validation is better than when using a fixed

validation set, but the computational cost is much higher — 𝑘 times higher, in fact!

Software libraries such as scikit-learn — which we will be using in the next section

of this chapter — provide implementations of cross-validation for hyperparameter

selection. Take a look at the documentation of GridSearchCV — where CV stands for

cross validation — if you want to see a concrete implementation of this technique.

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

The basics of machine learning 317

Furthermore, sometimes training processes are iterative. In these cases, the validation

loss (the average loss over the validation dataset) can be computed at the end of each

iteration and compared against the training loss, just to know how the training is going

— and to be able to stop it early should the model begin to overfit! It wouldn’t be a good

practice to use the test set for this purpose: the test set should only be used once all the

training is complete and we just want some reassurance on the validity of our results.

To learn more. . .

All the informal notions that we are considering here can be formulated precisely

using the language of probability theory. If you want to learn about the formal

machinery behind machine learning, you should have a look at the book Learning

from data [63] or at Understanding machine learning [65].

With all of this, we now have a good understanding of all the elements needed for machine

learning to come alive. In the following section, we will try to make all of this more precise

by studying some of the most common approaches that are taken when training ML models.

8.1.2 Types of machine learning
There are three big categories in which most, if not all, machine learning techniques can

fit: supervised learning, unsupervised learning, and reinforcement learning. In

this book, we will work mostly with supervised learning, but we will also consider some

unsupervised learning techniques. Let’s explain in a little bit more detail what each of

these machine learning branches is about.

Supervised learning

The main goal of supervised learning is to learn to predict the values of a function on input

data. These values can either be chosen from a finite set (the classification problems we

have been talking about for the most part of this chapter) or be continuous values, such as

the weight of a person or the value of some bonds a month from now. When the values we

want to predict are continuous, we say that we are tackling a regression problem.

318 Chapter 8: What Is Quantum Machine Learning?

When we train a model using supervised learning, we need to work with a dataset that has

both a large-enough collection of valid inputs and all the expected outputs that our model

should return for these inputs. This is known as having a labeled dataset.

For example, if we were to train a cat-rabbit picture classifier using supervised learning,

we would need to have a (large-enough) dataset with pictures of rabbits and cats, and we

would also need to know, for each of those pictures, whether they are pictures of rabbits or

pictures of cats.

With our labeled dataset, we would define a loss function that would depend on the inputs

and the parameters of the model — so that we can compute the corresponding outputs —

and the expected (correct) outputs. And, as we discussed before, then we would just apply

an optimization algorithm to find a configuration of the model that could minimize the

loss function on the training dataset — while ensuring that there is no overfitting.

We still have to discuss how that optimization algorithm is going to work, but that is for

later!

Unsupervised learning

When we work with unsupervised learning, we have access to unlabeled datasets, in

which there are no expected outputs. We let the algorithm learn on its own by trying to

identify certain patterns. For instance, we may want to group similar data points together

(this is known as clustering) or we may want to learn something about how the data is

distributed.

In this latter case, our goal would be to train a generative model that we can use to

create new data samples. An impressive example is the use of Generative Adversarial

Networks, introduced by Ian Goodfellow and his collaborators in a highly influential

paper [66] to create images that are similar — but completely different — to the ones used

in the training phase. This is the kind of model that we will be working with in Chapter 12,

Quantum Generative Adversarial Networks,. . . in a quantum form, of course!

Do you wanna train a model? 319

Reinforcement learning

In reinforcement learning, the model — usually called the agent in this setting — interacts

with an environment, trying to complete some task. This agent observes the state of the

environment and takes some actions that in turn influence the state it observes. Depending

on its performance, it receives “rewards” and “punishments”. . . and, of course, it wants to

maximize the rewards while minimizing the punishments. To do that, it tries to learn a

policy that determines what action to take for a given state of the environment.

For instance, the agent may be a robot and the environment a maze it needs to navigate.

The state can consist of its position in the maze and the open paths it can follow, and its

actions can be rotating in some direction and moving forward. The goal may be finding the

exit to the maze in some predefined time, for which the robot will get a positive reward.

This kind of learning has been used extensively to train models designed to play games —

AlphaGo, the computer program that in 2016 beat Go (human) grandmaster Lee Sedol in a

five-games match, is a prominent example! To learn more about reinforcement learning, a

good source is the book by Sutton and Barto [67].

Although there has been some interest in using quantum techniques in reinforcement

learning (see, for instance [68]), this may very well be the machine learning branch in

which quantum algorithms are less developed at the moment. For this reason, we will not

cover this kind of learning in this book. Hopefully, in a few years there will be much more

to tell about quantum reinforcement learning! Let’s now try to make everything concrete

by using supervised learning to implement a very simple classifier. For this, we will use

TensorFlow.

8.2 Do you wanna train a model?
TensorFlow is a machine learning framework developed at Google, and it is very widely

used. You should refer to Appendix D, Installing the Tools, for installation instructions.

Keep in mind that we will be using version 2.9.1. We will use TensorFlow in some of our

quantum machine learning models, so it is a good idea to become familiar with it early on.

320 Chapter 8: What Is Quantum Machine Learning?

To keep things simple, we will tackle an artificial problem. We are going to prepare a

dataset of elements belonging to one of two possible categories, and we will try to use

machine learning to construct a classifier that can distinguish to which category any given

input belongs.

Before we do anything, let us quickly import NumPy and set a seed:

import numpy as np

seed = 128

np.random.seed(seed)

We will later use this same seed with TensorFlow. And now, let’s generate the data!

Instead of generating a dataset by hand, we will use a function provided by the Python

scikit-learn package (sklearn). This package is a very valuable resource for machine

learning: not only does it include plenty of useful tools for everyday machine-learning-

related tasks, but it also allows you to train and execute a wide collection of interesting

models! We will use version 1.0.2 of sklearn and, as always, you should refer to Appendix D,

Installing the Tools, for installation instructions.

In order to generate our dataset, we will use the make_classification function from

sklearn.datasets. We will ask it to generate 2500 samples of a dataset with two features

(variables). We will also ask for both features to be informative and not redundant; the

variables would be redundant, for example, if one of them were just a multiple of the other.

Lastly, we will ask for the proportions of the two categories in the dataset to be 20 % to

80 %. We can do this as follows:

from sklearn.datasets import make_classification

data, labels = make_classification(n_samples = 2500,

n_features = 2, n_informative = 2, n_redundant = 0,

weights = (0.2,0.8), class_sep = 0.5, random_state = seed)

Do you wanna train a model? 321

The class_sep argument specifies how separable we want the two categories to be: the

higher the value of this argument, the easier it is to distinguish them. Notice, also, that we

have used the seed that we set earlier in order for the results to be repeatable.

You may now be wondering why we have specified that we want the two categories in

the dataset to be in a proportion 20 % to 80 %, when it would be much more natural for

the two categories to be balanced. Indeed, it is desirable for both categories to have the

same number of representatives in a dataset. . . but life is difficult, and in many practical

scenarios, that is not a possibility! So just think of this choice of ours as our own little way

of feeling closer to real life.

Essentially, the make_classification function has returned an array data with the whole

dataset (including all the elements from both categories, positive and negative), and an

array labels such that the label of data[i] will be labels[i] (where 0 corresponds to

positive and 1 to negative).

Just to get a feeling of what this dataset that we have created looks like, we can plot a

simple histogram showing the distributions of the two features of our dataset:

import matplotlib.pyplot as plt

for i in range(2):

plt.hist(data[:,i][labels == 1], bins=100, alpha=0.8, label = "Negative")

plt.hist(data[:,i][labels == 0], bins=100, alpha=0.8, label = "Positive")

plt.legend()

plt.show()

Upon running this, we got the plots shown in Figure 8.2.

322 Chapter 8: What Is Quantum Machine Learning?

3 2 1 0 1 2
0

20

40

60

80

100

120

140

160
Negative
Positive

3 2 1 0 1 2 3
0

10

20

30

40

50

60

70 Negative
Positive

Figure 8.2: Histograms representing the distributions of the two features of our dataset.

Exercise 8.2

Visualizing the data you are working with through graphs can help you gain insights

into how to approach the problem you have at hand. We have plotted our data using

a histogram, which is usually a good choice. What other representations could we

have used?

Our goal now is to use machine learning to come up with a system that can solve the

classification problem that we have created. And the first step in doing so will be to pick a

good model to tackle our problem!

8.2.1 Picking a model
Not long ago, we introduced the perceptron and we showed how, on its own, it wasn’t the

most powerful of models out there. We will now shed some light on why we emphasized

“on its own,” for we are about to introduce a very interesting model that can be thought of

as being built by joining perceptrons together. Let’s dive into neural networks!

You may remember how a perceptron took 𝑁 numerical inputs 𝑥𝑖, used on a collection of

𝑁 weights 𝑤𝑖 and a bias 𝑏, and returned an output that depended on the value of

𝑁
∑
𝑖=1

𝑤𝑖𝑥𝑖 + 𝑏.

Do you wanna train a model? 323

Well, in this way, we can think of a neural network as being a collection of perceptrons —

which we will, from now on, call neurons — organized in the following way:

• All the neurons are arranged into layers, and the output of the neurons in one layer

is the input of the neurons in the next layer

• In addition to this, the “raw” linear output of every neuron will go through a (very

possibly non-linear) activation function of our choice

That is the general idea, but let’s now make it precise.

A neural network with 𝑁0 inputs is defined from the following elements:

• An ordered sequence of layers (𝑙 = 1,… , 𝐿), each with a fixed amount of neurons

𝑁𝑙 .

• A bunch of activation functions ℎ𝑙𝑛 for each neuron 𝑛 in a layer 𝑙.

• A set of biases 𝑏𝑙𝑛 for every neuron, and, for every neuron 𝑛 in a layer 𝑙, a set of

𝑁𝑙−1 weights 𝑤𝑘𝑙𝑛 with 𝑘 = 1,… , 𝑁𝑙−1. These biases and weights are the adjustable

parameters that we would need to tweak in order to get the model to behave as we

want it to.

In Figure 8.3, we can see a graphical representation of a simple neural network.

These are the ingredients that we need to set up a neural network. So, how does it work,

then? Easy! For any choice of activation functions ℎ𝑙𝑛, biases 𝑏𝑙𝑛 and weights 𝑤𝑘𝑙𝑛, the

neural network takes some numerical inputs 𝑎0𝑛 and, from there on, these inputs are

propagated through the layers of the neural network in the following way: the values 𝑎𝑙𝑛
of the neurons 𝑛 in all layers 𝑙 are determined according to the inductive formula

𝑎𝑙𝑛 ≔ ℎ𝑙𝑛(
𝑏𝑙𝑛 +

𝑁𝑙−1
∑
𝑘=1

𝑤𝑘𝑙𝑛𝑎𝑙−1,𝑘)
.

With this procedure, we can assign a value to each neuron in the network. The values of

the neurons in the last layer are the output of the model.

324 Chapter 8: What Is Quantum Machine Learning?

𝑎01

𝑎02

𝑎03

𝑎13

𝑎12

𝑎11

𝑎14

𝑎15

𝑤111

𝑤315

𝑎21

𝑤121

𝑤521

Figure 8.3: A simple neural network with two layers taking three inputs (𝑎0𝑛). We have labeled
some of the weights, but none of the biases or the activation functions

To be precise, what we have just described is known as an artificial feed-forward dense

neural network. There are other possible architectures for neural networks, but this is

the one that will be using for the most part of the rest of the book.

That is how you can define a neural network, but there is one element in the definition

to which we have not paid much attention: the activation function. We have mentioned

before that this can be any function of our choice, and we have seen what role it plays in

the behavior of a neural network, but what are some reasonable choices for this function?

Let’s explore the most common ones:

• We may start off with a simple activation function, actually, the same one that we

implicitly considered when we defined the perceptron. This is a step function given

by

ℎ(𝑥) =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

1, 𝑥 ≥ 0

0, 𝑥 < 0.

We could technically use this in a neural network, but. . . in truth. . . it would not be a

very wise choice. It is not differentiable, not even continuous. And, as we will soon

see, that usually makes any function a terrible candidate to be an activation function

inside a neural network. In any case, it is an example of historical importance.

Do you wanna train a model? 325

• Let’s now consider a somewhat more sophisticated and interesting example: the

sigmoid activation function. This function is smooth and continuous, and it outputs

values between 0 and 1. This makes it an ideal candidate for the activation function

in the final layer of, for example, a classifier. It is defined by

𝑆(𝑥) =
𝑒𝑥

𝑒𝑥 + 1
.

We have plotted it in Figure 8.4a.

• As beautiful as it may seem, when used in inner layers, the sigmoid function can

easily lead to problems in the training process (see Aurelien’s book for more on this

[64]). In general, a better choice for inner layers is the exponential linear unit or

ELU activation function, defined as

𝐸(𝑥) =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝑥, 𝑥 ≥ 0

𝑒𝑥 − 1, 𝑥 < 0.

You can find its plot in Figure 8.4b.

• We will also discuss one last activation function: the rectified linear unit or ReLU

function. In general, it yields worse results than the ELU function, but it is easier to

compute and thus its use can speed up the training. It is defined as

𝑅(𝑥) = max{0, 𝑥}.

The plot can be found in Figure 8.4c.

Exercise 8.3

Check that the image of the sigmoid function 𝑆 is (0, 1). Prove that the ELU function

𝐸 is smooth and that its image is (−1,∞). What is the image of the ReLU function?

Is it smooth?

326 Chapter 8: What Is Quantum Machine Learning?

−10 −5 0 5 10
0

0.5

1

(a) Sigmoid function

−10 −5 0 5 10

0

5

10

(b) ELU function

−10 −5 0 5 10
0

5

10

(c) ReLU function

Figure 8.4: Some common activation functions in neural networks

As we mentioned at the beginning of the chapter, it has been proven that neural networks

are universal function approximators [69], so they are interesting models to consider in

any problem involving supervised machine learning. And thus, they will be the model we

will use to build our classifier. We will consider a neural network with two inputs and some

layers — we will later decide how many of them and how many neurons each will have.

The final layer, of course, will have a single neuron, which will be the output. We will use

ELU activation functions all throughout the network, except for the last layer; there, we

will use a sigmoid activation function in order to get a normalized result. That way, we will

get a continuous value between 0 and 1, and, as it is customary, we will define a threshold

at 1/2 to assign positive (≥ 1/2) or negative (< 1/2) to any given output.

Now that our model is ready, the next challenge that is waiting for us is finding a suitable

loss function.

Do you wanna train a model? 327

8.2.2 Understanding loss functions
When it comes to defining a loss function for supervised machine learning, with models

that depend on some continuous parameters, we want to look for loss functions that are

continuous and differentiable with respect to the trainable parameters of the model. The

reason for this is the same reason why we want our activation functions to be differentiable,

and it will become clear later on.

As we discussed earlier, the most natural loss function — and the one whose expected value

we truly want to minimize — would be the 0-1 loss function, but this function would not

have a continuous dependence on the parameters of the model: it would take “discrete

jumps” as the classifier changes its behavior. Therefore, we need to look for alternative

loss functions that are indeed continuous and differentiable while still measuring the loss

in a manner that is reasonable and natural enough for classification problems.

Another somewhat naive yet much better choice would be to take the mean squared

error as our loss function. For the purposes of our problem, we know that the neural

network returns a continuous value between 0 and 1, and we know that — ideally — the

closer this value is to 0 or 1, the more likely it corresponds to a negative or positive input

respectively. In order to do the classification, we set a threshold at 1/2 and get a discrete

label, but, in order to compute the loss function, we should actually look at that continuous

output! In this way, if we let 𝑀𝜃(𝑥) be the continuous value in [0, 1] returned by the model

for a given input 𝑥 , and we let 𝑦 ∈ {0, 1} be its corresponding label, we could take our loss

function to be

𝐿(𝜃; 𝑥, 𝑦) = (𝑀𝜃(𝑥) − 𝑦)2 ,

where we have grouped in 𝜃 all the parameters (weights and biases) on which our neural

network 𝑀 depends.

Of course, in order to compute the training loss (the expected value over the training

dataset), we would just take the average value over the training dataset, and analogously

for the validation loss. This is usually called the mean squared error (MSE) because, well,

it is the average of the error squared.

328 Chapter 8: What Is Quantum Machine Learning?

The MSE is a good loss function, but when it comes to binary classifiers, there is actually

an even better candidate: the binary cross-entropy. It is computed as

𝐻 (𝜃; 𝑥, 𝑦) = −𝑦 log (𝑀𝜃(𝑥)) − (1 − 𝑦) log (1 −𝑀𝜃(𝑥)) .

Now, this may seem like a very complicated expression, but it is actually a very elegant

and powerful loss function! For starters, if the output of the model is differentiable and

continuous with respect to its trainable parameters, so is the loss (that is easy to check, just

go back to Calculus 101). And that’s not all. The following exercise may help you realize

why the binary cross-entropy function is a great choice function for binary classifiers.

Exercise 8.4

Show that the output of the binary cross-entropy loss function 𝐻 (𝜃; 𝑥, 𝑦) is 0 if

𝑀𝜃(𝑥) = 𝑦 and that it diverges to ∞ as 𝑀𝜃(𝑥) approaches the opposite label to 𝑦

(this is, as 𝑀𝜃(𝑥) → 1 if 𝑦𝑖 = 0 and as 𝑀(𝑥) → 0 if 𝑦 = 1).

And, with this, our shiny new loss function is ready to be used. However, there is one last

element we still have to take care of, one that we have so far neglected and ignored. Yes, in

the following section, we shall give optimization algorithms the attention and care that

they deserve!

8.2.3 Gradient descent
You are now reading this book, probably in the comfort of your home, college library, or

office. But life changes in the most unexpected ways, and, maybe, in a couple of weeks,

you will find yourself at the top of a mountain, blindfolded (don’t ask us why) and tasked

with the mission of reaching the bottom of a nearby valley. If this happened, what would

you do?

You don’t have to be a survival expert to accomplish this task. It’s true that — for undisclosed

reasons — you are blindfolded, so you can’t see where the valley is, but, hey, you can still

move around, can’t you? So, you could take some small steps in whichever direction you

Do you wanna train a model? 329

feel is leading you downwards with the highest slope. And you could just repeat that

process several times and, eventually, you would reach the bottom of a valley.

Of course, as you descend, you will have to be careful with how big your steps are. Take

steps that are too big, and you may go from the top of a mountain to the top of another

one, skipping all the valleys in between (some medical doctors have suggested this might

not be anatomically possible, but, well, you get what we mean). On the other hand, make

your steps too small and it is going to take you forever to reach the valley. So, you will

have to find a sweet spot!

Anyhow, how does this seemingly crazy thought experiment relate to machine learning?

Let’s see.

Gradient descent algorithms

We now have a powerful-enough model that depends on some parameters. Moreover, since

we have made wise life choices, we also have a loss function 𝐿 that depends continuously

on and is differentiable with respect to these parameters (that is because we picked some

smooth activation functions and the binary cross-entropy).

By doing this, we have effectively reduced our machine learning problem to the problem

of minimizing a loss function, which is a differentiable function on some variables (the

trainable parameters). And how do we do this? Using the Force. . . Sorry, we got carried

away. We meant: using calculus!

The “getting to the valley” problem that we discussed before is — as you may have very

well guessed by now — a simple analogy that will help us illustrate the gradient descent

method. This method is just an algorithm that will allow us to minimize a differentiable

function, and we can think of it as the mathematical equivalent of taking small steps in

the steepest downward direction on a mountain. We should warn you that the remaining

content of this subsection might be somewhat dense. Please, don’t let technicalities over-

whelm you. If this were a song, it’d be perfectly fine not to know its lyrics; all that would

matter is for you to be familiar with its rhythm!

330 Chapter 8: What Is Quantum Machine Learning?

As you may remember from the sweet old days of undergraduate calculus, whenever

you have a differentiable function 𝑓 ∶ ℝ𝑁 ⟶ ℝ (for those of you less familiar with

mathematical notation, this is a fancy way of saying that 𝑓 has 𝑁 real-number inputs and

returns a single real-number output), the direction in which it decreases more steeply at a

point 𝑥 is given by −∇𝑓 (𝑥), where ∇𝑓 (𝑥) is the gradient vector at 𝑥 , and is computed as

∇𝑓 (𝑥) = (
𝜕𝑓
𝜕𝑥1

||||𝑥
,… ,

𝜕𝑓
𝜕𝑥𝑛

||||𝑥)
,

where 𝜕/𝜕𝑥𝑖 denotes the partial derivative operator with respect to a variable 𝑥𝑖. So, if we

want to move towards a minimum at a given point, we will have to move in the direction

of −∇𝑓 (𝑥), but by what amount?

The mathematical equivalent of the size of a step is going to be a parameter 𝜏 known as

the learning rate. And, in this way, given a learning rate 𝜏 and an initial configuration 𝜃0
of the parameters of our model, we can try to find the parameters that minimize the loss

function 𝐿 by computing, iteratively, new parameters according to the rule

𝜃𝑘+1 = 𝜃𝑘 − 𝜏∇𝐿(𝜃𝑘).

There are some algorithms that dynamically adjust this step size from an initial learning

rate as the optimization progresses. One such algorithm is Adam (short for Adaptive

Moment Estimator), which is one of the best gradient descents algorithms out there; it

will actually be our go-to choice.

Important note

It is important to pick the learning rate wisely. If it is too small, the training will

be very slow. If it is too large, you may find yourself taking huge strides that jump

whole valleys, and the training may never be successful.

Of course, in order for gradient descent algorithms to work, you need to be able to compute

the gradient of the loss function. There are several ways to do this; for example, you could

Do you wanna train a model? 331

always estimate gradients numerically. But, when working with certain models such as

neural networks, you can employ a technique known as backpropagation, which enables

the efficient computation of exact gradients. You may learn more about the technical details

in Geron’s exceptional book [64, Chapter 10].

To learn more. . .

The method of backpropagation has been one of the key developments leading

to the great success of deep learning that we are experiencing today. Although

this technique was already known in the 1960s, it was popularized for training

neural networks by the work of Geoffrey Hinton and his collaborators. Hinton,

together with Yoshua Bengio, Demis Hassabis, and Yann LeCun, received the 2022

Princess of Asturias Award for Technical and Scientific Research for outstanding

work in the field of neural networks. You can learn a lot about the inception of

backpropagation and about the history of neural networks research by reading the

excellent Architects of Intelligence, in which Martin Ford interviews Bengio, Hassabis,

Hinton, LeCun, and many other prominent figures in artificial intelligence [70]. By

the way, Demis Hassabis is, in great part, responsible for the success of AlphaGo,

one of the examples of reinforcement learning that we mentioned earlier in this

chapter.

Mini-batch gradient descent

When the training dataset is large, computing the gradient of the loss function — as

a function of the optimizable parameters of the model — can slow down the training

significantly. In order to speed up the training, you can resort to the technique of mini-

batch gradient descent. With this optimization method, the training dataset is split

into batches of a fixed batch size. The gradient of the loss function is then computed on

each of these batches, and the results are used to approximate the gradient of the global

loss function: this is, the loss function on the whole training dataset. When we use this

technique, we need to be careful with the batch size that we use: make it too small, the

training will be very unstable; make it too large, the training will be too slow. As with the

332 Chapter 8: What Is Quantum Machine Learning?

learning rate, it’s all a matter of finding an equilibrium! However, in some cases, speed is

of the essence, and we go to the extreme, using batches of just one input. This is called

stochastic gradient descent. On the other hand, when the batch includes all the elements

in the dataset, we say that we are using batch gradient descent.

Now we do have all that we need to train our first model. We have a dataset, we know

what our model should look like, we have picked a loss function and we know how to

optimize it. So let’s make this work! For this, we will use TensorFlow and scikit-learn.

8.2.4 Getting in the (Tensor)Flow
We already have our dataset ready, and we could split it manually into training, validation,

and test datasets, but there are already some good-quality machine learning packages with

functions that help you do that. One of these packages is sklearn, which implements a

train_test_split function. It splits a dataset into a training and test dataset (it doesn’t

return a validation dataset, but we can work our way around that). It does so by taking as

arguments the dataset and the labels array; in addition, it has some optional arguments to

specify whether the dataset should be shuffled and the proportions in which the dataset

should be split. In order to get a training, validation, and test dataset with proportions 0.8,

0.1, and 0.1 respectively, we just need to use this function twice: once to get a training

dataset (size 0.8) and a test dataset (size 0.2), and once more to split the test dataset in half,

yielding a validation dataset and a test dataset of relative size 0.1 each.

Following convention, we will denote the datasets as variables x and the labels as variables

y. In this way, we can run the following:

from sklearn.model_selection import train_test_split

Split into a training and a test dataset.

x_tr, x_test, y_tr, y_test = train_test_split(

data, labels, shuffle = True, train_size = 0.8)

Split the test dataset to get a validation one.

x_val, x_test, y_val, y_test = train_test_split(

x_test, y_test, shuffle = True, train_size = 0.5)

Do you wanna train a model? 333

Notice how the function returns four arrays in the following order: the data for the training

dataset, the data for the test dataset, the labels for the training dataset, and the labels

for the test dataset. One important thing about the train_test_split function is that it

can use stratification. If we had also provided the arguments stratify = labels and

stratify = y_test, this would have meant that, when splitting the data into training and

test examples, it would have kept the exact proportion of positive and negative classes

from the original data (or at least as close to exact as possible). This can be important,

especially if we are working with unbalanced datasets in which one class is much more

abundant than the other. If we are not careful, we could end up with a dataset in which the

minority class is non-existent.

Now that the data is perfectly prepared, it is time for us to focus on the model. For our

problem, we are going to use a neural network with the following components:

• An input layer with two inputs

• Three intermediate (also known as hidden) layers with ELU activation functions

and with 8, 16, and 8 neurons respectively

• An output layer with a single neuron that uses the sigmoid activation function

Let’s now try to digest this specification a little bit. Because of the nature of the problem,

we know that our model needs two inputs and one output, hence the sizes of the input

and output layers. What is more, we want to get an output normalized between 0 and 1, so

it makes sense to use the sigmoid activation function in the output layer. Now, we need

to find a way to get from 2 neurons in the first layer to 1 neuron in the output layer. We

could use hidden layers with 2 or 1 layers. . . but that wouldn’t yield a very powerful neural

network. Thus, we have progressively scaled the size of the neural network: first going

from 2 to 8, then from 8 to 16, then down from 16 to 8, to finally reach the output layer

with 1 neuron.

How do we define such a model in TensorFlow? Well, after doing the necessary imports and

setting a seed (remember that it is an important part if we want this to be reproducible!),

all it takes is to define what is known as a Keras sequential model.

334 Chapter 8: What Is Quantum Machine Learning?

The code is pretty self-explanatory:

import tensorflow as tf

tf.random.set_seed(seed)

model = tf.keras.Sequential([

tf.keras.layers.Input(2),

tf.keras.layers.Dense(8, activation = "elu"),

tf.keras.layers.Dense(16, activation = "elu"),

tf.keras.layers.Dense(8, activation = "elu"),

tf.keras.layers.Dense(1, activation = "sigmoid"),

])

And that is how we can create our model, storing it as an object of the Sequential class.

To learn more. . .

Once you have defined a Keras model, like the sequential model that we have

just considered, you can print a visual summary of it by running the instruction

print(model.summary()). This summary lists all the layers of the model together

with their shape, and also displays a count of all the model parameters.

Before we can train this model, we will need to compile it, associating it with an optimiza-

tion algorithm and a loss function. This is done by calling the compile method and giving

it the arguments optimizer and loss. In our case, we seek to use the Adam optimizer

(just with its default parameters) and the binary cross entropy loss function. We can thus

compile our model as follows:

opt = tf.keras.optimizers.Adam()

lossf = tf.keras.losses.BinaryCrossentropy()

model.compile(optimizer = opt, loss = lossf)

Do you wanna train a model? 335

When we instantiate the Adam optimizer without providing any arguments, the learning

rate is set, by default, to 10−3. We may change this value — and we will very often do! —

by setting a value for the optional argument learning_rate.

8.2.5 Training the model
Now we are ready to train our model. This will be done by calling the fit method. But

before we do that, let’s explore in some detail the most important arguments that we have

to and can pass to this method:

• The first argument that fit admits is the dataset x. It should be an array containing

the inputs that need to be passed to the model in order to train it. In our case, that

would be x_tr.

• The second argument that we can send is the array of labels y. Of course, the

dimensions of x and y need to match. In our case, we will set y to be y_tr.

• If you are using an optimizer that relies on gradient descent, you may want to resort

to mini-batch gradient descent. For this purpose, you can give an integer value to the

batch_size argument, which defaults to 32 (thus, by default, mini-batch gradient

descent is used). If you do not want to use mini-batch gradient descent, you should

set batch_size to None; that is what we will do.

• When we discussed gradient descent, we saw how these gradient descent algorithms

are iterative: they work by computing a sequence of points that, in principle,

should converge to a (local) minimum. But this raises the question of how many

optimization cycles the algorithm should make — how many such points in the

sequence it should compute. You may fix how many steps, also known as epochs,

you want the optimization algorithm to take. This is done by setting a value for the

epochs argument, which defaults to 1. In our case, we will use 8 epochs.

• If we want to use some validation data, as it is our case, we can pass it through the

validation_data argument. The value of this argument should be a tuple with the

336 Chapter 8: What Is Quantum Machine Learning?

validation dataset in the first entry and the corresponding labels in the second one.

Thus, in our case, we would set validation_data to (x_val, y_val).

• You may have noticed that the whole process of extracting a training, validation, and

test dataset can be somewhat tiresome. Well, it turns out that TensorFlow can help

out here. In principle, we could just have given TensorFlow a dataset with both the

training and validation data and told it in which proportions they should be split

by setting a value in the validation_split argument. This value must be a float

between 0 and 1 representing the proportion of the training dataset that should be

used for validation.

By doing this, we would save ourselves a “split”, but we would still have to extract a

test dataset on our own.

To learn more. . .

We have only covered some of the possibilities offered by TensorFlow — the ones

that we will use most often. If you feel comfortable enough with the material that

we have seen so far and want to explore TensorFlow in depth, you should check out

the documentation (https://www.tensorflow.org/api_docs/python/tf).

The way we will then train our model will be the following:

history = model.fit(x_tr, y_tr,

validation_data = (x_val, y_val), epochs = 8,

batch_size = None)

And, upon executing this instruction on an interactive shell, we will get the following

output:

Epoch 1/8

63/63 [====================] - 1s 3ms/step - loss: 0.6748

- val_loss: 0.4859

Epoch 2/8

63/63 [====================] - 0s 1ms/step - loss: 0.4144

https://www.tensorflow.org/api_docs/python/tf

Do you wanna train a model? 337

- val_loss: 0.3095

Epoch 3/8

63/63 [====================] - 0s 1ms/step - loss: 0.3173

- val_loss: 0.2502

Epoch 4/8

63/63 [====================] - 0s 1ms/step - loss: 0.2908

- val_loss: 0.2315

Epoch 5/8

63/63 [====================] - 0s 1ms/step - loss: 0.2830

- val_loss: 0.2262

Epoch 6/8

63/63 [====================] - 0s 1ms/step - loss: 0.2793

- val_loss: 0.2221

Epoch 7/8

63/63 [====================] - 0s 1ms/step - loss: 0.2765

- val_loss: 0.2187

Epoch 8/8

63/63 [====================] - 0s 1ms/step - loss: 0.2744

- val_loss: 0.2185

When seeing this, the first thing we should do is comparing the training loss with the

validation loss — just to stay away from overfitting! In our case, we see that these two are

close enough and have evolved following similar decreasing trends during the training.

That is indeed a good sign!

You may have noticed how we have saved the output of the fit method in an object that

we have called history in which TensorFlow will store information about the training.

For example, the training and validation losses at the end of each epoch is recorded in a

dictionary that we could access as history.history.

338 Chapter 8: What Is Quantum Machine Learning?

Exercise 8.5

Plot on a single graph the evolution of the training and validation losses through

the epochs, relying on the information contained in the history object.

In this case, we have manually set the number of epochs to 8, but this is not always the

best strategy. Ideally, we would like to fix a maximum number of epochs that is reasonably

large, but we would want the training to stop as soon as the loss is not improving. This is

known as early stopping, and it can be easily used in TensorFlow.

In order to use early stopping in TensorFlow, we first need to create an EarlyStopping

object in which we specify how we want early stopping to behave. Let’s say that we want

to train our model until, for three consecutive epochs, the validation loss doesn’t decrease

more than 0.001 after each epoch. To do this, we would have to invoke the following object:

early_stp = tf.keras.callbacks.EarlyStopping(

monitor = "val_loss", patience = 3, min_delta = 0.001)

And then, when calling the fit method, we would just have to pass the optional argument

callbacks = [early_stp]. It’s as easy as that!

In any case, now we have trained our model. If we want our model to process any inputs,

we can use the predict method, passing an array with any number of valid inputs. For

example, in our case, if we wanted to get the output of the model on the test dataset, we

could retrieve model.predict(x_test). However, this will give us the continuous values

returned by the model (which will range from 0 to 1), not a label! In order to get a discrete

label (0 or 1), we need to set a threshold. Naturally, we will set it to 0.5. Thus, if we want

to get the labels that our model would predict, we would have to run the following:

output = model.predict(x_test)

result = (output > 0.5).astype(float)

Of course, now we have to decide whether or not this training has been successful, so we

should assess the performance of our model on the test dataset. In order to do this, we may

Do you wanna train a model? 339

simply compute the accuracy of our model on the test dataset, that is, we may compute

the proportion of inputs in the test dataset that are correctly classified by our model.

In order to do this, we can use the accuracy_score function from sklearn.metrics:

from sklearn.metrics import accuracy_score

print(accuracy_score(result, y_test))

In our case, we got 89.2% accuracy. This seems like a pretty decent value, but we should

always consider accuracy values in the context of each problem. For some tasks, 89.2% can

indeed be marvelous, but for others it can be simply disappointing. Imagine, for instance,

that you have a problem in which 99% of the examples belong to one class. Then, it is

trivial to obtain at least 99% accuracy! You just need to classify all the inputs as belonging

to the majority class. In the next few pages, we will introduce tools to take this kind of

situation into account and better quantify classification performance.

Exercise 8.6

Re-train the model under the following conditions and compute the accuracy of the

resulting model:

• Reducing the learning rate to 10−6

• Reducing the learning rate to 10−6 and increasing the number of epochs to

1, 000

• Reducing the size of the training dataset to 20

In which cases is the resulting model less accurate? Why?

Does overfitting occur in any of these scenarios? How could you identify it?

So far, we have assessed the accuracy of our model just by measuring the proportion of

elements that it would correctly classify by setting a threshold of 0.5. There are nevertheless

other metrics of the performance of a binary classifier. We will study them in the next

subsection!

340 Chapter 8: What Is Quantum Machine Learning?

8.2.6 Binary classifier performance
Whenever you have a binary classifier, any output can belong to one of the four categories

depicted in the following table:

Classified as positive Classified as negative

Actual positive True positive False negative

Actual negative False positive True negative

The abbreviations TP, FN, FP, and TN are also used to denote the number of true positives,

false negatives, false positives, and true negatives (respectively) produced by a classifier

over a given dataset. These quantities are used very often. In fact, a common way of

assessing the performance of a classifier is by looking at its confusion matrix (usually

over the test dataset), which is nothing more than the matrix

(
TP FN

FP TN)
.

To get started, we can now compute the confusion matrix for the binary classifier that we

have just trained over the test dataset. For this, we can use the confusion_matrix function

from sklearn.metrics, which requires two arguments: an array of predicted labels and

an array of true labels:

from sklearn.metrics import confusion_matrix

confusion_matrix(y_true = y_test, y_pred = result)

Upon executing this piece of code, we get the following confusion matrix for our classifier:

(
24 20

7 199)
.

This matrix shows that there are very few false positives compared to the number of

true negatives, but almost as many false negatives as true positives. This means that our

classifier does a very good job of picking up the negative class but it is not so good at

Do you wanna train a model? 341

identifying the positive one. In a moment, we will discuss how to quantify this more

precisely.

To learn more. . .

Although we have focused just on binary classifiers, confusion matrices can also be

defined for classification problems in which there are 𝑛 classes. They have 𝑛 rows

and 𝑛 columns, and the entry in row 𝑘 column 𝑙 represents the number of elements

that actually belong to class 𝑘 but that are labeled as class 𝑙 by the system.

Additionally, if you fix one of the 𝑛 classes as the positive one and consider the rest

as negative, you can obtain TP, FP, TN, and FN for that particular class.

Confusion matrices are very informative, and the quantities in them can help us define

several metrics of the performance of a binary classifier. For instance, the usual accuracy

metric can be defined by

Acc =
TP + TN

TP + TN + FP + FN

.

Other interesting metrics are the positive predictive value and the sensitivity, which

are defined respectively as

𝑃 =
TP

TP + FP

, 𝑆 =
TP

TP + FN

.

The positive predictive value is also known as the precision and the sensitivity is also

known as the recall of the classifier.

There is a trade-off between 𝑃 and 𝑆. Obtaining a perfect recall is trivial: you just need

to classify every input as positive. But then, you will have a low precision. Similarly, it is

easy to obtain very good values of precision: only classify an example as positive if you

are extremely sure that it is positive. But then the recall will be very low.

For this reason, an interesting metric is the 𝐹1 score, defined as the harmonic mean of 𝑃

and 𝑆:

𝐹1 =
2

1
𝑃 + 1

𝑆
=

2𝑃𝑆
𝑃 + 𝑆

.

342 Chapter 8: What Is Quantum Machine Learning?

It is easy to see how this score can range from 0 (the score of the worst possible classifier)

to 1 (the score of a perfect classifier). Moreover, a high 𝐹1 score means that we are not

favoring recall over precision or precision over recall.

If you are mathematically oriented, you may have realized that our expression for 𝐹1 is

actually undefined for 𝑃 = 𝑆 = 0, but we can trivially extend it by continuity to take the

value 𝐹1 = 0 there.

In order to compute these metrics, we may use the classification_report function from

sklearn.metrics. In our case, we may run the following:

from sklearn.metrics import classification_report

print(classification_report(y_true = y_test, y_pred = result))

This yields the following output:

precision recall f1-score support

0 0.77 0.55 0.64 44

1 0.91 0.97 0.94 206

accuracy 0.89 250

macro avg 0.84 0.76 0.79 250

weighted avg 0.89 0.89 0.88 250

And in this table, we can see all the metrics that we have mentioned. You can see that the

scores are returned for both the case in which 0 is the positive class and for the case when

1 is positive instead (in our case, we have considered 0 to be positive, so we would look

at the first row). By the way, the support of a class is meant to represent the number of

elements in the class that can be found in the dataset. Also, the macro average of each

metric is just the plain average of the values of the metric obtained by taking each class as

positive. The weighted average is like the macro average, but weighted by the proportion

of elements of each class in the dataset.

Do you wanna train a model? 343

Let’s say that we have a binary classifier that returns a continuous output between 0 and 1

before cutting through a threshold in order to assign a label. As we saw earlier, we could

just measure the performance of our classifier by using a bunch of metrics. But if we want

to get a broader perspective of how our classifier could work for any threshold, we can

take another approach.

Using the entries of the confusion matrix over a dataset, we may define the true positive

rate as the proportion

TPR =
TP

TP + FN

,

that is, the proportion of examples from the positive class that are actually classified as

positive. On the other hand, we can analogously define the false positive rate as the

quotient

FPR =
FP

FP + TN

.

The Receiver Operating Characteristic curve or ROC curve of a classifier that returns

continuous values is computed over a given dataset by plotting, for every possible choice of

threshold, a point with a 𝑌 coordinate given by the corresponding TPR and an 𝑋 coordinate

with the FPR for that threshold. As the threshold increases from 0 to 1, this will give rise to

a finite sequence of points. The curve is obtained by joining these through straight lines.

Notice that we evaluate the performance of the classifier with different levels of “demand”

for classifying an input as positive. When the threshold is high, it will be harder to classify

something as positive; the FPR will be low — great! — but the TPR will probably be also

low. On the other hand, for low values of the threshold, it will be easier for an input to

be classified as positive: the TPR will be high — yay! — but that can also cause the false

positives to go up.

Sounds familiar? This is the same kind of trade-off that we discussed when we defined

precision and recall. The difference is that, in this case, we are taking into account the

behavior of the classifier for every possible choice of threshold, giving us a global assessment.

Plotting the ROC curve can be very informative because it can also help in selecting

classification thresholds that are more suitable for our problem. For instance, if you are

344 Chapter 8: What Is Quantum Machine Learning?

trying to detect whether a given patient has a certain serious illness, it may pay off to have

some false positives — people that may need to undergo additional medical tests — at the

cost of having very low false negatives. The ROC curve can help you there by identifying

points at which the TPR is high and the FPR is acceptable.

In order to plot a ROC curve, we can use the roc_curve function from sklearn.metrics.

It will return the 𝑋 and 𝑌 coordinates of the points of the curve. In our particular case, we

may run the following piece of code:

from sklearn.metrics import roc_curve

fpr, tpr, _ = roc_curve(y_test, output)

plt.plot(fpr, tpr)

plt.plot([0,1],[0,1],linestyle="--",color="black")

plt.xlabel("FPR"); plt.ylabel("TPR")

plt.show()

Notice how we have dropped part of the output of the roc_curve function; in particular,

the return object that we ignore yields an array that includes the thresholds at which the

classifier accuracy changes (you can refer to the documentation at https://scikit-l

earn.org/stable/modules/generated/sklearn.metrics.roc_curve.html for more

information). The output that we got can be found in Figure 8.5. Notice that we have

manually drawn a dashed line between (0, 0) and (1, 1). That is meant to represent the

ROC curve that could be generated by a random classifier, one that assigns an input to a

class with probability proportional to the size of that class, and it is an important visual

aid. That’s because any curves above that dashed line are ROC curves of classifiers that

have some real classification power.

There are some interesting features in this ROC curve, so let’s discuss it a little bit. To

start with, notice that the points (0, 0) and (1, 1) always belong to the ROC curve of any

classifier because they are achieved with the highest and lowest thresholds, respectively.

In the first case, no input is assigned to the positive class, so we have neither TPs nor FPs.

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_curve.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_curve.html

Do you wanna train a model? 345

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Figure 8.5: ROC curve (solid line) for the classifier that we have trained.

In the second one, all inputs are assigned to the positive class, so we have neither FNs nor

TNs.

In addition to this, we can observe in our graph that, from (0, 0), the ROC curve starts

moving horizontally, increasing the FPR without increasing the TPR. This means that there

are some examples in the test dataset that the model very confidently classifies as belonging

to the positive class but that, in fact, are negative. This is undesirable, of course. We would

like our ROC curve to go up — increasing the TPR — without moving to the right. And

that is exactly what happens after that first hiccup. We observe a long segment in which

the TPR goes up without any increase in the FPR. If we need our classifier to have high

precision, we could select the threshold that achieves TPR of about 0.71 with FPR of only

about 0.02. On the other hand, if we need high recall, we can select the point in the curve

where the TPR is already 1 with a FPR of about 0.5. For a more balanced classifier, notice

that there is a point in the ROC curve with TPR around 0.91 and FPR below 0.21.

Of course, the ideal classifier would have a ROC curve that goes all the way from (0, 0) to

(1, 0). That would mean that there is a threshold for which all the positive examples are

classified as positive, while no negative example is assigned to the positive class. That’s

just perfection! From there, the ROC curve would go straight to (1, 1): we have already

346 Chapter 8: What Is Quantum Machine Learning?

found all the positive examples so the TPR cannot increase, but by decreasing the threshold

we will eventually increase the FPR from 0 to 1.

Obviously, that kind of perfect ROC curve is only achievable for extremely simple classifi-

cation problems. However, we can still compare our actual model to that ideal classifier by

computing the area under the ROC curve, often abbreviated as AUC. Since the ROC

curve of the perfect classifier would have area equal to 1, we can consider that the closer

the AUC of a classifier is to 1, the better its global performance is. In the same way, a

random classifier would have an ROC curve that is a straight line from (0, 0) to (1, 1), so

its AUC would be 0.5. Hence, classifiers whose AUC is higher than 0.5 have some actual

classification power beyond just random guessing.

Having the coordinates of the points that define the ROC curve, we can easily get the AUC

score using the auc function from sklearn.metrics:

from sklearn.metrics import auc

print(auc(fpr,tpr))

In our case, we get an AUC score of approximately 0.9271. Again, this seems like a great

value, but let us stress once again that it all depended on the difficulty of the problem —

and the one we have been considering is not particularly hard. Also, remember that the

AUC is a global performance metric that takes into account every possible threshold of

your classifier. At the end of the day, you need to commit to just one threshold value, and

a high AUC might not mean much if, for your particular threshold choice, the accuracy,

precision, and recall are not that great.

That was a lot of information! In any case, for most practical purposes, all that you will

need to know is summarized in the following note.

Important note

Given a binary classifier with continuous output, we may compute its receiver

operating characteristic curve (also known as the ROC curve) over a dataset. The

higher the area under that curve, the higher the classifying power of the classifier.

Quantum-classical models 347

We refer to the area under the ROC curve of a classifier as its AUC (short for “area

under the curve”):

• An AUC of 1 corresponds to a perfect classifier

• An AUC of 0.5 would match that of a random classifier

• An AUC of 0 corresponds to a classifier that always returns the wrong output

By now, we should have a decent understanding of (classical) machine learning, and you

may be wondering where does the “quantum” part begin? It begins now.

8.3 Quantum-classical models
In general terms, quantum machine learning refers to the application of machine learning

techniques — only that quantum computing is involved at same stage of the process. Maybe

you use a quantum computer in some part a model that you wish to train. Maybe you wish

to use data generated by some quantum process. Maybe you use a quantum computer to

process quantum-generated data. As you can imagine, the subject of quantum machine

learning, as a whole, is broad enough to accommodate for a wide range of ideas and

applications.

In an attempt to categorize it all a little bit, we can follow the useful classification shown

in Schuld’s and Petruccione’s book [71] and divide quantum machine learning into four

different flavors, which are depicted in Figure 8.6, according to the classical or quantum

nature of the data and processing devices that are used:

• We could consider part of quantum machine learning all the quantum-inspired

classical machine learning techniques; that is, all the classical machine learning

methods that draw ideas from quantum computing. In this case, both the data and

the computers are classical, but there is some quantum flavor involved in the process.

This is represented as CC in the chart. Since there are no actual quantum computers

involved in this approach, we will not study this kind of method.

348 Chapter 8: What Is Quantum Machine Learning?

• In addition, we can also consider part of quantum machine learning any classical

machine learning algorithms that rely on quantum data; for our purposes, we can

just think of it as data generated by quantum processes, or as the application of

classical machine learning to quantum computing. This is the QC block in the chart.

In this approach, machine learning is a tool rather than an end, so we will not be

covering these techniques.

• The kind of machine learning that we will focus on in this book is the one represented

by the CQ label in the chart: machine learning that relies on classical data and uses

quantum computing in the model or the training.

• Lastly, there is also a very interesting QQ category. These techniques work on

quantum data using quantum computing in the models themselves or in the training

processes. Notice that — as opposed to CQ quantum machine learning — in this

scenario, the quantum data need not be obtained from measurements: quantum states

could be directly fed into a quantum model, for instance. This is an area of great

promise (see, for instance, the recent paper by Huang et al. [72]), but the required

technologies are still immature, so we will not be talking about this approach in

much detail.

CC

Classical

algorithm

Classical

data

QC
Quantum

data

CQ

Quantum

algorithm

QQ

Figure 8.6: The four big families of quantum machine learning, categorized according to the
nature of the models and data that they use

Quantum-classical models 349

Our plan, then, is to focus on CQ quantum machine learning: machine learning on classical

data that relies on quantum computing. Now, within this category, there is still a fairly

broad range of possibilities. We could use quantum computing on the model and also in

the optimization process. There are already many interesting proposals for how quantum

computing could speed up traditional machine learning models, but these approaches

cannot, in general, be used on our current quantum hardware. For this reason, we will not

discuss them in this book — but if you are interested in learning more about them, we can

recommend the excellent paper by Biamonte et al. [73].

Instead, we will devote ourselves, heart and soul, to the study of fully quantum-oriented

models that can be run on NISQ devices. These models will be trained on classical data

and, in general, we will use purely classical optimization techniques.

In the following chapters, we will study the following models:

• Quantum support vector machines. We will soon explore what support vector

machines are and how they can be trained using classical machine learning. We will

also see how their quantum version is just a particular case of a general support

vector machine in which we use quantum computers to map data into a space of

quantum states.

• Quantum neural networks. We will then explore a purely quantum model: quan-

tum neural networks. This model runs fully on a quantum computer, and its behavior

is inspired by classical neural networks.

• Hybrid networks. In the subsequent chapter, we will learn how to combine quantum

neural networks with other classical models (most commonly, neural networks). We

will refer to these models as hybrid networks.

• Quantum generative adversarial networks. Lastly, we will study generative

adversarial networks and cover how the components of these models can be replaced

by quantum circuits.

350 Chapter 8: What Is Quantum Machine Learning?

As in the rest of this book, our approach will be very hands-on and practical. If you wish

to broaden your theoretical background on quantum machine learning, you can also have

a look at the book by Maria Schuld and Francesco Petruccione [71].

Summary
In this chapter, we have explored some basic concepts and ideas that lie at the foundation

of machine learning. And we haven’t just explored them from a theoretical point of view:

we have also seen them come to life.

We have learned what machine learning is all about, and we have discussed some of the

most common approaches used to make it a reality. In particular, we have learned that

many machine learning problems can be reduced to the minimization of a loss function

through some optimization algorithm on a suitable model.

We have also studied in some depth classical neural networks, and we have used an

industry-standard machine learning framework (TensorFlow) to train one.

Lastly, we have wrapped up this chapter by introducing what quantum machine learning

is all about and having a sneak peek into the rest of the chapters of this part of the book.

9
Quantum Support Vector
Machines

Artificial Intelligence is the new electricity

— Andrew Ng

In the previous chapter, we learned the basics of machine learning and we got a sneak

peek into quantum machine learning. It is now time for us to work with our first family of

quantum machine learning models: that of Quantum Support Vector Machines (often

abbreviated as QSVMs). These are very popular models, and they are most naturally used

in binary classification problems.

In this chapter, we shall learn what (classical) support vector machines are and how they

are used, and we will use this knowledge as a foundation to understand quantum support

vector machines. In addition, we will explore how to implement and train quantum support

vector machines with Qiskit and PennyLane.

352 Chapter 9: Quantum Support Vector Machines

The contents of this chapter are the following:

• Support vector machines

• Going quantum

• Quantum support vector machines in PennyLane

• Quantum support vector machines in Qiskit

9.1 Support vector machines
QSVMs are actually particular cases of Support Vector Machines (abbreviated as SVMs).

In this section, we will explore how these SVMs work and how they’re used in machine

learning. We will do so by first motivating the SVM formalism with some simple examples,

and then building up from there: all the way up into how SVMs can be used to tackle

complex classification problems with the kernel trick.

9.1.1 The simplest classifier you could think of
Let us forget about data for a moment and begin by considering a very naive problem. Let’s

say that we want to build a very simple classifier on the real line. In order to do this, all we

have to do is split the real number line into two disjoint categories in such a way that any

number belong to exactly one of these two categories. Thus, if we are given any input (a

real number), our classifier will return the category to which it belongs.

What would be the easiest way in which you could do this? Odds are you would first pick

a point 𝑎 and divide the real number line into the set (category) of numbers smaller than 𝑎

and the set of numbers larger than 𝑎. Then, of course, you would have to assign 𝑎 to one of

the two categories, so your categories would be either of the following:

• The set of real numbers 𝑥 such that 𝑥 ≤ 𝑎 and the set of numbers 𝑥 such that 𝑥 > 𝑎

• The set of numbers 𝑥 such that 𝑥 < 𝑎 and the set of numbers 𝑥 such that 𝑥 ≥ 𝑎

Either choice would be reasonable.

Support vector machines 353

To learn more. . .

Actually, the choice as to in which category to include 𝑎 is, to some extent, meaning-

less. At the end of the day, if you choose a real number at random, the probability

that it be exactly 𝑎 is zero. This fun fact is sponsored by probability and measure

theory!

That was easy. Let’s now say that we want to do the same with the real plane (the usual

ℝ2
). In this case, a single point will not suffice to split it, but we could instead consider a

good old line! This is exemplified in Figure 9.1. Any line can be used to perfectly split the

real plane into two categories.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 9.1: The line (5/4,−1) ⋅ 𝑥 + 0 = 0, which can be equivalently written as 𝑦 = (5/4)𝑥 ,
can be used to divide the real plane into two disjoint categories, which are colored differently.
The picture does not specify to which category the line belongs

If you go back to your linear algebra notes, you may recall that any line in the plane can be

characterized in terms of a vector �⃗� ∈ ℝ2
and a scalar 𝑏 ∈ ℝ as the set of points 𝑥 = (𝑥, 𝑦)

such that �⃗� ⋅ 𝑥 + 𝑏 = 0. Of course, we are using ⋅ to denote the scalar product (that is,

�⃗� ⋅ 𝑥 = 𝑤1𝑥 + 𝑤2𝑦, provided that �⃗� = (𝑤1, 𝑤2)). The vector �⃗� defines the normal, or

perpendicular, direction to the line, and the constant 𝑏 determines the intersection of the

line with the 𝑋 and 𝑌 axes.

354 Chapter 9: Quantum Support Vector Machines

When we worked on the one-dimensional case and used a point to split the real line, it

was trivial to decide which category any input belonged to. In this case, it is slightly more

complicated, but not too much. With some elementary geometry, you can check that any

number 𝑥 will be on one side or the other of the line defined by �⃗� ⋅ 𝑥 + 𝑏 = 0 depending on

the sign of the quantity �⃗� ⋅ 𝑥 + 𝑏. That is, if �⃗� ⋅ 𝑥1 + 𝑏 and �⃗� ⋅ 𝑥2 + 𝑏 have the same sign

(both smaller than zero or both greater than zero), we will know that 𝑥1 and 𝑥2 will belong

to the same category. Otherwise, we know they will not.

There is no reason for us to stop at two dimensions, so let’s kick this up a notch and

consider an 𝑛-dimensional Euclidean space ℝ𝑛. Just as we split ℝ2
using a line, we could

split ℝ𝑛 using. . . an (𝑛 − 1)-dimensional hyperplane! For instance, we could split ℝ3
using

an ordinary plane.

These hyperplanes in ℝ𝑛 are defined by their normal vectors �⃗� ∈ ℝ𝑛 and some constants

𝑏 ∈ ℝ. In analogy to what we saw in ℝ2
, their points are the 𝑥 ∈ ℝ𝑛 that satisfy the equations

of the form

�⃗� ⋅ 𝑥 + 𝑏 = 0.

Moreover, we can determine to which side of the hyperplane a certain 𝑥 ∈ ℝ𝑛 is in terms of

the sign of �⃗� ⋅ 𝑥 + 𝑏.

To learn more. . .

In case you are confused with all these equations and you are curious as to where

they come from, let us quickly explain them. An (affine) hyperplane can be defined

by a normal vector �⃗� and by a point 𝑝 in the plane. Thus, a point 𝑥 will belong to

the hyperplane if and only if 𝑥 = 𝑝 + 𝑣 for some vector 𝑣 that is orthogonal to �⃗�,

that is, such that �⃗� ⋅ 𝑣 = 0. By combining these two expressions, we know that 𝑥 will

belong to the hyperplane if and only if �⃗� ⋅ (𝑥 − 𝑝) = 0, which can be rewritten as

�⃗� ⋅ 𝑥 + (−�⃗� ⋅ 𝑝) = 𝑥 ⋅ �⃗� + 𝑏 = 0,

where we have implicitly defined 𝑏 = −�⃗� ⋅ 𝑝.

Support vector machines 355

Moreover, we have just seen how �⃗� ⋅ 𝑥 + 𝑏 is the scalar product of 𝑥 − 𝑝 with �⃗�, a

fixed normal vector to the plane. This justifies why its sign determines on which

side of the hyperplane 𝑥 lies. Remember that, geometrically, the dot product of

two vectors 𝑢1 ⋅ �⃗�2 is equal to ‖𝑢‖1 ⋅ ‖𝑢‖2 ⋅ cos 𝜃, where 𝜃 denotes the smallest angle

between them.

With what we have done so far, we have the tools required to construct (admittedly simple)

binary classifiers on any Euclidean space. All it takes for us to do so is fixing a hyperplane!

Why is this important to us? It turns out that support vector machines do exactly what we

have discussed so far.

Important note

A support vector machine takes inputs in an 𝑛-dimensional Euclidean space (ℝ𝑛) and

classifies them according to which side of a hyperplane they are on. This hyperplane

fully defines the behavior of the SVM. Of course, the adjustable parameters of an SVM

are the ones that define the hyperplane: following our notation, the components of

the normal vector �⃗� and the constant 𝑏.

In order to get the label of any point 𝑥 , all we have to do is look at the sign of

�⃗� ⋅ 𝑥 + 𝑏.

As you may have suspected, vanilla SVMs, just on their own, are not the most powerful of

binary classification models: they are intrinsically linear and they are not fit to capture

sophisticated patterns. We will take care of this later in the chapter when we unleash the

full potential of SVMs with “the kernel trick” (stay tuned!). In any case, for now, let us

rejoice in the simplicity of our model and let’s learn how to train it.

356 Chapter 9: Quantum Support Vector Machines

9.1.2 How to train support vector machines: the
hard-margin case

Let’s say that we have a binary classification problem, and we are given some training data

consisting of datapoints in ℝ𝑛 together with their corresponding labels. Naturally, when

we train an SVM for this problem, we want to look for the hyperplane that best separates

the two categories in the training dataset. Now we have to make this intuitive idea precise.

Let the datapoints in our training dataset be 𝑥𝑗 ∈ ℝ𝑛 and their expected labels be 𝑦𝑗 = 1,−1

(read as positive and negative, respectively). For now, we will assume that our data can be

perfectly separated by a hyperplane. Later in the section, we will see what to do when this

is not the case.

Notice that, under the assumption that there is at least one hyperplane separating our data,

there will necessarily be an infinite number of such separating hyperplanes (see Figure 9.2).

Will any of them be suitable for our goal of building a classifier? If we only cared about the

training data, then yes, any of them would do the trick. In fact, this is exactly what the

perceptron model that we discussed in Chapter 8, What is Quantum Machine Learning?,

does: it just looks for a hyperplane separating the training data.

However, as you surely remember, when we train a classifier, we are interested in getting a

low generalization error. In our case, one way of trying to achieve this is by looking for a

separating hyperplane that can maximize the distance from itself to the training datapoints.

And that is the way in which SVMs are actually trained. The rationale behind this is clear:

we expect the new, unseen datapoints to follow a similar distribution to the one that we

have seen in the training data. So it is very likely that new examples of one class will be

closer to training examples of that same class. Therefore, if our separating hyperplane is

too close to one of the training datapoints, we risk another datapoint of the same class

crossing to the other side of the hyperplane and being misclassified. For instance, in Figure

9.2, the dashed line does separate the training datapoints, but it is certainly a much more

risky choice than, for example, the continuous line.

Support vector machines 357

0 2 4 6 8 10
0

2

4

6

8

10

Figure 9.2: Both lines (hyperplanes) separate the two categories, but the continuous line is
closer to the datapoints than the dashed line

The idea behind the training of an SVM is then clear: we seek to find not just any separating

hyperplane, but one that is as far away from the training points as possible. This may seem

difficult to achieve, but it can be posed as a rather straightforward optimization problem.

Let’s explain how to do it in a little bit more detail.

In a first approach, we could just consider the distance from a separating hyperplane 𝐻

to all the points in the training dataset, and then try to find a way to tweak 𝐻 in order to

maximize that distance while making sure that 𝐻 still separates the data properly. This

is, however, not the best way to present the problem. Instead, we may notice how we can

associate to each data point a unique hyperplane that is parallel to 𝐻 and contains that

datapoint. And, what is more, the parallel hyperplane that goes through the point that is

closest to 𝐻 will itself be a separating hyperplane — and so will be its reflection over 𝐻 .

This is illustrated in Figure 9.3.

This pair of hyperplanes — the parallel plane that goes through the closest point and its

reflection — will be the two equidistant parallel hyperplanes, which are the furthest apart

from each other while still separating the data. They are unique to 𝐻 . The distance between

358 Chapter 9: Quantum Support Vector Machines

0 2 4 6 8 10
0

2

4

6

8

10

Figure 9.3: The continuous black line represents a separating hyperplane 𝐻 . One of the dashed
lines is the parallel hyperplane that goes through the closest point to 𝐻 , and its reflection over
𝐻 is the other dashed line

them is known as the margin and it is what we aim to maximize. This is illustrated in

Figure 9.4.

We already know that any separating hyperplane 𝐻 can be characterized by an equation

of the form �⃗� ⋅ 𝑥 + 𝑏 = 0. Moreover, any hyperplane that is parallel to 𝐻 — in particular

those that define the margin! — can be characterized as �⃗� ⋅ 𝑥 + 𝑏 = 𝐶 for some constant 𝐶.

And not only that, but their reflection over 𝐻 will be itself characterized by the equation

�⃗� ⋅ 𝑥 + 𝑏 = −𝐶. Hence, we know that, for some constant 𝐶, the hyperplanes that define the

margin of 𝐻 can be represented by the equations �⃗� ⋅ 𝑥 + 𝑏 = ±𝐶.

Nevertheless, there is nothing preventing us here from dividing the whole expression by 𝐶.

So, if we let �̃� = �⃗�/𝐶 and �̃� = 𝑏/𝐶, we know that the hyperplane 𝐻 will still be represented

by �̃� ⋅ 𝑥 + �̃� = 0, but the hyperplanes that define the margin will be characterized by

�̃� ⋅ 𝑥 + �̃� = ±1,

which looks much more neat!

Support vector machines 359

Let’s summarize what we have. We want to find a hyperplane that, while separating the

data properly, maximizes the distance to the points in the training dataset. We have seen

how we can see this as the problem of finding a hyperplane that maximizes the margin: the

distance between the two equidistant parallel hyperplanes that are the furthest away from

each other while still separating the data. And we have just proven that, for any separating

hyperplane, we can always find some values of �⃗� and 𝑏 such that those hyperplanes that

define the margin can be represented as

�⃗� ⋅ 𝑥 + 𝑏 = ±1.

It can be shown that the distance between these two hyperplanes is 2/‖𝑤‖. Hence the

problem of maximizing the margin can be equivalently stated as the problem of maximizing

2/‖𝑤‖ subject to the constraint that the planes �⃗� ⋅ 𝑥 + 𝑏 = ±1 properly separate the data.

Exercise 9.1

Show that, as we claimed, the distance between the hyperplanes �⃗� ⋅ 𝑥 + 𝑏 = ±1 is

2/‖𝑤‖.

Let’s now consider an arbitrary element 𝑝 ∈ ℝ𝑁 and a hyperplane 𝐻 characterized by

�⃗� ⋅ 𝑥 + 𝑏 = 0. When the value of �⃗� ⋅ 𝑝 + 𝑏 is zero, we know that 𝑝 is in the hyperplane

and, as this value drifts away from zero, the point gets further and further away from the

hyperplane. If it increases and it is between 0 and 1, the point 𝑝 is between the hyperplane

𝐻 and the hyperplane �⃗� ⋅ 𝑥 + 𝑏 = 1. When this value reaches 1, the point is in this latter

hyperplane. And when the value becomes greater than 1, it moves beyond both hyperplanes.

Analogously, if this value decreases and it is between 0 and −1, the point 𝑝 is between

the hyperplane 𝐻 and �⃗� ⋅ 𝑥 + 𝑏 = −1. When the value reaches −1, the point is in this last

hyperplane. And when it is smaller than −1, it has moved beyond both 𝐻 and �⃗� ⋅𝑥+𝑏 = −1.

Since we are working under the assumption that there are no points inside the margin,

the hyperplane �⃗� ⋅ 𝑥 + 𝑏 = 0 will properly separate the data if, for all the positive entries,

�⃗� ⋅ 𝑥 + 𝑏 ≥ 1, while all the negative ones will satisfy �⃗� ⋅ 𝑥 + 𝑏 ≤ −1. We can write this

360 Chapter 9: Quantum Support Vector Machines

condition as

𝑦𝑗 (�⃗� ⋅ 𝑥𝑗) ≥ 1,

because we are considering 𝑦𝑗 = 1 when the 𝑗-th example belongs to the positive class and

𝑦𝑗 = −1 when it belongs to the negative one.

0 2 4 6 8 10
0

2

4

6

8

10

Figure 9.4: The hyperplane that could have been returned by an SVM is represented by a black
continuous line, and the lines in dashed lines are the equidistant parallel hyperplanes that are
the furthest apart from each other while still separating the data. The margin is thus half of
the thickness of the colored region

For all this, the problem of finding the hyperplane that best separates the data can be posed

as the following optimization problem:

Minimize ‖𝑤‖

subject to 𝑦𝑗 (�⃗� ⋅ 𝑥𝑗 ,+𝑏) ≥ 1,

where, of course, each 𝑗 defines an individual constraint. This formulation suffers from a

small problem. The Euclidean norm is nice, visual, and geometric, but it has a square root.

We personally have nothing against square roots — some of our best friends are square

roots — but most optimization algorithms have some hard feelings against them. So just to

make life easier for us, we may instead consider the following (equivalent) problem.

Support vector machines 361

Important note

If the data in the training dataset can be separated by a hyperplane, the problem of

training an SVM can be posed as the following optimization problem:

Minimize

1
2
‖𝑤‖2

subject to 𝑦𝑗 (�⃗� ⋅ 𝑥𝑗 + 𝑏) ≥ 1.

This is known as hard-margin training, because we are allowing no elements in

the training dataset to be misclassified or even to be inside the margin.

That nice and innocent square will save us from so many troubles. Notice, by the way, that

we’ve introduced a 1/2 factor next to ‖𝑤‖2. That’s for reasons of technical convenience,

but it isn’t really important.

With hard-margin training, we need our training data to be perfectly separable by a

hyperplane because, otherwise, we will not find any feasible solutions to the optimization

problem that we have just defined. This scenario is, in most situations, too restrictive.

Thankfully, we can take an alternative approach known as soft-margin training.

9.1.3 Soft-margin training
Soft-margin training is similar to hard-margin training. The only difference is that it also

incorporates some adjustable slack, or “tolerance,” parameters 𝜉𝑗 ≥ 0 that will add flexibility

to the constraints. In this way, instead of considering the constraint 𝑦𝑗 (�⃗� ⋅ 𝑥𝑗 + 𝑏) ≥ 1, we

will use

𝑦𝑗 (𝑤 ⋅ 𝑥𝑗 + 𝑏) ≥ 1 − 𝜉𝑗 .

Thus, when 𝜉𝑗 > 0, we will allow 𝑥𝑗 to be close to the hyperplane or even on the wrong

side of the space (as separated by the hyperplane). What is more, the bigger the value of 𝜉𝑗 ,

the further into the wrong side 𝑥𝑗 will be.

362 Chapter 9: Quantum Support Vector Machines

Naturally, we would like these 𝜉𝑗 to be as small as possible, so we need to include them in

the cost function that we want to minimize. Taking all of this into account, the optimization

problem that we shall consider in soft-margin training will be the following.

Important note

A support vector machine that may not be necessarily able to properly separate the

training data with a hyperplane can be trained by solving the following optimization

problem:

Minimize

1
2
‖𝑤‖2 + 𝐶∑

𝑗
𝜉𝑗

subject to 𝑦𝑗 (�⃗� ⋅ 𝑥𝑗 + 𝑏) ≥ 1 − 𝜉𝑗 ,

𝜉𝑗 ≥ 0.

The value 𝐶 > 0 is a hyperparameter that can be chosen at will. The bigger 𝐶 is,

the less tolerant we will be to training examples falling inside the margin or on the

wrong side of the hyperplane.

This formulation is known as soft-margin training of an SVM.

Let us now try to digest this formulation. As expected, we also made the 𝜉𝑗 contribute

to our cost function, in such a way that their taking large values will be penalized. In

addition, we’ve incorporated this 𝐶 constant and said that it can be tweaked at will. As

we mentioned before, in broad terms, the bigger it is, the more unwilling we will be to

accept misclassified elements in the training dataset. Actually, if there is a hyperplane that

can perfectly separate the data, setting 𝐶 to a huge value would be equivalent to doing

hard-margin training. At first, it might seem tempting to make 𝐶 huge, but this would

make our model more prone to overfitting. Perfect fits are not that good! Balancing the

value of 𝐶 is one of the many keys behind successful SVM training.

Support vector machines 363

To learn more. . .

When we train an SVM, the actual loss function that we would like to minimize is

𝐿(�⃗�, 𝑏; 𝑥, 𝑦) = max{0, 1 − 𝑦(�⃗� ⋅ 𝑥 + 𝑏)},

which is called the hinge loss. In fact, our 𝜉𝑗 variables are direct representatives of

that loss. Minimizing the expected value of this loss function would be connected

to minimizing the proportion of misclassified elements — which is what we want at

the end of the day.

If, in our formulation, we didn’t have the ‖𝑤‖2/2 factor, that would be the training

loss that we would be minimizing. We included this factor, however, because a small

‖𝑤‖2 (that is, a large margin) makes SVM models more robust against overfitting.

We will conclude this analysis of soft-margin training by presenting an equivalent formu-

lation of its optimization problem. This formulation is known as the Lagrangian dual

of the optimization problem that we presented previously. We will not discuss why these

two formulations are equivalent, but you can take our word for it — or you can check the

wonderful explanation by Abu-Mostafa, Magdon-Ismail, and Lin [74].

Important note

The soft-margin training problem can be equivalently written in terms of some

optimizable parameters 𝛼𝑗 as follows:

Maximize ∑
𝑗
𝛼𝑗 −

1
2
∑
𝑗 ,𝑘

𝑦𝑗𝑦𝑘𝛼𝑗𝛼𝑘 (𝑥𝑗 ⋅ 𝑥𝑘) ,

subject to 0 ≤ 𝛼𝑗 ≤ 𝐶,

∑
𝑗
𝛼𝑗𝑦𝑗 = 0.

This formulation of the SVM soft-margin training problem is, most of the time, easier to

solve in practice, and it is the one that we will be working with. Once we obtain the 𝛼𝑗

364 Chapter 9: Quantum Support Vector Machines

values, it is also possible to go back to the original formulation. In fact, from the 𝛼𝑗 values,

we can recover 𝑏 and 𝑤. For instance, it holds that

�⃗� = ∑
𝑗
𝛼𝑗𝑦𝑗𝑥𝑗 .

Notice that �⃗� only depends on the training points 𝑥𝑗 , for which 𝛼𝑗 ≠ 0. These vectors are

called support vectors and, as you can imagine, are the reason behind the name of the

SVM model.

Furthermore, we can also recover 𝑏 by finding some 𝑥𝑗 that lies at the boundary of the

margin and solving a simple equation — see [74] for all the details. Then, in order to classify

a point 𝑥 , we can just compute

�⃗� ⋅ 𝑥 + 𝑏 = ∑
𝑗
𝛼𝑗𝑦𝑗 (𝑥𝑗 ⋅ 𝑥) + 𝑏,

and decide whether 𝑥 goes into the positive or negative class depending on whether the

result is bigger than 0 or not.

We’ve now covered all we need to know about how to train a support vector machine. But,

with our tools, we can only train these models to obtain linear separations between data,

which is, well, not the most exciting of prospects. In the next section, we will overcome

this limitation with a simple yet powerful trick.

9.1.4 The kernel trick
Vanilla SVMs can only be trained to find linear separations between data elements. For

example, the data shown in Figure 9.5a cannot be separated effectively by any SVM, because

there is no way to separate it linearly.

How do we overcome this? Using the kernel trick. This technique consists in mapping the

data from its original space ℝ𝑛 to a higher dimensional space ℝ𝑁 , all in the hope that, in that

space, there may be a way to separate the data with a hyperplane. This higher dimensional

Support vector machines 365

space is known as a feature space, and we will refer to the function 𝜑 ∶ ℝ𝑛 ⟶ ℝ𝑁 —

which takes the original data inputs into the feature space — as a feature map.

For instance, the data in Figure 9.5a is in the 1-dimensional real line, but we can map it to

the 2-dimensional plane with the function

𝑓 (𝑥) = (𝑥, 𝑥2).

As we can see in Figure 9.5b, upon doing this, there is a hyperplane that perfectly separates

the two categories in our dataset.

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

0.04

0.02

0.00

0.02

0.04

(a) Original data in the real line

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(b) Data in the feature space

Figure 9.5: The original data cannot be separated by a hyperplane, but — upon taking it
to a higher-dimensional space with a feature map — it can. The separating hyperplane is
represented by a dashed line

Looking at the dual form of the soft-margin SVM optimization problem, we can see how,

in order to train an SVM — and to later classify new data — on a certain feature space with

a feature map 𝜑, all we need to “know” about the feature space is how to compute scalar

products in it of elements returned by the feature map. This is because, during the whole

training process, the only operation that depends on the 𝑥𝑗 points is the inner product

𝑥𝑗 ⋅ 𝑥𝑘 — or the inner product 𝑥𝑗 ⋅ 𝑥 when classifying a new point 𝑥 . If instead of 𝑥𝑗 we

had 𝜑(𝑥𝑗), we would just need to know how to compute 𝜑(𝑥𝑗) ⋅ 𝜑(𝑥𝑘) — or 𝜑(𝑥𝑗) ⋅ 𝜑(𝑥) to

classify new data 𝑥 .

366 Chapter 9: Quantum Support Vector Machines

That is, it suffices to be able to compute the function

𝑘(𝑥, 𝑦) = 𝜑(𝑥) ⋅ 𝜑(𝑦),

and that is the single and only computation that we need to perform in the feature space.

This is a crucial fact. This function is a particular case of what are known as kernel

functions. Broadly speaking, kernel functions are functions that can be represented as

inner products in some space. Mercer’s theorem (see [74]) gives a nice characterization of

them in terms of certain properties such as being symmetric and some other conditions. In

the cases that we will consider, these conditions are always going to be met, so we don’t

need to worry too much about them.

With this, we have a general understanding of how support vector machines are used in

general, and in classical setups in particular. We now have all the necessary background to

take the step to quantum. Get ready to explore quantum support vector machines.

9.2 Going quantum
As we have already mentioned, quantum support vector machines are particular cases of

SVMs. To be more precise, they are particular cases of SVMs that rely on the kernel trick.

We have seen in the previous section how, with the kernel trick, we take our data to a

feature space: a higher dimensional space in which, we hope, our data will be separable by

a hyperplane with the right choice of feature map. This feature space is usually just the

ordinary Euclidean space but, well, with a higher dimension. But we can consider other

choices. How about. . . the space of quantum states?

9.2.1 The general idea behind quantum support vector
machines

A QSVM works just like an ordinary SVM that relies on the kernel trick — with the only

difference that it uses as feature space a certain space of quantum states.

Going quantum 367

As we discussed before, whenever we use the kernel trick, all we need from the feature

space is a kernel function. That’s the only ingredient involving the feature space that is

necessary in order to be able to train a kernel-based SVM and make predictions with it.

This idea inspired some works, such as the famous paper by Havlíček et al. [75], to try

to use quantum circuits to compute kernels and, hopefully, obtain some advantage over

classical computers by working in a sophisticated feature space.

Taking this into account, in order to train and then use a quantum support vector machine

for classification, we will be able to do business as usual — doing everything fully classically

— except for the computation of the kernel function. This function will have to rely on a

quantum computer in order to do the following:

1. Take as input two vectors in the original space of data.

2. Map each of them to a quantum state through a feature map.

3. Compute the inner product of the quantum states and return it.

We will discuss how to implement these (quantum) feature maps in the next subsection, but,

in essence, they are just circuits that are parametrized exclusively by the original (classical)

data and thus prepare a quantum state that depends only on that data. For now, we will

just take these feature maps as a given.

So, let’s say that we have a feature map 𝜑. This will be implemented by a circuit Φ that will

depend on some classical data in the original space: for each input 𝑥 , we will have a circuit

Φ(𝑥) such that the output of the feature map will be the quantum state 𝜑(𝑥) = Φ(𝑥) |0⟩.

With a feature map ready, we can then take our kernel function to be

𝑘(𝑎, �⃗�) = |⟨𝜑(𝑎)|𝜑(𝑏)⟩|2 = |||⟨0|Φ
†(𝑎)Φ(𝑏) |0⟩|||

2
.

And that is something that we can trivially get from a quantum computer! As you can

easily check yourself, it is nothing more than the probability of measuring all zeros after

preparing the state Φ†(𝑎)Φ(�⃗�) |0⟩. This follows from the fact that the computational basis

is orthonormal.

368 Chapter 9: Quantum Support Vector Machines

In case you were wondering how to compute the circuit for Φ†
, notice that this is just the

inverse of Φ, because quantum circuits are always represented by unitary operations. But

Φ will be given by a series of quantum gates. So all you need to do is apply the gates in the

circuit from right to left and invert each of them.

And that is how you implement a quantum kernel function. You take a feature map that

will return a circuit Φ(𝑥) for any input 𝑥 , you prepare the state Φ†(𝑎)Φ(�⃗�) |0⟩ for the pair

of vectors on which you want to compute the kernel, and you return the probability of

measuring zero on all the qubits.

In case you were concerned, by the way, all quantum kernels, as we have defined them,

satisfy the conditions needed to qualify as kernel functions [76]. In fact, we’ll now ask you

to check one of those conditions!

Exercise 9.2

One of the conditions for a function 𝑘 to be a kernel is that it be symmetric. Prove

that, indeed, any quantum kernel is symmetric. (𝑘(𝑎, �⃗�) = 𝑘(�⃗�, 𝑎) for any inputs.)

Let’s now study how to actually construct those feature maps.

9.2.2 Feature maps
A feature map, as we have said, is often defined by a parametrized circuit Φ(𝑥) that depends

on the original data and thus can be used to prepare a state that depends on it. In this

section, we will study a few interesting feature maps that we will use throughout the rest

of the book. They will also serve as examples that will allow us to better illustrate what

feature maps actually are.

Angle encoding

We shall begin with a simple yet powerful feature map known as angle encoding. When

used on an 𝑛-qubit circuit, this feature map can take up to 𝑛 numerical inputs 𝑥1,… , 𝑥𝑛. The

action of its circuit consists in the application of a rotation gate on each qubit 𝑗 parametrized

Going quantum 369

by the value 𝑥𝑗 . In this feature map, we are using the 𝑥𝑗 values as angles in the rotations,

hence the name of the encoding.

In angle encoding, we are free to use any rotation gate of our choice. However, if we use

𝑅𝑍 gates and take |0⟩ to be our initial state. . . the action of our feature map will have no

effects whatsoever, as you can easily check from the definition of 𝑅𝑍 . That is why, when

𝑅𝑍 gates are used, it is customary to precede them by Hadamard gates acting on each qubit.

All this is shown in Figure 9.6.

⋮

|0⟩ 𝑅𝑋 (𝑥1)

|0⟩ 𝑅𝑋 (𝑥2)

|0⟩ 𝑅𝑋 (𝑥𝑛)

⋮

|0⟩ 𝑅𝑌 (𝑥1)

|0⟩ 𝑅𝑌 (𝑥2)

|0⟩ 𝑅𝑌 (𝑥𝑛)

⋮

|0⟩ 𝐻 𝑅𝑍(𝑥1)

|0⟩ 𝐻 𝑅𝑍(𝑥2)

|0⟩ 𝐻 𝑅𝑍(𝑥𝑛)

Figure 9.6: Angle encoding for an input (𝑥1,… , 𝑥𝑛) using different rotation gates

The variables that are fed to the angle encoding feature map should be normalized within

a certain interval. If they are normalized between 0 and 4𝜋, then the data will be mapped

to a wider region of the feature space than if they were normalized between 0 and 1, for

example. However, this would come at the cost of having the two extrema of the dataset

identified under the action of the feature map. That’s because 0 and 2𝜋 are exactly the

same angle and, in our definition of rotation gates, we divided the input angle by 2.

The choice of normalization will thus be a trade-off between separating the extrema in the

feature space and using the widest possible region in it.

Amplitude encoding

Angle encoding can take 𝑛 inputs on 𝑛 qubits. Does that seem good enough? Well, get

ready for a big jump. The amplitude encoding feature map can take 2𝑛 inputs when

implemented on an 𝑛-qubit circuit. That is a lot, and it will enable us to effectively train

QSVMs on datasets with a large number of variables. So, how does it work then?

370 Chapter 9: Quantum Support Vector Machines

If the amplitude encoding feature map is given an input 𝑥0,… , 𝑥2𝑛−1, it simply prepares the

state

||𝜑(𝑎)⟩ =
1√

∑𝑘 𝑥2𝑘

2𝑛−1
∑
𝑘=0

𝑥𝑘 |𝑘⟩ .

Notice how we’ve had to include a normalization factor to make sure that the output was,

indeed, a quantum state. Remember from Chapter 1, Foundations of Quantum Computing,

that all quantum states need to be normalized vectors! It’s easy to see from the definition

that amplitude encoding can work for any input except for the zero vector — for the zero

vector, amplitude encoding is undefined. We can’t divide by zero!

Implementing this feature map in terms of elementary quantum gates is by no means simple.

If you want all the gory details, you can check the book by Schuld and Petruccione [71].

Luckily, it is built into most quantum computing frameworks.

By the way, when using amplitude encoding, there is an unavoidable loss of information

if you decide to “push the feature map to its limit.” In general, you won’t be using all the

2𝑛 parameters that it offers — you will only use some of them and fill the rest with zeros

or any other value of your choice. But, if you use all the 2𝑛 inputs to encode variables,

there’s a small issue: that the number of degrees of freedom of an 𝑛-qubit state is actually

2𝑛 − 1, not 2𝑛. This is, in any case, not a big deal. This loss of information can be ignored

for sufficiently big values of 𝑛.

ZZ feature map

Lastly, we will present a known feature map that may bring you memories from Chapter 5,

QAOA: Quantum Approximate Optimization Algorithm, where we implemented circuits for

Hamiltonians with 𝑍𝑗𝑍𝑘 terms. It’s called the ZZ feature map. It is implemented by Qiskit

and it can take 𝑛 inputs 𝑎1,… , 𝑎𝑛 on 𝑛 qubits, just like angle embedding. Its parametrized

circuit is constructed following these steps:

1. Apply a Hadamard gate on each qubit.

2. Apply, on each qubit 𝑗 , a rotation 𝑅𝑍(2𝑥𝑗).

3. For each pair of elements {𝑗 , 𝑘} ⊆ {1,… , 𝑛} with 𝑗 < 𝑘, do the following:

Going quantum 371

(a) Apply a CNOT gate targeting qubit 𝑘 and controlled by qubit 𝑗 .

(b) Apply, on qubit 𝑘, a rotation 𝑅𝑍 (2(𝜋 − 𝑥𝑗)(𝜋 − 𝑥𝑘)).

(c) Repeat step 3a.

In Figure 9.7 you can find a representation of the ZZ feature map on three qubits.

As with angle encoding, normalization plays a big role in the ZZ feature map. In order to

guarantee a healthy balance between separating the extrema of the dataset and using as

big a region a possible in the feature space, the variables could be normalized to [0, 1] or

[0, 3], for example.

|0⟩ 𝐻 𝑅𝑍 (2𝑥1)

|0⟩ 𝐻 𝑅𝑍 (2𝑥2) 𝑅𝑍 (2(𝜋 − 𝑥1)(𝜋 − 𝑥2))

|0⟩ 𝐻 𝑅𝑍 (2𝑥3) 𝑅𝑍 (2(𝜋 − 𝑥1)(𝜋 − 𝑥3))

⋯

⋯

⋯ 𝑅𝑍 (2(𝜋 − 𝑥2)(𝜋 − 𝑥3))

Figure 9.7: ZZ feature map on three qubits with inputs 𝑥1, 𝑥2, 𝑥3

Of course, when designing a quantum feature map, your imagination is the only limit. The

ones that we have presented here are some of the most popular ones — and the ones that

you will find in frameworks such as PennyLane and Qiskit — but research on quantum

feature maps and their properties is an active area. If you want to take a look at other

possibilities, we can recommend the paper by Sim, Johnson, and Aspuru-Guzik [77].

But enough theory for now! Let’s put into practice all that we have learned by implementing

some QSVMs with both PennyLane and Qiskit.

372 Chapter 9: Quantum Support Vector Machines

9.3 Quantum support vector machines in
PennyLane

It has been a long journey but, finally, we are ready to see QSVMs in action. In this section,

we are going to train and run a bunch of QSVM models using PennyLane. Just to get

started, let’s import NumPy and set a seed so that our results are reproducible:

import numpy as np

seed = 1234

np.random.seed(seed)

9.3.1 Setting the scene for training a QSVM
Now, if we want to train QSVMs, we need some data to work with. In today’s ever-changing

job market, you should always keep your options open and, as promising as quantum

machine learning may be, you may want to have a backup career plan. Well, we’ve got

you covered. Have you ever dreamed of becoming a world-class sommelier? Today is your

lucky day! (We are just kidding, of course, but we will use this wine theme to give some

flavor to our example!)

We’ve already seen how the scikit-learn package offers lots of tools and resources for

machine learning. It turns out that among them are a collection of pre-defined datasets

on which to train ML models, and one of those datasets is a “wine recognition dataset”

[78]. This is a labeled dataset with information about wines. In total, it has 13 numeric

variables that describe the color intensity, alcohol concentration, and other fancy things

whose meaning and significance we have no clue about. The labels correspond to the kind

of wine. There are three possible labels, so, if we just ignore one, we are left with a beautiful

dataset for a binary classification problem.

We can load the set with the load_wine function in sklearn.datasets as follows:

from sklearn.datasets import load_wine

x,y = load_wine(return_X_y = True)

Quantum support vector machines in PennyLane 373

We have set return_X_y to true so that we also get the labels.

You can find all the details about this dataset in its online documentation (https://

scikit-learn.org/stable/datasets/toy_dataset.html#wine-dataset or https:

//archive.ics.uci.edu/ml/datasets/Wine, if you want to check the original source

of the data). According to it, the 59 first elements in the dataset must belong to the first

category (label 0) while the 71 subsequent ones have to belong to the second one (label 1).

Thus, if we want to ignore the third category, we can just run the following piece of code:

x = x[:59+71]

y = y[:59+71]

And thus we have a labeled dataset with two categories. A perfect binary classification

problem.

Before we proceed, however, a few disclaimers are in order. This wine recognition problem

that we are going to work with is — from a machine learning point of view — very simple.

You don’t need very sophisticated models or a lot of computing power to tackle it. Thus,

using a QSVM for this problem is overkill. It will work, yes, but that doesn’t diminish the

fact that we will be overdoing it. Quantum support vector machines can tackle complex

problems, but we thought it would be better to keep things simple. You may call us

overprotective, but we thought that using examples that could take two hours to run — or

even two days! — might not be exactly ideal from a pedagogical perspective. We will also

see how some examples yield better results than others. Unless we state otherwise, that

won’t be indicative of any general pattern. It will just mean that it so happens, some things

work better than others for this particular problem. After all, from the few experiments

that we will run, it wouldn’t be sensible to draw hard conclusions!

With those remarks out of the way, let’s attack our problem. We shall begin by splitting

our dataset into a training dataset and a test dataset:

from sklearn.model_selection import train_test_split

x_tr, x_test, y_tr, y_test = train_test_split(x, y, train_size = 0.9)

https://scikit-learn.org/stable/datasets/toy_dataset.html#wine-dataset
https://scikit-learn.org/stable/datasets/toy_dataset.html#wine-dataset
https://archive.ics.uci.edu/ml/datasets/Wine
https://archive.ics.uci.edu/ml/datasets/Wine

374 Chapter 9: Quantum Support Vector Machines

We won’t be making direct model comparisons, nor will we be using validation losses, so

we will not use a validation dataset.

As we discussed previously, most feature maps expect our data to be normalized, and,

regardless of that, normalizing your data is in general a good practice in machine learning.

So that’s what we shall do now! We will actually use the most simple of normalization

techniques: scaling each of the variables linearly in such a way that the maximum absolute

value taken by each variable be 1. This can be achieved with a MaxAbsScaler object from

sklearn.preprocessing as follows:

from sklearn.preprocessing import MaxAbsScaler

scaler = MaxAbsScaler()

x_tr = scaler.fit_transform(x_tr)

And, with that, we know that — since all our variables were positive — all the values in

our training dataset will be between 0 and 1. If there were negative values, our scaled

variables would take values in [−1, 1] instead. Notice that we have only normalized our

training dataset. Normalizing the whole dataset simultaneously would be, in a way, cheating,

because we could be polluting the training dataset with information from the test dataset.

For instance, if we had an outlier in the test dataset with a very high value in some variable —

a value never reached in the training dataset — this would be reflected in the normalization,

and, thus, the independence of our test dataset could be compromised.

Now that the training dataset is normalized, we need to normalize the test dataset using

the same proportions as the training dataset. In this way, the training dataset receives no

information about the test dataset. This can be achieved with the following piece of code:

x_test = scaler.transform(x_test)

x_test = np.clip(x_test,0,1)

Notice how we have used the same scaler object as before, but we have called the

transform method instead of fit_transform. In that way, the scaler uses the propor-

Quantum support vector machines in PennyLane 375

tions that it saved before. In addition, we’ve run an instruction to “cut” the values in the

test dataset at 0 and 1 — just in case there were some outliers and in order to comply with

the normalization requirements of some of the feature maps that we will use.

9.3.2 PennyLane and scikit-learn go on their first date
We’ve said it countless times: QSVMs are like normal SVMs, but with a quantum kernel.

So let’s implement that kernel with PennyLane.

Our dataset has 13 variables. Using angle encoding or the ZZ feature map on the 13

variables would require us to use 13 qubits, which might not be feasible if we want our

kernel to be simulated on some not especially powerful computers. Thus, we can resort to

amplitude encoding using 4 qubits. As we mentioned before, this feature map can accept

up to 16 inputs; we will fill the remaining ones with zeros — PennyLane will make that

easy.

This is how we can implement our quantum kernel:

import pennylane as qml

nqubits = 4

dev = qml.device("lightning.qubit", wires = nqubits)

@qml.qnode(dev)

def kernel_circ(a, b):

qml.AmplitudeEmbedding(

a, wires=range(nqubits), pad_with=0, normalize=True)

qml.adjoint(qml.AmplitudeEmbedding(

b, wires=range(nqubits), pad_with=0, normalize=True))

return qml.probs(wires = range(nqubits))

Now, there are a few things to digest here. We are first importing PennyLane, setting the

number of qubits in a variable, and defining a device; nothing new there. And then comes the

376 Chapter 9: Quantum Support Vector Machines

definition of the circuit of our kernel. In this definition, we are using AmplitudeEmbedding,

which returns an operation equivalent to the amplitude encoding of its first argument. In

our case, we use the arrays a and b for this first argument. They are the classical data that

our kernel function takes as input. In addition to this, we also ask AmplitudeEmbedding to

normalize each input vector for us, just as amplitude encoding needs us to do, and, since

our arrays have 13 elements instead of the required 16, we set pad_with = 0 to fill the

remaining values with zeros. Also notice that we are using qml.adjoint to compute the

adjoint (or inverse) of the amplitude encoding of b.

Lastly, we retrieve an array with the probabilities of measuring each possible state in the

computational basis. The first element of this array (that is, the probability of getting a

zero value in all the qubits) will be the output of our kernel.

Now we have our quantum kernel almost ready. If you’d like to check that the circuit

works as expected, you can try it out on some elements from the training dataset. For

instance, you could run kernel_circ(x_tr[0], x_tr[1]). If the two arguments are the

same, keep in mind that you should always get 1 in the first entry of the returned array

(which corresponds, as we have mentioned, to the output of the kernel).

Exercise 9.3

Prove that, indeed, any quantum kernel evaluated on two identical entries always

needs to return the output 1.

Our next step will be using this quantum kernel in an SVM. Our good old scikit-learn

has its own implementation, SVC, of support vector machines, and it works with custom

kernels, so there we have it! In order to use a custom kernel, you are required to provide a

kernel function accepting two arrays, A and B, and returning a matrix with entries (𝑗 , 𝑘)

containing the kernel applied to A[j] and B[k]. Once the kernel is prepared, the SVM can

be trained with the fit method. All of this is done in the following piece of code:

from sklearn.svm import SVC

def qkernel(A, B):

Quantum support vector machines in PennyLane 377

return np.array([[kernel_circ(a, b)[0] for b in B] for a in A])

svm = SVC(kernel = qkernel).fit(x_tr, y_tr)

The training can take up to a few minutes depending on the performance of your computer.

Once it is over, you can check the accuracy of your trained model with the following

instructions:

from sklearn.metrics import accuracy_score

print(accuracy_score(svm.predict(x_test), y_test))

In our case, this gives an accuracy of 0.92, meaning that the SVM is capable of classifying

most of the elements in the test dataset correctly.

This shows us how to train and run a quantum support vector in a fairly simple manner.

But we can consider more sophisticated scenarios. Are you ready for that?

9.3.3 Reducing the dimensionality of a dataset
We have just seen how to use amplitude encoding to take full advantage of the 13 variables

of our dataset while only using 4 qubits. In most cases, that is a good approach. But there

are also some problems in which it may prove better to reduce the number of variables in

the dataset — while trying to minimize the loss of information, of course — and thus be

able to use other feature maps that could perhaps yield better results.

In this subsection, we are going to illustrate this approach. We shall try to reduce the

number of variables in our dataset to 8 and, then, we will train a QSVM on the new, reduced

variables using angle encoding.

If you want to reduce the dimensionality of a dataset while minimizing information loss,

as we aim to do now, there are many options at your disposal. You may want to have a

look at autoencoders, for instance. In any case, for the purposes of this section, we will

consider a technique known as principal component analysis.

378 Chapter 9: Quantum Support Vector Machines

To learn more. . .

Before actually using principal component analysis, you may reasonably be curious

about how this fancy-sounding technique works.

When you have a dataset with 𝑛 variables, you essentially have a set of points in ℝ𝑛.

With this set, you may consider what are known as the principal directions. The

first principal direction is the direction of the line that best fits the data as measured

by the mean squared error. The second principal direction is the direction of the

line that best fits the data while being orthogonal to the first principal direction.

This goes on in such a way that the 𝑘-th principal direction is that of the line that

best fits the data while being orthogonal to the first, second, and all the way up to

the (𝑘 − 1)-th principal direction.

We thus may consider an orthonormal basis {𝑣1,… , 𝑣𝑛} of ℝ𝑛 in which 𝑣𝑗 points

in the direction of the 𝑗-th principal component. The vectors in this orthonormal

basis will be of the form 𝑣𝑗 = (𝑣1𝑗 ,… , 𝑣𝑛𝑗) ∈ ℝ𝑛. Of course, the superscripts are not

exponents! They are just superscripts.

When using principal component analysis, we simply compute the vectors of the

aforementioned basis. And, then, we define the variables

�̃�𝑗 = 𝑣1𝑗 𝑥1 +⋯ + 𝑣𝑛𝑗 𝑥𝑛.

And, lastly, in order to reduce the dimensionality of our dataset to 𝑚 variables, we

just keep the variables �̃�1,… , �̃�𝑚. This is all done under the assumption that the

variables �̃�𝑗 are, as we have defined them, sorted in decreasing order of relevance

towards our problem.

So how do we use principal component analysis to reduce the number of variables in our

dataset? Well, scikit-learn is here to save the day. It implements a PCA class that works in

an analogous way to that of the MaxAbsScaler class that we used before.

Quantum support vector machines in PennyLane 379

This PCA class comes with a fit method that analyzes the data and figures out the best

way to reduce its dimensionality using principal component analysis. Then, in addition, it

comes with a transform method that can then transform any data in the way it learned to

do when fit was invoked. Also, just like MaxAbsScaler, the PCA class has a fit_transform

method that fits the data and transforms it simultaneously:

from sklearn.decomposition import PCA

pca = PCA(n_components = 8)

xs_tr = pca.fit_transform(x_tr)

xs_test = pca.transform(x_test)

And, with this, we have effectively reduced the number of variables in our dataset to 8.

Notice, by the way, how we have used the fit_transform method on the training data and

the transform method on the test data, all in order to preserve the independence of the

test dataset.

We are now ready to implement and train a QSVM using angle encoding. For this, we may

use the AngleEmbedding operator provided by PennyLane. The following piece of code

defines the training; it is very similar to our previous kernel definition and, thus, pretty

self-explanatory:

nqubits = 8

dev = qml.device("lightning.qubit", wires=nqubits)

@qml.qnode(dev)

def kernel_circ(a, b):

qml.AngleEmbedding(a, wires=range(nqubits))

qml.adjoint(qml.AngleEmbedding(b, wires=range(nqubits)))

return qml.probs(wires = range(nqubits))

380 Chapter 9: Quantum Support Vector Machines

Once we have a kernel, we can train a QSVM as we did before, this time reusing the qkernel

function, which will be using the new kernel_circ definition:

svm = SVC(kernel = qkernel).fit(xs_tr, y_tr)

print(accuracy_score(svm.predict(xs_test), y_test))

The returned accuracy on the test dataset is 1. Just a perfect classification in this case.

9.3.4 Implementing and using custom feature maps
PennyLane comes with a wide selection of built-in feature maps; you can find them all in

the online documentation (https://pennylane.readthedocs.io/en/stable/introduct

ion/templates.html). Nevertheless, you may want to define your own. In this subsection,

we will train a QSVM on the reduced dataset using our own implementation of the ZZ

feature map. Let’s take feature maps into our own hands!

We can begin by implementing the feature map as a function with the following piece of

code:

from itertools import combinations

def ZZFeatureMap(nqubits, data):

Number of variables that we will load:

could be smaller than the number of qubits.

nload = min(len(data), nqubits)

for i in range(nload):

qml.Hadamard(i)

qml.RZ(2.0 * data[i], wires = i)

for pair in list(combinations(range(nload), 2)):

https://pennylane.readthedocs.io/en/stable/introduction/templates.html
https://pennylane.readthedocs.io/en/stable/introduction/templates.html

Quantum support vector machines in PennyLane 381

q0 = pair[0]

q1 = pair[1]

qml.CZ(wires = [q0, q1])

qml.RZ(2.0 * (np.pi - data[q0]) *

(np.pi - data[q1]), wires = q1)

qml.CZ(wires = [q0, q1])

In this implementation, we have used the combinations function from the itertools

module. It takes two arguments: an array arr and an integer l. And it returns an array

with all the sorted tuples of length l with elements from the array arr.

Notice how we have written the ZZFeatureMap function as we would write any circuit,

taking advantage of all the flexibility that PennyLane gives us. Having defined this function

for the ZZ feature map, we may use it on a kernel function and then train a QSVM just as

we have done before:

nqubits = 4

dev = qml.device("lightning.qubit", wires = nqubits)

@qml.qnode(dev)

def kernel_circ(a, b):

ZZFeatureMap(nqubits, a)

qml.adjoint(ZZFeatureMap)(nqubits, b)

return qml.probs(wires = range(nqubits))

svm = SVC(kernel=qkernel).fit(xs_tr, y_tr)

print(accuracy_score(svm.predict(xs_test), y_test))

In this case, the test accuracy is 0.77.

382 Chapter 9: Quantum Support Vector Machines

There’s one detail to which you should pay attention here, and it is the fact that qml.adjoint

is acting on the ZZFeatureMap function itself, not on its output! Remember that taking the

adjoint of a circuit is the same as considering the inverse of that circuit.

That’s all we had in store about QSVMs on PennyLane. Now it’s time for us to see how

things are done in Qiskit Land.

9.4 Quantum support vector machines in Qiskit
In the previous section, we mastered the use of QSVMs in PennyLane. You may want to

review subsection 9.3.1 and the beginning of subsection 9.3.3. That is where we prepare the

dataset that we will be using here too. In addition to running the code in those subsections,

you will have to do the following import:

from sklearn.metrics import accuracy_score

Now it’s time for us to switch to Qiskit. In some ways, Qiskit can be easier to use than

PennyLane — although this is probably a matter of taste. In addition, Qiskit will enable us

to directly train and run our QSVM models using the real quantum computers available at

IBM Quantum. Nevertheless, for now, let us begin with QSVMs on our beloved Qiskit Aer

simulator.

9.4.1 QSVMs on Qiskit Aer
To get started, let us just import Qiskit:

from qiskit import *

When we defined a QSVM in PennyLane, we had to “manually” implement a kernel function

in order to pass it to scikit-learn. This process is simplified in Qiskit, for all it takes to define

a quantum kernel is to instantiate a QuantumKernel object. In the initializer, we are asked

to provide a backend argument, which will be, of course, the backend object on which the

quantum kernel will run. By default, the feature map that the quantum kernel will use is

the ZZ feature map with two qubits, but we can use a different feature map by passing a

Quantum support vector machines in Qiskit 383

value to the feature_map object. This value should be a parametrized circuit representing

the feature map.

Defining parametrized circuits in Qiskit is actually fairly easy. If you want to use an

individual parameter in a circuit, you can just import Parameter from qiskit.circuit

and define a parameter object as Parameter("label") with any label of your choice. This

object can then be used in quantum circuits. For example, we may define a circuit with an

𝑥-rotation parametrized by a value 𝑥 as follows:

from qiskit.circuit import Parameter

parameter = Parameter("x")

qc = QuantumCircuit(1)

qc.rx(parameter, 0)

If you want to use an array of parameters in a circuit, you may define a ParameterVector

object instead. It can also be imported from qiskit.circuit and, in addition to the

mandatory label, it accepts an optional length argument setting the length of the array.

By default, this length is set to zero. We may use these parameter vector objects as in the

following example:

from qiskit.circuit import ParameterVector

parameter = ParameterVector("x", length = 2)

qc = QuantumCircuit(2)

qc.rx(parameter[0], 0)

qc.rx(parameter[1], 1)

Exercise 9.4

Define an AngleEncodingX(n) function that return the feature map for angle en-

coding using 𝑅𝑋 rotations on n qubits.

Using parametrized circuits, we may define any feature map of our choice for its use in

a quantum kernel; for instance, we could just send any of the qc objects that we have

384 Chapter 9: Quantum Support Vector Machines

created in the previous pieces of code as the feature_map parameter in the QuantumKernel

constructor. Nevertheless, Qiskit already comes with some pre-defined feature maps out of

the box. For our case, we may generate a circuit for the ZZ feature map on eight qubits

using the following piece of code:

from qiskit.circuit.library import ZZFeatureMap

zzfm = ZZFeatureMap(8)

As a matter of fact, this feature map can be further customized by providing additional

arguments. We shall use them in the following chapter.

Once we have our feature map, we can trivially set up a quantum kernel reliant on the Aer

simulator as follows:

from qiskit_machine_learning.kernels import QuantumKernel

from qiskit.providers.aer import AerSimulator

qkernel = QuantumKernel(feature_map = zzfm,

quantum_instance = AerSimulator())

And that’s all it takes! By the way, here we are using the Qiskit Machine Learning package.

Please, refer to Appendix D, Installing the Tools, for installation instructions.

If we’d like to train a QSVM model using our freshly-created kernel, we can use Qiskit’s

own extension of the SVC class provided by scikit-learn. It’s called QSVC and it can be

imported from quantum_machine_learning.algorithms. It works just like the original

SVC class, but it accepts a quantum_kernel argument to which we can pass QuantumKernel

objects.

Thus, these are the instructions that we have to run in order to train a QSVM with our

kernel:

from qiskit_machine_learning.algorithms import QSVC

qsvm = QSVC(quantum_kernel = qkernel)

qsvm.fit(xs_tr, y_tr)

Quantum support vector machines in Qiskit 385

As with PennyLane, this will take a few minutes to run. Notice, by the way, that we have

used the reduced dataset (xs_tr), because we are using the ZZ feature map on 8 qubits.

Once the training is complete, we can get the accuracy on the test dataset as we have

always done:

print(accuracy_score(qsvm.predict(xs_test), y_test))

In this case, the returned accuracy was 1.

That is all you need to know about how to run QSVMs on the Aer simulator. Now, let’s get

real.

9.4.2 QSVMs on IBM quantum computers
Training and using QSVMs on real hardware with Qiskit couldn’t be easier. We will show

how it can be done in this subsection.

Firstly, as we did back in Chapter 2, The Tools of the Trade in Quantum Computing, we will

load our IBM Quantum account:

provider = IBMQ.load_account()

Naturally, for this to work, you should have saved your access token beforehand. At the

time of writing, free accounts don’t have access to any real quantum devices with eight

qubits, but there are some with seven qubits. We can select the one that is the least busy

with the following piece of code:

from qiskit.providers.ibmq import *

dev_list = provider.backends(

filters = lambda x: x.configuration().n_qubits >= 7,

simulator = False)

dev = least_busy(dev_list)

386 Chapter 9: Quantum Support Vector Machines

Of course, we will have to further reduce our data to seven variables, but we can do that

very easily:

from sklearn.decomposition import PCA

pca = PCA(n_components = 7)

xss_tr = pca.fit_transform(x_tr)

xss_test = pca.transform(x_test)

And, with this, we have all the ingredients ready to train a QSVM on real hardware! We

will have to follow the same steps as before — only this time using our real device as

quantum_instance in the instantiation of our quantum kernel!

zzfm = ZZFeatureMap(7)

qkernel = QuantumKernel(feature_map = zzfm, quantum_instance = dev)

qsvm = QSVC(quantum_kernel = qkernel)

qsvm.fit(xss_tr, y_tr)

When you execute this code, all the circuit parameters are known in advance. For this

reason, Qiskit will try to send as many circuits as possible at the same time. However, these

jobs still have to wait in the queue. Depending on the number of points in your dataset

and on your access privileges, this may take quite a long time to complete!

With this, we can bring our study of QSVMs in Qiskit to an end.

Summary
In this chapter, we first learned what support vector machines are, and how they can be

trained to solve binary classification problems. We began by considering vanilla vector

machines, and then we introduced the kernel trick — which opened up a world of possibili-

Quantum support vector machines in Qiskit 387

ties! In particular, we saw how QSVMs are nothing more than a support vector machine

with a quantum kernel.

From there on, we learned how quantum kernels actually work and how to implement

them. We explored the essential role of feature maps, and discussed a few of the most

well-known ones.

Finally, we learned how to implement, train, and use quantum support vector machines

with PennyLane and Qiskit. In addition, we were able to very easily run QSVMs on real

hardware thanks to Qiskit’s interface to IBM Quantum.

And that pretty much covers how QSVMs can help you can identify wines — or solve any

other classification task — like an expert, all while happily ignoring what the “alkalinity of

ash” of a wine is. Who knows? Maybe these SVM models could open the door for you to

enjoy a bohemian life of wine-tasting! No need to thank us.

In the next chapter, we will consider another family of quantum machine learning models:

that of quantum neural networks. Things are about to get deep!

10
Quantum Neural Networks

The mind is not a vessel to be filled, but a fire to be kindled.

— Plutarch

In the previous chapter, we explored our first family of quantum machine learning models:

quantum support vector machines. Now it is time for us to take one step further and

consider yet another family of models, that of Quantum Neural Networks (QNNs).

In this chapter, you will learn how the notion of a quantum neural network can arise

naturally from the ideas behind classical neural networks. Of course, you will also learn

how quantum neural networks work and how they can be trained. Then, you will explore

how quantum neural networks can actually be implemented, run, and trained using the

two quantum frameworks that we have been working with so far: Qiskit and PennyLane.

These are the contents of this chapter:

• Building and training quantum neural networks

• Quantum neural networks in PennyLane

390 Chapter 10: Quantum Neural Networks

• Quantum neural networks in Qiskit: a commentary

Quantum support vector machines and quantum neural networks are probably the two

most popular families of QML models, so, by the end of this chapter, you will already have

a solid foundation in quantum machine learning.

To get started, let’s understand how quantum neural networks work and how they can be

effectively trained. Let’s get to it!

10.1 Building and training a quantum neural
network

Just like quantum support vector machines, quantum neural networks are what we called

“CQ models” back in Chapter 8, What is Quantum Machine Learning?, — models with

purely classical inputs and outputs that use quantum computing at some stage. However,

unlike QSVMs, quantum neural networks are not a “particular case” of any classical model,

although their behavior is inspired by that of classical neural networks. What is more, as

we will soon see, quantum neural networks are “purely quantum” models, in the sense that

their execution will only require classical computing for the preparation of circuits and

the statistical analysis of measurements. Nevertheless, just like QSVMs, quantum neural

networks will depend on classical parameters that will be optimized classically.

To learn more. . .

As you surely know by now, (quantum) machine learning is a vast field in which

terms hardly ever have a unique meaning. The term “quantum neural network” can,

in practice, be used to refer to any QML model that is inspired by the behavior of a

classical neural network. Therefore, you should bear in mind that people may also

use this name to refer to models different from the ones that we are considering to

be quantum neural networks.

That should be enough of an introduction. Let’s now get into the details. What actually are

quantum neural networks and how do they relate to classical neural networks?

Building and training a quantum neural network 391

10.1.1 A journey from classical neural networks to
quantum neural networks

If we do a small exercise of abstraction, we can think of the action of a classical neural

network as consisting of the following stages:

1. Data preparation: This simply amounts to taking some (classical) input data and

maybe carrying out some (simple) transformations on it. These may include normal-

izing or scaling the input data.

2. Data processing: Feeding the data through a sequence of layers that “transform”

the data as it flows through them. The behavior of this processing depends on some

optimizable parameters, which are adjusted in training.

3. Data output: Returning the output through a final layer.

Let’s see how we can take this scheme and use it to define an analogous quantum model.

1. Data preparation: Quantum neural networks are given classical inputs (in the form

of an array of numbers), but quantum computers don’t work on classical data — they

work on quantum states! So how can we take these classical inputs and embed them

into the space of quantum states?

That is a problem that we have already dealt with in Section 9.2. In order to encode

the classical input of a QNN into a quantum state, we just have to use any feature

map of our choice. As you know, we may also need to normalize or scale the data, of

course.

And that is how we actually “prepare the data” for a quantum neural network: feeding

it into a feature map.

2. Data processing: At this point, we have successfully transformed our classical input

into a “quantum input,” in the form of a quantum state that encodes our classical data

according to a certain feature map. Now, we need to figure out a way to process this

input by drawing some inspiration from the processing in a classical neural network.

392 Chapter 10: Quantum Neural Networks

Trying to replicate the full, exact behavior of a classical neural network in a quantum

neural network might prove not to be ideal given the state of current quantum

hardware. Instead, we can look at the bigger picture.

In essence, the processing stage of a classical neural network consists in the ap-

plication of some transformations that depend, exclusively, on some optimizable

parameters. And that is an idea that we can very easily export to a quantum computer.

We can simply define the “processing” stage of a quantum neural network as. . . the

application of a circuit that depends on some optimizable parameters! In addition to

this, as we will see later in this section, this circuit can be structured in layers in a

way that somewhat reassembles the spirit of a classical neural network. This circuit

will be said to be a variational form — they are just like the ones we studied back

in Chapter 7, VQE: Variational Quantum Eigensolver.

3. Data output: Once we have a processed state, we need to return a classical output.

And this shall be the result of some measurement operation; this operation can be

whichever one suits our problem best!

For instance, if we wanted to build a binary classifier with a quantum neural network,

a natural choice for this measurement operation could be, for example, taking the

expectation value of the first qubit when measured on the computational basis.

Remember that the expectation value of a qubit simply corresponds to the probability

of obtaining 1 upon measuring the qubit on the computational basis.

And those are all the ingredients that make up a quantum neural network.

As a matter of fact, feature maps and variational forms are both examples of variational

circuits: quantum circuits that are controlled by some classical parameters. The only

actual difference between a feature map and a variational form is their purpose: feature

maps depend on the input data and are used to encode it, while variational forms depend

on optimizable parameters and are used to transform a quantum input state.

Building and training a quantum neural network 393

This difference in purpose will materialize in the fact that we will often use different circuits

for feature maps and variational forms. A good feature map need not be a good variational

form, and vice versa.

You should keep in mind that — like all things QML — the terms “feature map” and

“variational form” are not entirely universal, and different authors may refer to them with

different expressions. For example, variational forms are commonly referred to as ansatzs,

as we did back in Chapter 7, VQE: Variational Quantum Eigensolver.

Important note

A quantum neural network takes a classical input 𝑥 and maps it to a quantum state

through a feature map 𝐹 . The resulting state then goes through a variational form

𝑉 : a variational circuit dependent on some optimizable parameters 𝜃. The output of

the quantum neural network is the result of a measurement operation on the final

state. All this can be seen, schematically, in the following figure:

|0⟩𝑛 𝐹(𝑥) 𝑉 (𝜃)

Thanks to our study of quantum support vector machines, we are already very familiar

with feature maps, but we have yet to get acquainted with variational forms; that is what

we will devote the next subsection to.

10.1.2 Variational forms
In principle, a variational form could be any variational circuit of your choice, but, in

general, variational forms for QNNs follow a “layered structure,” trying to mimic the spirit

of classical neural networks. We can now make this idea precise.

If we wanted to define a variational form with 𝑘 layers, we could consider 𝑘 vectors of

independent parameters 𝜃1,… , 𝜃𝑘 . In order to define each layer 𝑗 , we may take a variational

circuit 𝐺𝑗 dependent on the parameters 𝜃𝑗 . A common approach is to prepare variational

forms by stacking these variational circuits consecutively and separating them by some

394 Chapter 10: Quantum Neural Networks

…|𝜓enc⟩ 𝐺1(𝜃1) 𝑈 1
ent 𝐺2(𝜃2) 𝑈 2

ent
𝑈 𝑘−1

ent 𝐺𝑘(𝜃𝑘)

Figure 10.1: A variational form with 𝑘 layers, each defined by a variational circuit𝐺𝑗 dependent
on some parameters 𝜃𝑗 . The circuits 𝑈 𝑡

ent are used to create entanglement, and the state |𝜓enc⟩
denotes the output of the feature map

circuits 𝑈 𝑡
ent

, independent of any parameters, meant to create entanglement between the

qubits. Just as in Figure 10.1.

We have now outlined one of the most common structures of variational forms, but

variational forms are best illustrated by examples. There are lots of variational forms

out there, and there is no way we could collect them all in this book — in truth, there

would be no point either. For this reason, we will restrict ourselves to presenting just three

variational forms, some of which we will use later in the book:

• Two-local: The two-local variational form with 𝑘 repetitions on 𝑛 qubits relies

on 𝑛 × (𝑘 + 1) optimizable parameters, which we will denote as 𝜃𝑟𝑗 with 𝑟 = 0,… , 𝑘

and 𝑗 = 1,… 𝑛. Its circuit is constructed as per the following procedure:

procedure TwoLocal(𝑛, 𝑘, 𝜃)

for all 𝑟 = 0,… , 𝑘 do

⊳ Add the 𝑟-th layer. ⊲

for all 𝑗 = 1,… , 𝑛 do

Apply a 𝑅𝑌 (𝜃𝑟𝑗) gate on qubit 𝑗 .

⊳ Create entanglement between layers. ⊲

if 𝑟 < 𝑘 then

for all 𝑡 = 1,… , 𝑛 − 1 do

Apply a CNOT gate with control on qubit 𝑡 and target on qubit 𝑡+1.

In Figure 10.2 we have depicted the output of this procedure for 𝑛 = 4 and 𝑘 = 3.

Sound familiar? The two-local variational form uses the same circuit as the angle

encoding feature map for its layers, and then it relies on a cascade of controlled-NOT

operations in order to create entanglement.

Building and training a quantum neural network 395

Notice, by the way, how the two-local variational form with 𝑘 repetitions has 𝑘 + 1

layers, not 𝑘. This tiny detail can sometimes be misleading.

The two-local variational form is very versatile, and it can be used with any mea-

surement operation.

𝑅𝑌 (𝜃01) 𝑅𝑌 (𝜃11) 𝑅𝑌 (𝜃21)

𝑅𝑌 (𝜃02) 𝑅𝑌 (𝜃12) 𝑅𝑌 (𝜃22)

𝑅𝑌 (𝜃03) 𝑅𝑌 (𝜃13) 𝑅𝑌 (𝜃23)

𝑅𝑌 (𝜃04) 𝑅𝑌 (𝜃14) 𝑅𝑌 (𝜃24)

Layer 0 Layer 1 Layer 2

Figure 10.2: Two-local variational form on four qubits and two repetitions

• Tree tensor: The tree tensor variational form with 𝑘 + 1 layers can be applied on

𝑛 = 2𝑘 qubits. Each layer has half the number of parameters as the previous one, so

the variational form relies on 2𝑘 + 2𝑘−1 +⋯ + 1 optimizable parameters of the form

𝜃𝑟𝑠 , 𝑟 = 0,… , 𝑘, 𝑠 = 0,… , 2𝑘−𝑟 − 1.

The procedure that defines is somewhat more opaque than that of the two-local

variational form, and it reads as follows:

procedure TreeTensor(𝑘, 𝜃)

On each qubit 𝑗 , apply a rotation 𝑅𝑌 (𝜃0𝑗).

for all 𝑟 = 1,… , 𝑘 do

for all 𝑠 = 0,… , 2𝑘−𝑟 − 1 do

Apply a CNOT operation with target on qubit 1 + 𝑠2𝑟 and controlled

by qubit 1 + 𝑠2𝑟 + 2𝑟−1.

Apply a rotation 𝑅𝑌 (𝜃𝑟 ,𝑠) on qubit 1 + 𝑠2𝑟 .

396 Chapter 10: Quantum Neural Networks

An image is worth a thousand words, so, please, refer to Figure 10.3 for a depiction

of the output of this procedure for 𝑘 = 3.

The tree tensor variational form fits best in quantum neural networks designed to

work as binary classifiers. The most natural measurement operation that can be used

in conjunction with it is the obtention of the expected value of the first qubit, as

measured in the computational basis.

As a curiosity, the name of the tree tensor variational form comes from mathematical

objects that are used for the simulation of physics systems and also in some machine

learning models. See the survey paper by Román Orús for model details [79].

𝑅𝑌 (𝜃01) 𝑅𝑌 (𝜃11) 𝑅𝑌 (𝜃21) 𝑅𝑌 (𝜃31)

𝑅𝑌 (𝜃02)

𝑅𝑌 (𝜃03) 𝑅𝑌 (𝜃12)

𝑅𝑌 (𝜃04)

𝑅𝑌 (𝜃05) 𝑅𝑌 (𝜃13) 𝑅𝑌 (𝜃22)

𝑅𝑌 (𝜃06)

𝑅𝑌 (𝜃07) 𝑅𝑌 (𝜃14)

𝑅𝑌 (𝜃08)

Layer 0 Layer 1 Layer 2 Layer 3

Figure 10.3: Tree tensor variational form on 8 = 23 qubits

• Strongly entangling layers: The strongly entangling layers variational form acts

on 𝑛 qubits and can have any number 𝑘 of layers. Each layer 𝑙 is given a range 𝑟𝑙 . In

Building and training a quantum neural network 397

total, the variational form uses 3𝑛𝑘 parameters of the form

𝜃𝑙𝑗𝑥 , 𝑙 = 1,… , 𝑘, 𝑗 = 1,… , 𝑛, 𝑥 = 1, 2, 3.

The form is defined by the following algorithm:

procedure StronglyEntanglingLayers(𝑛, 𝑘, 𝑟 , 𝜃)

for all 𝑙 = 1,… , 𝑘 do

for all 𝑗 = 1,… , 𝑛 do

Apply a rotation 𝑅𝑍(𝜃𝑙𝑗1) on qubit 𝑗 .

Apply a rotation 𝑅𝑌 (𝜃𝑙𝑗2) on qubit 𝑗 .

Apply a rotation 𝑅𝑍(𝜃𝑙𝑗3) on qubit 𝑗 .

for all 𝑗 = 1,… , 𝑛 do

Apply a CNOT operation controlled by qubit 𝑗 and with target on qubit

[(𝑗 + 𝑟𝑙 − 1) mod 𝑁] + 1.

You may find a representation of a sample of this form in Figure 10.4.

As a final remark, our choice to use mostly 𝑌 rotations in the previous examples of varia-

tional forms is somewhat arbitrary. We could’ve also used 𝑋 rotations, for example. The

same goes for our choice to use controlled-𝑋 operations in the entanglement circuits.

We could have used a different controlled operation, for instance. In addition to this, in

the two-local variational form, there are more options for the distribution of gates in the

entanglement circuit beyond the one that we have considered. Our entanglement circuit is

said to have a “linear” arrangement of gates, but other possibilities are shown in Figure

10.5.

This is all we need to know, for now, about variational forms. Combined with our previous

knowledge of feature maps, this ends our analysis of the elements of a quantum neural

network. . . almost. We still have to dive deeper into that seemingly innocent measurement

operation at the end of every quantum neural network.

398 Chapter 10: Quantum Neural Networks

…

…

…

…

𝑅𝑌 (𝜃111) 𝑅𝑍(𝜃112) 𝑅𝑌 (𝜃113)

𝑅𝑌 (𝜃121) 𝑅𝑍(𝜃122) 𝑅𝑌 (𝜃123)

𝑅𝑌 (𝜃131) 𝑅𝑍(𝜃132) 𝑅𝑌 (𝜃133)

𝑅𝑌 (𝜃141) 𝑅𝑍(𝜃142) 𝑅𝑌 (𝜃143)

…

…

…

…

𝑅𝑌 (𝜃211) 𝑅𝑍(𝜃212) 𝑅𝑌 (𝜃113)

𝑅𝑌 (𝜃221) 𝑅𝑍(𝜃222) 𝑅𝑌 (𝜃223)

𝑅𝑌 (𝜃231) 𝑅𝑍(𝜃232) 𝑅𝑌 (𝜃233)

𝑅𝑌 (𝜃241) 𝑅𝑍(𝜃242) 𝑅𝑌 (𝜃243)

Figure 10.4: Strongly entangling layers form on four qubits and two layers with respective
ranges 1 and 2

10.1.3 A word about measurements
As we saw back in Chapter 7, VQE: Variational Quantum Eigensolver, any physical observable

can be represented by a Hermitian operator in such a way that all the possible outcomes

of the measurement of the observable can be matched to the different eigenvalues of the

operator. If you haven’t done so already, please, have a look at Section 7.1.1 if you are not

familiar with this.

When we measure a single qubit in the computational basis, the coordinate matrix with

respect to the computational basis of the associated Hermitian operator could well be either

of

𝑀 =
(
1 0

0 0)
, 𝑍 =

(
1 0

0 −1)
.

Building and training a quantum neural network 399

(a) Linear (b) Circular

(c) Full

Figure 10.5: Different entanglement circuits

Both of these operators represent the measurement of a qubit, but they differ in the

eigenvalues that they associate to the distinct outputs. The first operator associates the

eigenvalues 1 and 0 to the qubit’s value being 0 and 1 respectively, while the second

observable associates the eigenvalues 1 and −1 to these outcomes.

Exercise 10.1

The purpose of this exercise is for you to get more familiar with Dirac notation.

Show that the two previous Hermitian operators may be written, respectively, as

1 |0⟩ ⟨0| + 0 |1⟩ ⟨1| = |1⟩ ⟨1| , |0⟩ ⟨0| − |1⟩ ⟨1| .

Hint: Remember that the product of a ket (column vector) and a bra (row vector) is

a matrix. We saw an example of this back in Section 7.2.1.

As we will see later on in the chapter, frameworks such as PennyLane allow you to work

with measurement operations defined by any Hermitian operator. This can give you a lot

of flexibility when defining the measurement operation of a neural network. For instance,

400 Chapter 10: Quantum Neural Networks

in an 𝑛-qubit circuit, you will be able to instruct PennyLane to compute the expectation

value of the observable 𝑀 ⊗ ⋯ ⊗ 𝑀 , which has as its coordinate representation in the

computational basis the matrix

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

⋱

0

1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠2𝑛×2𝑛

.

Alternatively, you may want to consider the observable 𝑍 ⊗⋯⊗𝑍 . It is easy to see how this

observable will return +1 if an even number of qubits are measured as 0, and −1 otherwise.

That’s the reason why 𝑍 ⊗⋯ ⊗ 𝑍 is referred to as the parity observable.

Of course, you will also be able to take the measurement operation to be a good old

expectation value on the first qubit. But, the point is, there’s also a plethora of options

available to you, should you want to explore them!

As we mentioned before, observables are the final building blocks of every quantum neural

network architecture. Quantum neural networks accept an input, which usually consists

of classical data being fed through a feature map. The resulting quantum state is then

transformed by a variational form and, lastly, some (classical) numerical data is obtained

through a measurement operation. In this way, we have a “black box” transforming some

numerical inputs into outputs, that is, a model that — just like any other classical ML model

— can be trained.

We have now defined what quantum neural networks are and learned how to construct

them, at least in theory. That means we have a model. But this is quantum machine

learning, so a model is not enough: we need to train it. And in order to do so, we will need,

among other things, an optimization algorithm.

Building and training a quantum neural network 401

10.1.4 Gradient computation and the parameter shift rule
Although it is not the only option, the optimization algorithms that we shall use for

quantum neural networks will be gradient descent algorithms; in particular, we will use

the Adam optimizer. But, as we saw in Chapter 8, What is Quantum Machine Learning?, this

algorithm needs to obtain the gradient of the expected value of a loss function in terms of

the optimizable parameters.

Since our model uses a quantum circuit, the computation of these gradients is not entirely

trivial. We shall now go briefly over the three main kinds of differentiation methods in

which these gradient computations may be carried out:

• Numerical approximation: Of course, we have a method that always works. It

may not always be the most efficient one, but it’s always there. In order to compute

gradients, we may just estimate them numerically. In order to do this, of course, we

will have to run our quantum neural network plenty of times.

Just to exemplify this a little bit, if we had a real-valued function taking 𝑛 real inputs

𝑓 ∶ ℝ𝑛 ⟶ ℝ, we could approximate its partial derivatives as

𝜕𝑓
𝜕𝑥𝑗

=
𝑓 (𝑥1,… , 𝑥𝑗 + ℎ,… , 𝑥𝑛) − 𝑓 (𝑥1,… , 𝑥𝑛)

ℎ

for a sufficiently small value of ℎ. That’s, of course, the most naive way to numerically

approximate a derivative, but hopefully it’s enough to give you an intuition of how

this works.

• Automatic differentiation: Given the current state of real quantum hardware,

odds are that most of the quantum neural networks that you will train will run on

simulators. As non-ideal as this may be, it comes with some advantages. Most notably,

on simulated quantum neural networks, a classical computer may compute exact

gradients using techniques similar to those employed on classical neural networks.

If you are interested, the book Aurélien Géron [64, Chapter 10] and the one by Shai

402 Chapter 10: Quantum Neural Networks

Shalev-Shwartz and Shai Ben-David [65, §20.6] discuss these techniques for classical

neural networks.

• The parameter shift rule: The standard automatic differentiation techniques can

only be used on simulators. Fortunately, there is still another way to compute

gradients when executing quantum neural networks on real hardware: using the

parameter shift rule. As the name suggests, this technique enables us to compute

gradients by using the same circuit in the quantum neural network, yet shifting

the values of the optimizable parameters. The parameter shift rule can’t always be

applied, but it works on many common cases and can be used in conjunction with

other techniques, such as numerical approximation.

We won’t get into the details of how this method works, but you may have a look at

a research paper by Maria Schuld and others [80] for more information. For example,

if you had a circuit consisting of a single rotation gate 𝑅𝑋 (𝜃) and the measurement of

its expectation value 𝐸(𝜃), you would be able to compute its derivative with respect

to 𝜃 as

∇𝜃𝐸(𝜃) =
1
2 (𝐸 (𝜃 +

𝜋
2)

− 𝐸 (𝜃 −
𝜋
2))

.

This is similar to what happens with some trigonometric functions: for instance, you

can express the derivative of the sine function in terms of shifted values of the same

sine function.

For our purposes, it will suffice to know that it exists and can be used. Of course, the

parameter shift rule can also be used on simulators!

Important note

When quantum neural networks are run on simulators, gradients can be computed

using automatic differentiation techniques analogous to those of classical machine

learning. When they are run on either real hardware or simulators, these gradients

can also be computed — at least on many cases — using the parameter shift rule.

Building and training a quantum neural network 403

Alternatively, numerical approximation is always an effective way to compute

gradients.

As we have mentioned, all of these methods are already fully implemented in PennyLane,

and we will try them all out in the following section.

To learn more. . .

Everything looks good and promising, but quantum neural networks also pose

some challenges when it comes to training them. Most notably, they are known

to be vulnerable to barren plateaus: situations in which the training gradients

vanish and, thus, the training can no longer progress (see the paper by McClean

et. al for further explanation [81]). It is also known that the kind of measurement

operation used and the depth of the QNN play a role in how likely these barren

plateaus are to be found. This is studied, for instance, in a paper by Cerezo and

collaborators [82]. In any case, you should be vigilant when training your QNNs,

and follow the literature for possible solutions should barren plateaus threaten the

learning of your models.

We now have all the ingredients necessary to construct and train quantum neural networks.

But before we get to do that in practice, we will discuss a few techniques and tips that will

help you get the most of our brand new quantum machine learning models.

10.1.5 Practical usage of quantum neural networks
The following are a collection of ideas that you should keep in mind when designing QNN

models and training them. You can think of it as a summary of the previous sections, with

a few highlights from Chapter 8, What is Quantum Machine Learning? :

• Make wise choices: When you set out to design a QNN, you have three important

decisions to make: you have to pick a feature map, a variational form, and a mea-

surement operation. Be intentional about these choices and consider the problem

404 Chapter 10: Quantum Neural Networks

and the data that you are working with. Your decisions can influence how likely you

are to find barren plateaus, for instance. A good recommendation is to check the

literature for similar problems and to build up from there.

• Size matters: When you use a well-designed variational form, in general, the power

of the resulting quantum neural network will be directly related to the number of

optimizable parameters it has. Use too many parameters, and you may have a model

that overfits. Use very few, and your model may end up underfitting.

• Optimize optimization: For most problems, the Adam optimizer can be your go-to

choice for training a quantum neural network. Remember that, as we discussed in

Chapter 8, What is Quantum Machine Learning?, you will have to pick a learning rate

and a batch size when using Adam.

A smaller learning rate will make the algorithm more accurate, but also slower.

Analogously, a higher batch size should make the optimization more effective, to the

detriment of execution time.

• Feed your QNN properly: The data that is fed to a quantum neural network

should be normalized according to the requirements of the feature map in use. In

addition, depending on the dimensions of the input data, you may want to rely on

dimensionality reduction techniques.

Of course, the more data you have, the better. Nonetheless, one additional fact that

you may want to take into account is that, under some conditions, quantum neural

networks have been shown to need fewer data samples than classical neural networks

in order to be successfully trained [83].

To learn more. . .

If you want to further boost the power of your quantum neural networks, you may

want to consider the data reuploading technique [84]. In a vanilla QNN, you

have a feature map 𝐹 dependent on some input data 𝑥 , which is then followed by a

variational form 𝑉 dependent on some optimizable parameters 𝜃0. Data reuploading

Quantum neural networks in PennyLane 405

simply consists in repeating this scheme — any number of times you want — before

performing the measurement operation of the QNN. The feature maps use the same

input data in each repetition, but each instance of the variational form takes its own,

independent, optimizable parameters.

This is represented in the following diagram, which shows data reuploading with 𝑘

repetitions:

…|0⟩𝑛 𝐹(𝑥) 𝑉 (𝜃1) 𝐹(𝑥) 𝑉 (𝜃𝑘)

This has been shown, both in practice and in theory [85], to offer some advantages

over the simpler, standard approach at the cost of increasing the depth of the circuits

that are used. In any case, it is good to have it in mind when implementing your

own QNNs.

This concludes our theoretical discussion of quantum neural networks. Now it’s time for

us to get our hands dirty with the actual implementation of all the fancy artifacts and

techniques that we have discussed. In this regard, we will focus mostly on PennyLane.

Let’s begin!

10.2 Quantum neural networks in PennyLane
We are now ready to implement and train our first quantum neural network with PennyLane.

The PennyLane framework is great for many applications, but it shines the most when

it comes to the implementation of quantum neural network models. This is all due to

its flexibility and good integration with classical machine learning frameworks. We, in

particular, are going to be using PennyLane in conjunction with TensorFlow to train a

QNN-based binary classifier. All that effort that we invested in Chapter 8, What is Quantum

Machine Learning?, is finally going to pay off!

406 Chapter 10: Quantum Neural Networks

Important note

Remember that we are using version 2.9.1 of the TensorFlow package and version

0.26 of PennyLane.

Let’s begin by importing PennyLane, NumPy, and TensorFlow and setting some seeds for

these packages, just to make sure that our results are reproducible. We can achieve this

with the following piece of code:

import pennylane as qml

import numpy as np

import tensorflow as tf

seed = 4321

np.random.seed(seed)

tf.random.set_seed(seed)

Keep in mind that you may still get slightly different results from ours if you are using

different package versions. However, the results you obtain will be fully reproducible in

your own machine.

Before we get to our problem, there’s one last detail that we need to sort out. PennyLane

works with doubles while TensorFlow uses ordinary floats. This isn’t always an issue, but

it’s a good idea to ask TensorFlow to work with doubles just as PennyLane does. We can

accomplish this as follows:

tf.keras.backend.set_floatx('float64')

With this out of the way, let’s meet our problem.

10.2.1 Preparing data for a QNN
As we have already mentioned, we are going to train a QNN model to implement a binary

classifier. Our recurrent use of binary classifiers is no coincidence, for binary classifiers are

Quantum neural networks in PennyLane 407

perhaps the simplest machine learning models to train. Later in the book, however, we will

explore more exciting use cases and architectures.

For our example problem, we are going to use one of the toy datasets provided by the

scikit-learn package: the “Breast cancer Wisconsin dataset” [78]. This dataset has a total of

569 samples with 30 numerical variables each. These variables describe features that can

be used to characterize whether a breast mass is benign or malignant. The label of each

sample can be either 0 or 1, corresponding to malignant or benign, respectively. You may

find the documentation of this dataset online at https://scikit-learn.org/stable/da

tasets/toy_dataset.html#breast-cancer-dataset (the original documentation of the

dataset can also be found at https://archive.ics.uci.edu/ml/datasets/breast+cance

r+wisconsin+(diagnostic)).

We can get this dataset by calling the load_breast_cancer function from sklearn.datasets,

setting the optional argument return_X_y to true in order to retrieve the labels in addition

to the samples. For that, we can use the following instructions:

from sklearn.datasets import load_breast_cancer

x,y = load_breast_cancer(return_X_y = True)

When we trained QSVMs, since we were not going to make any comparisons between

models, a training and test dataset sufficed. In our case, however, we are going to train

our models with early stopping on the validation loss. This means — in case you don’t

remember — that we will be keeping track of the validation loss and we will halt the

training as soon as it doesn’t improve — according to some criteria that we will define.

What is more, we will keep the model configuration that best minimized the validation

loss. Using the test dataset for this purpose wouldn’t be good practice, for then the test

dataset would have played a role in the training and it would not give a good estimate of

the true error; that’s why we will need a separate validation dataset.

We can split our dataset into a training, validation, and test dataset as follows:

https://scikit-learn.org/stable/datasets/toy_dataset.html#breast-cancer-dataset
https://scikit-learn.org/stable/datasets/toy_dataset.html#breast-cancer-dataset
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic)
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic)

408 Chapter 10: Quantum Neural Networks

from sklearn.model_selection import train_test_split

x_tr, x_test, y_tr, y_test = train_test_split(

x, y, train_size = 0.8)

x_val, x_test, y_val, y_test = train_test_split(

x_test, y_test, train_size = 0.5)

All the variables in the dataset are non-zero, but they are not normalized. In order to use

them with any of our feature maps, we shall normalize the training data between 0 and 1

using MaxAbsScaler as follows:

from sklearn.preprocessing import MaxAbsScaler

scaler = MaxAbsScaler()

x_tr = scaler.fit_transform(x_tr)

And we then normalize the test and validation datasets in the same proportions as the

training dataset:

x_test = scaler.transform(x_test)

x_val = scaler.transform(x_val)

Restrict all the values to be between 0 and 1.

x_test = np.clip(x_test, 0, 1)

x_val = np.clip(x_val, 0, 1)

Just as we did when we trained a QSVM in the previous chapter!

So far, we have simply done some fairly standard data preprocessing, without having to

think too much about the actual architecture of our future quantum neural network. But

that changes now. We have a problem to address: our dataset has 30 variables, and that

can be a pretty large number for current quantum hardware. Since we don’t have access to

quantum computers with 30 qubits, we may consider the following choices:

Quantum neural networks in PennyLane 409

• Use the amplitude encoding feature map on 5 qubits, which can accommodate up to

25 = 32 variables

• Use any of the other feature maps that we have used, but in conjunction with a

dimensionality reduction technique

We will go for the latter choice. You can try the other possibility on your own: it’s fairly

straightforward if you use the qml.AmplitudeEmbedding template that we studied back in

Chapter 9, Quantum Support Vector Machines.

Exercise 10.2

As you follow along this section, try to implement a QNN using all the original

variables with amplitude encoding on five qubits.

Keep in mind that, when feeding the data to the qml.AmplitudeEmbedding object

through the features argument, instead of using the inputs variable, you should use

[a for a in inputs]. This is needed because of some internal type conversions

that PennyLane needs to perform.

Training a quantum neural network on a simulator is a very computationally-intensive

task. We don’t want anyone’s computer to crash, so, just to make sure everyone can run

this example smoothly, we will restrict ourselves to using 4-qubit circuits. Thus, we will

use a dimensionality reduction technique to shrink the number of variables to 4, and then

set up a QNN with a feature map that will take the resulting 4 input variables.

As we did in the previous chapter, we will use principal component analysis in order to

reduce the number of variables in our dataset to 4:

from sklearn.decomposition import PCA

pca = PCA(n_components = 4)

xs_tr = pca.fit_transform(x_tr)

xs_test = pca.transform(x_test)

xs_val = pca.transform(x_val)

410 Chapter 10: Quantum Neural Networks

Now that we have our data fully ready, we need to choose how our quantum neural network

is going to work. This is exactly the focus of the next subsection.

10.2.2 Building the network
For our case, we will choose the ZZ feature map and the two-local variational form. Neither

is built into PennyLane, so we have to provide our own implementation of these variational

circuits. PennyLane includes, however, a version of the two-local form with circular

entanglement (qml.BasicEntanglerLayers), in case you want to use it in your QNNs. To

implement the circuits that we need, we can just use the pseudocode that we provided in

Section 10.1.2 and do something like the following:

from itertools import combinations

def ZZFeatureMap(nqubits, data):

Number of variables that we will load:

could be smaller than the number of qubits.

nload = min(len(data), nqubits)

for i in range(nload):

qml.Hadamard(i)

qml.RZ(2.0 * data[i], wires = i)

for pair in list(combinations(range(nload), 2)):

q0 = pair[0]

q1 = pair[1]

qml.CZ(wires = [q0, q1])

qml.RZ(2.0 * (np.pi - data[q0]) *

(np.pi - data[q1]), wires = q1)

Quantum neural networks in PennyLane 411

qml.CZ(wires = [q0, q1])

def TwoLocal(nqubits, theta, reps = 1):

for r in range(reps):

for i in range(nqubits):

qml.RY(theta[r * nqubits + i], wires = i)

for i in range(nqubits - 1):

qml.CNOT(wires = [i, i + 1])

for i in range(nqubits):

qml.RY(theta[reps * nqubits + i], wires = i)

Remember that we already implemented the ZZ feature map in PennyLane in the previous

chapter.

In this chapter, we have talked about observables, and how these are represented by

Hermitian operators in quantum mechanics. PennyLane allows us to work directly with

these Hermitian representations.

Remember how every circuit in PennyLane returns the result of some measurement op-

eration? For instance, you may use return qml.probs(wires = [0]) at the end of the

definition of a circuit in order to get the probabilities of every possible measurement out-

come on the computational basis. Well, it turns out that PennyLane offers a few more

possibilities. For instance, given any Hermitian matrix 𝐴 (encoded as a numpy array A),

we may retrieve the expectation value of 𝐴 on an array of wires w at the end of a circuit

simply by calling return qml.expval(A, wires = w). Of course, the dimensions of 𝐴

must be compatible with the length of w. This is useful in our case, for in order to get the

expectation value on the first qubit, we will just have to compute the expectation value of

412 Chapter 10: Quantum Neural Networks

the Hermitian

𝑀 =
(
1 0

0 0)
.

The matrix 𝑀 can be constructed as follows:

state_0 = [[1], [0]]

M = state_0 * np.conj(state_0).T

In this construction, we have used the fact that 𝑀 = |0⟩ ⟨0|, as we discussed in an exercise

earlier in this chapter. This will give us, as output, a value between 0 and 1, which is perfect

to construct a classifier: as usual, we will assign class 1 to every data instance with a value

of 0.5 or higher, and class 0 to all the rest.

Now we have all the pieces gathered in order to implement our quantum neural network.

We are going to construct it as a quantum node with two arguments: inputs and theta.

The first argument is mandatory: in order for PennyLane to be able to train a quantum

neural network with TensorFlow, its first argument must accept an array with all the inputs

to the network, and the name of this argument must be inputs. After this argument, we

may add as many as we want. These can correspond to any parameters of the circuit, and,

of course, they need to include the optimizable parameters in the variational form.

Thus, we may implement our quantum neural network as follows:

nqubits = 4

dev = qml.device("default.qubit", wires=nqubits)

def qnn_circuit(inputs, theta):

ZZFeatureMap(nqubits, inputs)

TwoLocal(nqubits = nqubits, theta = theta, reps = 1)

return qml.expval(qml.Hermitian(M, wires = [0]))

qnn = qml.QNode(qnn_circuit, dev, interface="tf")

Quantum neural networks in PennyLane 413

To keep things simple, we have chosen to use just one repetition of the variational form.

If your dataset is more complex, you may want to increase this number in order to have

more trainable parameters.

Notice, by the way, how we have added the argument interface = "tf" to the quantum

node initializer. This is so that the quantum node will work with tensors (TensorFlow’s

data object) in lieu of with arrays, just to allow PennyLane to communicate smoothly

with TensorFlow. Had we used the @qml.qnode decorator, we would’ve had to include the

argument in its call.

This defines the quantum node that implements our quantum neural network. Now we

need to figure out a way to train it, and, for that purpose, we will rely on TensorFlow. We’ll

do exactly that in the next subsection.

10.2.3 Using TensorFlow with PennyLane
In Chapter 8, What is Quantum Machine Learning?, we already learned how TensorFlow

can be used to train a classical neural network. Well, thanks to PennyLane’s great inter-

operability, we will now be able to train our quantum neural network with TensorFlow

almost as if it were a classical one.

To learn more. . .

PennyLane can also be integrated with other classical machine learning frameworks

such as PyTorch. In addition, it provides its own tools to train models based on the

NumPy package, but these are more limited.

Remember how we could construct TensorFlow models using Keras layers and joining

them in sequential models? Look at this:

weights = {"theta": 8}

qlayer = qml.qnn.KerasLayer(qnn, weights, output_dim=1)

That is how you can create a Keras layer containing our quantum neural network — just

as if it were any other layer in a classical model! In order to do this, we’ve had to call

414 Chapter 10: Quantum Neural Networks

qml.qnn.KerasLayer, and we’ve had to pass a few things to it. First, of course, we’ve sent

the quantum node with the neural network. Then, a dictionary is indexed by the names

of all the node arguments that take the optimizable parameters, and specifies, for each of

these arguments, the number of parameters that they take. Since we only have one such

argument, theta, and it should contain 8 optimizable parameters (that is, it will be an array

of length 8), we have sent in {"theta: 8}. Lastly, we’ve had to specify the dimension of

the output of the quantum node; since it only returns a numerical expectation value, this

dimension is 1.

Once we have a quantum layer, we can create a Keras model easily:

model = tf.keras.models.Sequential([qlayer])

The ability to integrate quantum nodes into neural networks with such a level of flexibility

will enable us to easily construct more complex model architectures in the following

chapter.

Having our model ready, we now have to pick an optimizer and a loss function, and then

we can compile the model just like any classical model. In our case, we will use the binary

cross entropy loss (because we are training a binary classifier, after all) and we will rely

on the Adam optimizer with a learning rate of 0.005. For the remaining parameters of the

optimizer, we will trust the default values. Our code is, then, as follows:

opt = tf.keras.optimizers.Adam(learning_rate = 0.005)

model.compile(opt, loss=tf.keras.losses.BinaryCrossentropy())

In addition to this, we will use early stopping on the validation loss with a patience of two

epochs by using the following instructions:

earlystop = tf.keras.callbacks.EarlyStopping(

monitor = "val_loss", patience = 2, verbose = 1,

restore_best_weights = True)

And we are now ready to send the final instruction to get our model trained.

Quantum neural networks in PennyLane 415

To learn more. . .

You may remember that, at some point in this chapter, we discussed the different

ways in which gradients involving quantum neural networks could be computed.

And you might wonder why we haven’t had to deal with that in order to get our

model trained.

It turns out that PennyLane already picks the best differentiation method for us

in order to compute gradients. Each quantum node can use certain differentiation

methods — for instance, nodes with devices that act as interfaces to real hardware

can’t use automatic differentiation methods, but nodes with simulators can, and

most do.

Later in this section, we will discuss in detail all the differentiation methods that

can be used in PennyLane.

To train our model, we just have to call the fit method. Since we will be using early

stopping, we will be generous with the number of epochs and set it to 50. Also, we will fix

a batch size of 20. For that, we can use the following piece of code:

history = model.fit(xs_tr, y_tr, epochs = 50, shuffle = True,

validation_data = (xs_val, y_val),

batch_size = 20,

callbacks = [earlystop])

The output that you will get upon running this instruction will be similar to the following:

Epoch 1/50

23/23 [====] - 22s 944ms/step - loss: 0.8069 - val_loss: 0.7639

Epoch 2/50

23/23 [====] - 21s 932ms/step - loss: 0.7485 - val_loss: 0.7174

Epoch 3/50

23/23 [====] - 21s 930ms/step - loss: 0.7022 - val_loss: 0.6819

416 Chapter 10: Quantum Neural Networks

Epoch 4/50

23/23 [====] - 22s 957ms/step - loss: 0.6685 - val_loss: 0.6554

Epoch 5/50

23/23 [====] - 21s 925ms/step - loss: 0.6433 - val_loss: 0.6362

Epoch 6/50

23/23 [====] - 21s 915ms/step - loss: 0.6249 - val_loss: 0.6232

Epoch 7/50

23/23 [====] - 21s 916ms/step - loss: 0.6122 - val_loss: 0.6141

Epoch 8/50

23/23 [====] - 21s 931ms/step - loss: 0.6029 - val_loss: 0.6081

Epoch 9/50

23/23 [====] - 21s 931ms/step - loss: 0.5961 - val_loss: 0.6052

Epoch 10/50

23/23 [====] - 22s 951ms/step - loss: 0.5918 - val_loss: 0.6027

Epoch 11/50

23/23 [====] - 22s 948ms/step - loss: 0.5889 - val_loss: 0.6007

Epoch 12/50

23/23 [====] - 22s 964ms/step - loss: 0.5865 - val_loss: 0.5997

Epoch 13/50

23/23 [====] - 21s 926ms/step - loss: 0.5855 - val_loss: 0.5998

Epoch 14/50

23/23 [====] - 22s 956ms/step - loss: 0.5841 - val_loss: 0.5993

Epoch 15/50

23/23 [====] - 22s 958ms/step - loss: 0.5835 - val_loss: 0.5994

Epoch 16/50

23/23 [====] - 22s 946ms/step - loss: 0.5831 - val_loss: 0.5997

Epoch 16: early stopping

Restoring model weights from the end of the best epoch: 14.

Quantum neural networks in PennyLane 417

To learn more. . .

If you followed all that we’ve done so far without having asked TensorFlow to work

with doubles, everything would work just fine — although you would get slightly

different results. Nonetheless, if you try to fit a model using the Lightning simulator,

you do need to ask TensorFlow to use doubles.

Note that we have manually shrunk the progress bar so that the output could fit within

the width of the page. Also, keep in mind that the execution time may vary from device to

device, but, in total, the training shouldn’t take more than 20 minutes on an average

computer.

Just by looking at the raw output, we can already see that the model is indeed learning,

because there is a very significant drop in both the training and validation losses as the

training progresses. It could be argued that there might be a tiny amount of overfitting,

because the drop in the training loss is slightly greater than that in the validation loss.

In any case, let’s wait until we have a look at the accuracies before coming to any final

conclusions.

In this case, the training has only run for 16 epochs, so it’s easy to get insights from the

output returned by TensorFlow. Nonetheless, in the real world, training processes can go

on for up to very large numbers of epochs, and, needless to say, in those situations the

console output isn’t particularly informative. In general, it’s always a good practice to plot

both the training and validation losses against the number of epochs, just to get a better

insight into the performance of the training process. We can do this with the following

instructions:

import matplotlib.pyplot as plt

def plot_losses(history):

tr_loss = history.history["loss"]

val_loss = history.history["val_loss"]

418 Chapter 10: Quantum Neural Networks

epochs = np.array(range(len(tr_loss))) + 1

plt.plot(epochs, tr_loss, label = "Training loss")

plt.plot(epochs, val_loss, label = "Validation loss")

plt.xlabel("Epoch")

plt.legend()

plt.show()

plot_losses(history)

We’ve decided to define a function just so that we can reuse it in future training processes.

The resulting plot is shown in Figure 10.6.

2 4 6 8 10 12 14 16
Epoch

0.60

0.65

0.70

0.75

0.80 Training loss
Validation loss

Figure 10.6: Training and validation loss functions for every epoch

And now it’s time for our final test. Let’s check the accuracy of our model on all our

datasets to see if its performance is acceptable. This can be done with the following piece

of code:

from sklearn.metrics import accuracy_score

tr_acc = accuracy_score(model.predict(xs_tr) >= 0.5, y_tr)

Quantum neural networks in PennyLane 419

val_acc = accuracy_score(model.predict(xs_val) >= 0.5, y_val)

test_acc = accuracy_score(model.predict(xs_test) >= 0.5, y_test)

print("Train accuracy:", tr_acc)

print("Validation accuracy:", val_acc)

print("Test accuracy:", test_acc)

Upon running this, we get a training accuracy of 71%, a validation accuracy of 72%, and a

test accuracy of 72%. These results don’t reflect any kind of overfitting.

Instead of implementing your own variational forms, you may prefer to use one of Penny-

Lane’s built-in circuits. For instance, you could use the StronglyEntanglingLayers class.

You should keep in mind, however, that the resulting variational form — as opposed to our

own implementation of two-local — won’t take a one-dimensional array of inputs, but a

three dimensional one! In particular, this form on 𝑛 qubits with 𝑙 layers will take as input a

three-dimensional array of size 𝑛 × 𝑙 × 3. Remember how, in this variational form, we need

3 arguments for the rotation gates, and there are 𝑛 such gates in each of the 𝑙 layers (you

can take another look at Figure 10.4).

If you are ever in doubt, you may call the StronglyEntanglingLayers.shape function

specifying the number of layers and the number of qubits in the respective arguments

n_layers and n_wires. This will return a three-tuple with the shape that the variational

form expects.

For example, we could redefine our previous QNN to use this variational form as follows:

nqubits = 4

dev = qml.device("default.qubit", wires=nqubits)

nreps = 2

weights_dim = qml.StronglyEntanglingLayers.shape(

n_layers = nreps, n_wires = nqubits)

nweights = 3 * nreps * nqubits

420 Chapter 10: Quantum Neural Networks

def qnn_circuit_strong(inputs, theta):

ZZFeatureMap(nqubits, inputs)

theta1 = tf.reshape(theta, weights_dim)

qml.StronglyEntanglingLayers(weights = theta1,

wires = range(nqubits))

return qml.expval(qml.Hermitian(M, wires = [0]))

qnn_strong = qml.QNode(qnn_circuit_strong, dev)

weights_strong = {"theta": nweights}

In this piece of code, we have stored in nreps the number of repetitions that we want in

each instance of the variational form, in weights_dim the dimensions of the input that the

variational form expects, and in nweights the number of inputs that each instance of the

variational form will take. The rest is pretty self-explanatory. Inside the circuit, we’ve had

to reshape the theta array of parameters to make it fit into the shape that the variational

form expects; in order to do this, we’ve used the tf.reshape function, which can reshape

TensorFlow’s tensors while preserving all their metadata. The weights_strong dictionary

that we defined at the end is the one that we would send to TensorFlow when constructing

the Keras layer.

We’ve already learned how you can train a quantum neural network using PennyLane and

TensorFlow. We shall now discuss a few technical details in depth before bringing this

section to an end.

10.2.4 Gradient computation in PennyLane
As we have already mentioned, when you train a model with PennyLane, the framework

itself figures out the best way in which to compute gradients. Different quantum nodes

Quantum neural networks in PennyLane 421

may be compatible with different methods of differentiation based on a variety of factors,

most notably the kind of device they use.

To learn more. . .

For an up-to-date reference of the differentiation methods that the default.qubit

simulator supports, you may check the online documentation at https://docs.p

ennylane.ai/en/stable/introduction/interfaces.html#supported-configu

rations.

You will see that the compatibility of a quantum node with a differentiation method

not only depends on the device itself but also on the return type of the node and

the machine learning interface (in our case, the interface was TensorFlow).

These are the differentiation methods that can be used in PennyLane:

• Backpropagation: Just the good old backpropagation method that is used in classical

neural networks. Of course, this differentiation method only works on simulators

that are compatible with automatic differentiation, because that is what is needed in

order to analytically compute the gradients.

The name of this method in PennyLane is "backprop".

• Adjoint differentiation: This is a more efficient version of backpropagation that

relies on some of the nice computational “oddities” of quantum computing, such as

the fact that all the quantum circuits are implemented by unitary matrices, which are

trivially invertible. Like backpropagation, this method only works on the simulators

that are compatible with automatic differentiation, but it is more restrictive.

The name of this method in PennyLane is "adjoint".

• Finite differences: Ever took a numerical analysis course at college? Then this

will sound familiar. This method implements the old-school way of computing a

numerical approximation of a gradient that we discussed in the previous section. It

works on almost every quantum node.

https://docs.pennylane.ai/en/stable/introduction/interfaces.html#supported-configurations
https://docs.pennylane.ai/en/stable/introduction/interfaces.html#supported-configurations
https://docs.pennylane.ai/en/stable/introduction/interfaces.html#supported-configurations

422 Chapter 10: Quantum Neural Networks

The name of this method in PennyLane is "finite-diff".

• Parameter shift rule: PennyLane fully implements the parameter-shift rule that

we introduced previously. It works on most quantum nodes.

The name of this method in PennyLane is "parameter-shift".

• Device gradient computation: Some devices provide their own way of computing

gradients. The name of the corresponding differentiation method is "device".

There are a couple of things that deserve clarification; the first of them is how a simulator

could not be compatible with automatic differentiation. Oversimplifying a little bit, most

simulators work by computing the evolution of the quantum state of a circuit and returning

an output that is differentiable with respect to the parameters. The operations required

to do all of this are themselves differentiable, and hence it’s possible to use automatic

differentiation on quantum nodes that use that simulator. But simulators may work differ-

ently. For instance, a simulator could return individual shots in a way that “breaks” the

differentiability of the computation.

Another thing that may have caught your attention is that the finite difference method can

be used on “most” quantum nodes, but not on all of them. That’s because some quantum

nodes may return outputs that don’t make it possible for the finite differences method to

work with them. For instance, if a node returns an array of samples, the differentiability

is broken. If instead, it returned an expectation value — even if it were just an empirical

approximation obtained from a collection of samples — then a gradient would exist and

the finite differences method could be used to compute it.

Exercise 10.3

List all the PennyLane differentiation methods that can be used on quantum hard-

ware and all the differentiation methods that can be used on simulators.

The way in which you can ask PennyLane to use a specific differentiation method — let’s

say one named "method" — is by passing the optional argument diff_method = "method"

Quantum neural networks in PennyLane 423

to the quantum node decorator or initializer. That is, if you use the QNode decorator, you

should write

@qml.qnode(device, interface = "tf", diff_method = "method")

def qnn():

Circuit goes here.

Alternatively, if you decided to assemble a circuit circuit and a device device into a

quantum node directly, you should call the following:

qnn = qml.QNode(circuit, device, interface = "tf",

diff_method = "method")

By default, diff_method is set to "best", which, as we’ve said before, lets PennyLane

choose on our behalf the best differentiation method.

In our particular case, PennyLane has been using the backpropagation differentiation

method all this time — without us even noticing!

To learn more. . .

If you want to know which differentiation method PennyLane uses by default on a

device dev and on a certain interface inter (in our case, "tensorflow"), you can

just call the following function:

qml.QNode.best_method_str(dev, inter)

Our quantum node is compatible with all the differentiation methods except with device

differentiation, because default.qubit doesn’t implement its own special way of comput-

ing gradients. Thus, just to better understand the differences in performance, we can try

out all the differentiation methods and see how they behave.

To learn more. . .

You may remember that, when using the Lightning simulator, we do need to ask

TensorFlow to use doubles all across the Keras model instead of floats — it’s not an

424 Chapter 10: Quantum Neural Networks

option, but a necessity. The same happens when we use differentiation methods

other than backpropagation with default.qubit.

Let’s begin with adjoint differentiation. In order to retrain our model with this differentia-

tion method, we will rerun all our previous code, but changing the quantum node definition

to the following:

qnn = qml.QNode(qnn_circuit, dev,

interface="tf", diff_method="adjoint")

Reasonably enough, instead of rerunning all your code, you may want to add the execution

of alternative differentiation methods as part of it — particularly if you are keeping your

code in a notebook. If you want to do so while ensuring that the training is done in identical

conditions (the same environment and seeds), these are the lines that you would have to

run:

method = "adjoint" # Set it to whatever you want!

tf.random.set_seed(seed)

qnn = qml.QNode(qnn_circuit, dev, interface="tf",

diff_method = method)

qlayer = qml.qnn.KerasLayer(qnn, weights, output_dim=1)

model = tf.keras.models.Sequential([qlayer])

opt = tf.keras.optimizers.Adam(learning_rate = 0.005)

model.compile(opt, loss=tf.keras.losses.BinaryCrossentropy())

history = model.fit(xs_tr, y_tr, epochs = 50, shuffle = True,

validation_data = (xs_val, y_val),

batch_size = 20,

callbacks = [earlystop])

Quantum neural networks in PennyLane 425

Upon running this, you will get the exact same training behavior that we got with back-

propagation — the same evolution of the training and validation losses and, of course, the

same accuracies. Where there is a noticeable change, however, is in training time. In our

case, training with backpropagation took a rough average of 21 seconds per epoch. Using

adjoint differentiation, in contrast, the training took, on average, 10 seconds per epoch.

That’s a big gain!

Actually, if you wanted to further reduce the training time, you should try the Lightning

simulator with the adjoint method. Depending on the hardware configuration of your

computer, it can yield very significant boosts in performance.

Let’s now train our model with the two remaining differentiation methods, which are the

hardware-compatible ones: the parameter-shift rule and finite differences. In order to do

that, we will just have to rerun our code changing the value of the differentiation method

in the quantum node definition. In order to avoid redundancy, we won’t rewrite everything

here — we trust these small changes to you!

When retraining with these two models, these are the results we obtained:

• Using the parameter shift rule yielded the very same results as the other differentia-

tion methods. Regarding training time, each epoch took, on average, 14 seconds to

complete. That’s better than the 21 seconds that we got with backpropagation, but

not as good as the 10 seconds that the adjoint method gave us.

• When using finite differences differentiation, we got, once again, the same results

that the other methods yielded. On average, each epoch took 10 seconds to complete,

which matches the training time of adjoint differentiation.

Keep in mind that this comparison holds for the particular model that we have considered.

The results may vary as the complexity of the models increases and, in particular, hardware-

compatible methods may perform more poorly on simulators when training complex QNN

architectures.

426 Chapter 10: Quantum Neural Networks

And that’s probably all you need to know about the differentiation methods that are

available in PennyLane. Let’s now have a look at what Qiskit has to offer in terms of

quantum neural networks.

10.3 Quantum neural networks in Qiskit: a
commentary

In the previous section, we had a chance to explore in great depth the implementation and

training of quantum neural networks in PennyLane. We won’t do an analogous discussion

for Qiskit in such a level of detail, but we will at least give you a few ideas about how to get

started should you ever need to use Qiskit in order to work with quantum neural networks.

PennyLane provides a very homogeneous and flexible experience. No matter if you’re

training a simple binary classifier or a complex hybrid architecture like the ones we will

study in the following chapter, it’s all done in the same way.

Qiskit, by contrast, provides a more “structural” approach. It gives you a suite of classes

that can be used to train different kinds of neural networks and that allow you to define

your networks in different ways. It’s difficult to judge whether this is a better or worse

approach; in the end, it’s just a matter of taste. On the one hand, training basic models in

Qiskit might be simpler than training them in PennyLane because of the ease of use of some

of these purpose-built classes. On the other hand, having different ways of accomplishing

the same thing — one could argue — might generate some unnecessary complexity.

The classes provided by Qiskit for the implementation of quantum neural networks can be

imported from qiskit_machine_learning.neural_networks (please, refer to Appendix D,

Installing the Tools, for installation instructions). These are some of them:

• Two-layer QNN: The TwoLayerQNN class can be used to implement a quantum neural

network with a single feature map, a variational form, and an observable. It works

for any vanilla quantum neural network.

• Circuit QNN: The CircuitQNN class allows you to implement a quantum neural

network from a parametrized circuit. The final state of the circuit will be measured on

Quantum neural networks in Qiskit: a commentary 427

the computational basis, and each measurement result can be mapped to an integer

label through an interpreter function. This can be useful, for instance, if you want to

build a classifier.

By the way, in Qiskit lingo, variational forms are called ansatzs. As you surely remember,

this is also the name that was used in the context of the VQE algorithm that we studied in

Chapter 7, VQE: Variational Quantum Eigensolver.

If, when designing a neural network in Qiskit, you want to use the ZZ feature map or the

two-local variational form, there’s no need for you to re-implement them; they are bundled

with Qiskit. You can get them as follows:

from qiskit.circuit.library import ZZFeatureMap, TwoLocal

nqubits = 3 # We'll do it for three qubits.

zzfm = ZZFeatureMap(nqubits, reps = 1)

twol = TwoLocal(nqubits, 'ry', 'cx', 'linear', reps = 1)

Change rep(etition)s above to suit your needs.

In the call to the ZZ feature map class, we have set the number of repetitions to 1 — any

other number would yield a feature map with that number of repetitions of the ZZ feature

map scheme. In the call to the two-local class, we have also specified — in addition to the

repetitions — the rotation gates, the controlled gates, and the entanglement layout that we

want to use.

For the sake of example, we can define a TwoLayer quantum neural network on three qubits

with the ZZ feature map and two-local variational form that we have just instantiated. We

can do this as follows:

from qiskit_machine_learning.neural_networks import TwoLayerQNN

from qiskit.providers.aer import AerSimulator

qnn = TwoLayerQNN(nqubits, feature_map = zzfm, ansatz = twol,

quantum_instance = AerSimulator(method="statevector"))

428 Chapter 10: Quantum Neural Networks

Since we haven’t specified an observable, the resulting QNN will return the expectation

value of the 𝑍 ⊗ 𝑍 ⊗ 𝑍 observable measured after feeding the execution of the network’s

circuit.

We can simulate analytically the network that we have just created on some random inputs

and optimizable parameters as follows:

qnn.forward(np.random.rand(qnn.num_inputs),

np.random.rand(qnn.num_weights))

The first argument is an array with some (random) classical inputs while the second

argument is an array with (random) values for the optimizable parameters. Notice how

we’ve used the qnum_inputs and num_weights properties of the quantum neural network.

All the neural network classes that we have presented are subclasses of a NeuralNetwork

class. For example, should you want to train a neural network as a classifier, you could

rely on Qiskit’s NeuralNetworkClassifier class. This class can be initialized with a

NeuralNetwork object and specifying a loss function and an optimizer among other things.

In addition to this, there is a subclass of NeuralNetworkClassifier that can be used to

readily create a trainable neural network classifier directly, providing a feature map, a

variational form, an optimizer, a loss, and so on.

This subclass is called VQC (short for Variational Quantum Classifier) and it can also be

imported from the Qiskit module qiskit_machine_learning.algorithms.classifiers.

If you wanted to create a neural network classifier object from our previous qnn object

using the default parameters provided by Qiskit, you could run the following instructions:

from qiskit_machine_learning.algorithms.classifiers import \

NeuralNetworkClassifier

classifier = NeuralNetworkClassifier(qnn)

Quantum neural networks in Qiskit: a commentary 429

By default, the classifier will use the squared error loss function and rely on the SLSQP

optimizer [86].

Then, if you had some training data data_train with labels labels_train, you could train

your newly-created classifier by calling the fit method as follows:

classifier.fit(data_train, labels_train)

If you then wanted to compute the outcomes of the trained classifier on some data

data_test, you could use the predict method like so:

outcomes = classifier.predict(data_test)

Alternatively, if you wanted to compute the accuracy score of the trained model on some

test dataset (data_test and labels_test), you could run the following instruction:

acc = classifier.score(data_test, labels_test)

Nevertheless, you shouldn’t care too much about the NeuralNetworkClassifier and VQC

classes because, as it turns out, there is an alternative — and, in our opinion, better — way

to train QNNs in Qiskit. We will discuss it in the following chapter, and it will involve an

interface with an existing machine learning framework, PyTorch. What is more, being able

to work with this interface will allow us to explore Qiskit’s “Torch Runtime”: a Qiskit utility

that will enable us to more efficiently train QNNs on IBM’s real quantum hardware. This is

the same technique that we used in Chapter 5, QAOA: Quantum Approximate Optimization

Algorithm, to run QAOA executions on quantum hardware. Exciting, isn’t it? Bear with us

until the end of the next chapter.

Summary
This has been a long journey, hasn’t it? In this chapter, we first introduced quantum neural

networks as quantum analogs of classical neural networks. We have seen how the training

of a quantum neural network is very similar to that of a classical one, and we’ve also

explored the differentiation methods that make this possible.

430 Chapter 10: Quantum Neural Networks

With the theory out of the way, we got our keyboards ready to do some work. We learned

how to implement and train a quantum neural network using PennyLane, and we also

discussed some technicalities about this framework, such as details about the differentiation

methods that it provides.

PennyLane comes with some wonderful simulators, but — as we already mentioned in

Chapter 2, The Tools of the Trade in Quantum Computing — it’s also integrated with quantum

hardware platforms such as Amazon Braket and IBM Quantum. Thus, your ability to train

quantum neural networks on actual quantum computers is at your fingertips!

We concluded the chapter with a short overview of how to work with quantum neural

networks in Qiskit.

By now, you have a solid understanding of quantum neural networks. Combined with

your previous knowledge of quantum support vector machines, this gives you a fairly

solid foundation in quantum machine learning. In the following chapter — which will be

very practically-oriented — we will explore more complex model architectures based on

quantum neural networks.

11
The Best of Both Worlds:
Hybrid Architectures

Unity makes strength.

— English aphorism

By now, we have a solid understanding of both classical and quantum neural networks.

In this chapter, we will leverage this knowledge to explore an interesting kind of model:

hybrid architectures of quantum neural networks.

In this chapter, we will discuss what these models are and how they can be useful, and we

will also learn how to implement and train them with PennyLane and Qiskit. The whole

chapter is going to be very hands-on, and we will also take the time to fill in some gaps

regarding the actual practice of training models in real-world scenarios. In addition to this

— and just to spice things up a bit — we will go beyond our usual binary classifiers and also

consider other kinds of problems.

432 Chapter 11: The Best of Both Worlds: Hybrid Architectures

We’ll cover the following topics in this chapter:

• The what and why of hybrid architectures

• Hybrid architectures in PennyLane (with a brief overview of best practices for training

models in real-world scenarios and an introduction to multi-class classification

problems)

• Hybrid architectures in Qiskit (with an introduction to PyTorch)

This is going to be a very exciting chapter. Let’s begin by giving meaning to these hybrid

architectures.

11.1 The what and why of hybrid architectures
Up until now, we’ve used the adjective “hybrid” to describe algorithms that rely on both

classical and quantum processing; algorithms such as QAOA or VQE fit in this category, as

well as the training of QSVMs and QNNs. When we talk about hybrid architectures or

hybrid models, however, we refer to something more specific: we speak about models

that combine classical models with other quantum-based models by joining them together

and training them as a single unit. Of course, the training of hybrid models will itself be a

hybrid algorithm. We know that the terminology might be confusing, but what can we do?

Hybrid is too versatile a word to give it up.

In particular, we will combine quantum neural networks with classical neural networks,

for they are the two models that fit more naturally together. The way we will go about

doing this will be by taking a usual classical neural network and plugging in a quantum

neural network as one of its layers. In this way, the “quantum layer” will take as input

the outputs of the previous layer (or the inputs to the model, if there’s no layer before it)

and will feed its output to the next layer (should there be any). The output of the quantum

neural network will be a numerical array of length 𝑘; thus, in the eyes of the next layer,

the quantum layer will behave as if it were a classical layer with 𝑘 neurons.

These hybrid architectures combining classical and quantum neural networks are said to

be, to the surprise of no one, hybrid quantum neural networks.

The what and why of hybrid architectures 433

Important note

In summary, a hybrid QNN is a classical neural network in which one or more of its

layers have been replaced by quantum layers. These are quantum neural networks

that get inputs from the outputs of the previous layer and feed their outputs to the

next one. Of course, if there’s no next layer, the output of the quantum layer will be

the output of the network. Analogously, if there’s no previous layer, the input to

the quantum network will be the model’s input.

As we’ve already hinted, a hybrid neural network is trained as a single unit: the training

process involves the optimization of both the parameters of the classical layers and those

of the quantum neural networks inside the quantum layers.

To make the whole definition of hybrid QNNs more clear, let us consider a simple example

of how one such network may be constructed:

1. The hybrid QNN must begin taking some classical inputs. Let’s say it takes 16.

2. We may then feed the input into a usual classical layer with 8 neurons and use the

sigmoid activation function.

3. Then, we will add a quantum layer. This quantum layer will have to accept 8 inputs

from the previous layer. For example, we could use a QNN with three qubits using

amplitude encoding. The output of this quantum layer could be, for instance, the

expectation values of the first and second qubits, both measured on the computational

basis. In this case, this quantum layer that we have added will return two numeric

values.

4. Finally, we may add a classical layer with a single neuron that uses the sigmoid

activation function. This layer will take inputs from the quantum layer, so it will

accept two inputs. It will essentially treat the quantum layer as if it were a classical

layer with two neurons.

434 Chapter 11: The Best of Both Worlds: Hybrid Architectures

And that’s how you can build yourself a simple hybrid QNN — at least in theory! But the

question is... why would we want to do such a thing? What are these hybrid models good

for? Let’s illustrate it with a typical example.

In the previous chapter, we learned how to use a QNN to tackle a (binary) classification

task. But, due to the limitations of current quantum hardware and simulators, we were

forced to apply some dimensionality reduction techniques on our data before we could use

it. That’s a situation where hybrid QNNs may prove useful: why not combine, in a single

model, classical dimensionality reduction carried out by a classical neural network with

classification performed by a quantum neural network?

In this way, instead of first reducing the dimensionality of our data and then classifying it

with a quantum neural network, we could consider a hybrid QNN with

• a bunch of classical layers that would reduce the dimensionality of our data,

• joined to a quantum layer that would be in charge of making the classification.

Of course, since the whole network would be trained as a single unit, there would be no

way to truly tell whether the classical part of the network is only doing dimensionality

reduction and the quantum part is only doing classification. Most likely, both parts will

work on both tasks to some degree.

Before proceeding any further, a few disclaimers are in order. First and foremost: quantum

layers are not any sort of magical tool that will surely lead to great improvements in the

performance of a classical neural network. Actually, if used unwisely, quantum layers could

very easily have a negative impact on your model! The key takeaway is that you shouldn’t

blindly use a quantum layer solely as a replacement for a classical layer in a network. Be

intentional. If you are going to include a quantum layer in your model, think about the

role it’s going to play in it.

In addition, when working with hybrid QNNs, you should watch out for how you are

joining classical and quantum layers together. For instance, if you have a quantum layer

using a feature map that requires its inputs to be normalized, maybe using an ELU activation

The what and why of hybrid architectures 435

function in the previous layer isn’t the best of ideas, because it is in no way bounded. On the

other hand, in that case, a sigmoid activation function could be a great fit for the previous

layer.

In the use case that we discussed a few paragraphs ago (combining classical data reduction

with quantum classification), we can witness the “intentionality” that we’ve just talked

about. We do know that, in principle, a neural network can do a good job at reducing data

dimensionality; in case you didn’t know, it’s a known fact that, using something called

autoencoders [64, Chapter 17], one can train an encoder network that can reduce the

dimensionality of a dataset. And we know that a quantum neural network can do a good job

at classifying data coming from a dimensionality reduction technique (just have a look at

the previous chapter!). So there must be some choice of parameters such that the combined

hybrid model will successfully accomplish both tasks. Hence, with the right training, our

hybrid model should be able to perform at least as well as it would if a classical encoder

and a quantum classifier were trained separately. And the important bit is the “at least,”

because when training the classical encoder and the quantum classifier together we can

join their powers!

And that’s the heuristic justification behind this interesting application of hybrid neural

networks. Actually, this is the use case that we will devote this chapter to. However, this is

by no means the only application of hybrid models!

To learn more. . .

Hybrid architectures can also be used in regression problems, as we will later see

in an exercise. In fact, this is a very interesting application, for Skolit et al. [68]

have shown that adding a final layer with trainable parameters that transform the

output of a quantum neural network can be very beneficial in certain reinforcement

learning problems.

Now we promised that this chapter would be very hands-on, and we are going to honor

that. That should have been enough of a theoretical introduction, so let’s gear up! Get

ready to train a bunch of hybrid QNNs to classify some data.

436 Chapter 11: The Best of Both Worlds: Hybrid Architectures

11.2 Hybrid architectures in PennyLane
In this section, we are going to use PennyLane to implement and train a couple of hybrid

QNNs in order to solve some classification problems. Firstly, we will tackle a binary

classification problem, just to better understand how hybrid QNNs work in a familiar

setting. Then, we will take one step further and do the same for a multi-class classification

problem.

Before we get to the problems, though, let us set things up.

11.2.1 Setting things up
As on previous occasions, we shall begin by importing NumPy and TensorFlow and setting

a seed for both packages — all to ensure the reproducibility of our results:

import numpy as np

import tensorflow as tf

seed = 1234

np.random.seed(seed)

tf.random.set_seed(seed)

Now we can also import some useful functions from scikit-learn. We’ve already used them

extensively — they need no introduction!

from sklearn.metrics import accuracy_score

from sklearn.model_selection import train_test_split

In this chapter, we will generate our own datasets to have more flexibility. In order to

create them, we will rely on the make_classification function in the scikit-learn package.

Remember that we introduced it in Chapter 8, What Is Quantum Machine Learning? :

from sklearn.datasets import make_classification

Hybrid architectures in PennyLane 437

Also, in this section, we will use the Lightning simulator with adjoint differentiation in

order to get a good performance. Thus, we need to change the default datatype used by

Keras models:

tf.keras.backend.set_floatx('float64')

We can now import PennyLane and define the hermitian matrix 𝑀 that we used in the

previous chapter. Recall that it corresponds to the observable that assigns the eigenvalue 1

to |0⟩ and the eigenvalue 0 to |1⟩; that is, 𝑀 = |0⟩ ⟨0|.

import pennylane as qml

state_0 = [[1], [0]]

M = state_0 * np.conj(state_0).T

Lastly, we may import Matplotlib and reuse the function that we defined in the previous

chapter for plotting training and validation losses:

import matplotlib.pyplot as plt

def plot_losses(history):

tr_loss = history.history["loss"]

val_loss = history.history["val_loss"]

epochs = np.array(range(len(tr_loss))) + 1

plt.plot(epochs, tr_loss, label = "Training loss")

plt.plot(epochs, val_loss, label = "Validation loss")

plt.xlabel("Epoch")

plt.legend()

plt.show()

And that’s all we need to get started. Let’s go for our first problem.

438 Chapter 11: The Best of Both Worlds: Hybrid Architectures

11.2.2 A binary classification problem
We are now ready to build our first hybrid QNN and train it to solve a binary classification

task. Of course, the first thing we need is data and, as we discussed in the previous section,

we shall generate it using the make_classification function. Using a hybrid QNN that will

“combine classical encoding with quantum classification” can make sense if, for instance,

we have a large number of variables (features) in our dataset, so we will generate a dataset

with 20 variables — that might already be quite large for current quantum hardware! Just

to make sure that we have enough data, we will generate 1000 samples. This is how we

can do it:

x, y = make_classification(n_samples = 1000, n_features = 20)

By default, the make_classification functions generate datasets with two possible classes.

Just what we wanted!

As usual, we will have to split this dataset into some training, validation, and test datasets:

x_tr, x_test, y_tr, y_test = train_test_split(

x, y, train_size = 0.8)

x_val, x_test, y_val, y_test = train_test_split(

x_test, y_test, train_size = 0.5)

With our data ready, we need to think about the model that we will use. Let’s begin by

constructing the quantum layer (the QNN) that we will include at the end of the network.

For this problem, we will use the two-local variational form that we introduced in the

previous chapter (see Figure 10.2). As you surely remember, we can implement it in

PennyLane as follows:

def TwoLocal(nqubits, theta, reps = 1):

for r in range(reps):

for i in range(nqubits):

qml.RY(theta[r * nqubits + i], wires = i)

Hybrid architectures in PennyLane 439

for i in range(nqubits - 1):

qml.CNOT(wires = [i, i + 1])

for i in range(nqubits):

qml.RY(theta[reps * nqubits + i], wires = i)

We will take the quantum layer to be a simple QNN on four qubits using angle embedding

as a feature map followed by the two-local variational form that we have just implemented.

The measurement operation in the QNN will be the computation of the expectation value

of 𝑀 on the first qubit; that’s a sensible choice for binary classifiers in general, because it

returns a value between 0 and 1. The QNN can be defined as follows:

nqubits = 4

dev = qml.device("lightning.qubit", wires = nqubits)

@qml.qnode(dev, interface="tf", diff_method = "adjoint")

def qnn(inputs, theta):

qml.AngleEmbedding(inputs, range(nqubits))

TwoLocal(nqubits, theta, reps = 2)

return qml.expval(qml.Hermitian(M, wires = [0]))

weights = {"theta": 12}

Notice how we have already declared the weights dictionary that we will have to send to

the TensorFlow interface in order to create the quantum layer. In it, we’ve specified that

our variational form uses 4 ⋅ (2 + 1) = 12 weights.

We will define our hybrid QNN to have an input layer with 20 inputs in order to match the

dimension of our data. This will be followed by a classical layer, which will be immediately

followed by the quantum neural network (the quantum layer). Since our QNN accepts

4 inputs, the classical layer will have 4 neurons itself. Moreover, for the QNN to work

440 Chapter 11: The Best of Both Worlds: Hybrid Architectures

optimally, we need the data to be normalized, so the classical layer will use a sigmoid

activation function. We can define this model in Keras as follows:

model = tf.keras.models.Sequential([

tf.keras.layers.Input(20),

tf.keras.layers.Dense(4, activation = "sigmoid"),

qml.qnn.KerasLayer(qnn, weights, output_dim=1)

])

To learn more. . .

When defining the Keras model, you may be tempted to store the quantum layer in

a variable and then use it in the model definition, as follows:

qlayer = qml.qnn.KerasLayer(qnn, weights, output_dim=1)

model = tf.keras.models.Sequential([

tf.keras.layers.Input(20),

tf.keras.layers.Dense(4, activation = "sigmoid"),

qlayer

])

This code will work and, a priori, there’s nothing wrong with it. However, if you

decide to reset or modify your model, you will also have to rerun the first line, with

the definition of qlayer, if you want to re-initialize the optimizable parameters

(weights) in the quantum neural network!

Having the model ready, we can also define our usual early stopping callback:

earlystop = tf.keras.callbacks.EarlyStopping(

monitor="val_loss", patience=2, verbose=1,

restore_best_weights=True)

We’ve set the patience to 2 epochs in order to speed up the training; having a higher

patience may easily lead to better results!

Hybrid architectures in PennyLane 441

And now, all it takes for us to train our model is to — just as we’ve always done on

TensorFlow — pick an optimizer, compile our model with the binary cross entropy loss

function, and call the fit method with the appropriate arguments:

opt = tf.keras.optimizers.Adam(learning_rate = 0.005)

model.compile(opt, loss=tf.keras.losses.BinaryCrossentropy())

history = model.fit(x_tr, y_tr, epochs = 50, shuffle = True,

validation_data = (x_val, y_val),

batch_size = 10,

callbacks = [earlystop])

Et voilà! In just a matter of minutes, your flashy hybrid model will have finished training.

Take a moment to reflect on how easy this was. You have been able to train a hybrid QNN

with full ease, just as if it were a simple QNN. With PennyLane, quantum machine learning

is a piece of cake.

To check how well the training went, we can plot the training and validation losses with

our custom function:

plot_losses(history)

The generated plot can be found in Figure 11.1. Those losses look really good; there don’t

seem to be signs of overfitting and the model appears to be learning. In any case, let’s

compute the test accuracy. We may also compute the training and validation accuracies,

just for reference:

tr_acc = accuracy_score(model.predict(x_tr) >= 0.5, y_tr)

val_acc = accuracy_score(model.predict(x_val) >= 0.5, y_val)

test_acc = accuracy_score(model.predict(x_test) >= 0.5, y_test)

print("Train accuracy:", tr_acc)

print("Validation accuracy:", val_acc)

print("Test accuracy:", test_acc)

442 Chapter 11: The Best of Both Worlds: Hybrid Architectures

0 5 10 15 20 25 30 35
Epoch

0.4

0.5

0.6

0.7

0.8

0.9 Training loss
Validation loss

Figure 11.1: Evolution of the training and validation loss functions in the training of a hybrid
QNN binary classifier

When running the preceding code, we can see how our model has a training accuracy of

95%, a validation accuracy of 90%, and a test accuracy of 96%.

That’s a very satisfactory result. We have just trained our first hybrid QNN binary classifier,

and we’ve seen how it can be effectively used to solve classification tasks.

Exercise 11.1

Try to solve this problem using two additional (dense) classical layers, with 16 and

8 neurons each. Compare the results.

Now, we said that this chapter was going to be hands-on and we truly meant it. So far,

we have just trained models and gotten them right in one shot, but that’s something that

rarely happens in practice. That’s why we’ve put together a small subsection on how to

optimize models in real-world conditions.

11.2.3 Training models in the real world
Whether you believe it or not, we care for you, our dear reader. All this time, behind

each and every model that we’ve trained, we’ve invested hours of meticulous parameter

Hybrid architectures in PennyLane 443

selection and model preparation — all to make sure that the results we give you are good

enough, if not optimal.

When you set out to train models on your own, you will soon find out that things don’t

always work as well as you expected. For each well-performing model, there will be tens or

even hundreds of discarded ones. And that’s something you need to prepare yourself for.

At the early stages of a machine learning project in general — and a quantum machine

learning project in particular — you should address two main following questions:

• How will you log all your results? When you train lots of models, you need

to find a way to log their performances together with their architectures and the

parameters used in their training. That way, you can easily identify what works and

what doesn’t, and you can avoid repeating the same mistakes.

• How will you explore variations of your models? Keeping a separate script for

every model can be manageable when you are not training many models, but this

isn’t a solution for large-scale projects. Oftentimes, you want to try a wide range of

configurations and see which one works best. And automation can truly make your

life easier in this regard.

We leave the first question to you. In truth, there’s no universal way to address it — it all

depends on the problem at hand and on the training strategy that you take. However, in

regard to the second question, we do have something to offer.

When training a model, choosing good hyperparameters — such as a good batch size or

learning rate — is not an easy task, but it is a crucial one. Should you use a smaller or a

larger learning rate? How many layers should you use? Of what type? Decisions, decisions,

decisions! The number of possibilities grows exponentially, so it is impossible to explore

every one of them. But, in machine learning, finding a good configuration can be the

difference between success and failure. How can we do this systematically and (kind of)

effortlessly?

444 Chapter 11: The Best of Both Worlds: Hybrid Architectures

There are quite a few packages and utilities out there that can help you automate the search

for optimal training parameters. One of the most popular ones is the Optuna package,

which we are about to demonstrate. Please refer to Appendix D, Installing the Tools, for

installation instructions.

To learn more. . .

The process of automatically searching for optimal training parameters in a machine

learning problem fits into what is known as automated machine learning, usually

abbreviated as AutoML. This refers to the use of automation in order to solve

machine learning problems. Having machines in charge of training other machines!

Once you’ve installed Optuna, you can import it as follows:

import optuna

We are going to use Optuna to find the best possible learning rate between the values 0.001

and 0.1. In order to do this, we need to define a function (which we shall call objective)

with a single argument (trial). The objective function should use the training parameters

that we want to optimize — in a manner that we will soon make precise — and it should

return whichever metric we want to optimize. For instance, in our case, we would like

to maximize the validation accuracy, so the objective function should train a model and

return the validation accuracy.

The trial argument of the objective function is meant to represent an object of the Trial

class that can be found in the optuna.trial module. We will use this object to define,

within the objective function itself, the training parameters that we want to optimize, while

also specifying their constraints: whether we want them to be integers or floats, the ranges

within which we want our values to be, and so on.

For our case, this is the objective function that we would have to define:

def objective(trial):

Define the learning rate as an optimizable parameter.

lrate = trial.suggest_float("learning_rate", 0.001, 0.1)

Hybrid architectures in PennyLane 445

Define the optimizer with the learning rate.

opt = tf.keras.optimizers.Adam(learning_rate = lrate)

Prepare and compile the model.

model = tf.keras.models.Sequential([

tf.keras.layers.Input(20),

tf.keras.layers.Dense(4, activation = "sigmoid"),

qml.qnn.KerasLayer(qnn, weights, output_dim=1)

])

model.compile(opt, loss=tf.keras.losses.BinaryCrossentropy())

Train it!

history = model.fit(x_tr, y_tr, epochs = 50, shuffle = True,

validation_data = (x_val, y_val),

batch_size = 10,

callbacks = [earlystop],

verbose = 0 # We want TensorFlow to be quiet.

)

Return the validation accuracy.

return accuracy_score(model.predict(x_val) >= 0.5, y_val)

Notice how we have defined the learning rate as an optimizable parameter by calling the

trial.suggest_float("learning_rate", 0.001, 0.1) method. In general, if you want

to optimize a parameter named "parameter", the following applies:

• If the data type of the parameter is a float and the parameter is bounded between

m and M, you should call the suggest_float("parameter", m, M) method. If you

only want your parameter to take discrete values between m and M separated by a

446 Chapter 11: The Best of Both Worlds: Hybrid Architectures

step s, you can send the optional argument step = s, which defaults to None (by

default, the parameter will take continuous values).

• If the data type of the parameter is an integer bounded between m and M, you should

call suggest_int("parameter", m, M). Also, if the values of the parameter should

be separated by a step s from m to M, you can send in step = s.

• If your parameter takes values out of a list values of possible values, you should

call suggest_categorical("parameter", values). For instance, if we wanted to

try out different activation functions on a layer of a neural network, we could use

something like the following:

activation = trial.suggest_categorical(

"activation_function", ["sigmoid", "elu", "relu"]).

Of course, a single objective function can have as many optimizable parameters as desired.

They would just be defined with separate invocations of the methods that we’ve just

outlined.

So that’s how you can create an objective function and specify the parameters that you

want to optimize within it. Now, how do we optimize them? The first step is to create a

Study object with the create_study function, just as follows:

from optuna.samplers import TPESampler

study = optuna.create_study(direction='maximize',

sampler=TPESampler(seed = seed))

Here we have specified that we want to create a study in order to maximize some objective

function and using TPESampler with a seed. By default, Optuna will try to minimize

objective functions — that’s why we had to send in that argument. The sampler that

we’ve passed is just the object that, during the optimization process, is going to look for

values to try. The one we’ve selected is the default one, but we have passed it manually so

that we could give it a seed and get reproducible results. There are many other samplers.

Hybrid architectures in PennyLane 447

Most notably, GridSampler allows you to try all the combinations of parameters out of a

pre-defined “search space.” For instance, we could use the following sampler:

values = {"learning_rate": [0.001, 0.003, 0.005, 0.008, 0.01]}

sampler = optuna.samplers.GridSampler(values)

This would make Optuna try out the values 0.001, 0.003, 0.005, 0.008, and 0.01 — and no

others.

If you want to learn more about how these samplers work, you may have a look at their

online documentation (https://optuna.readthedocs.io/en/stable/reference/sample

rs/index.html).

With the Study object ready, all we have to do is call the optimize method specifying the

objective function and the number of trials that we will let Optuna run:

study.optimize(objective, n_trials=6)

Upon running this (it can take a while), you will get an output similar to the following:

Trial 0 finished with value: 0.9 and parameters:

{'learning_rate': 0.01996042558751034}.

Best is trial 0 with value: 0.9.

Trial 1 finished with value: 0.9 and parameters:

{'learning_rate': 0.06258876833294336}.

Best is trial 0 with value: 0.9.

Trial 2 finished with value: 0.9 and parameters:

{'learning_rate': 0.04433504616170433}.

Best is trial 0 with value: 0.9.

Trial 3 finished with value: 0.91 and parameters:

{'learning_rate': 0.07875049978766316}.

https://optuna.readthedocs.io/en/stable/reference/samplers/index.html
https://optuna.readthedocs.io/en/stable/reference/samplers/index.html

448 Chapter 11: The Best of Both Worlds: Hybrid Architectures

Best is trial 3 with value: 0.91.

Trial 4 finished with value: 0.92 and parameters:

{'learning_rate': 0.07821760500376156}.

Best is trial 4 with value: 0.92.

Trial 5 finished with value: 0.9 and parameters:

{'learning_rate': 0.02798666792298152}.

Best is trial 4 with value: 0.92.

With the parameter variations that we have considered, we haven’t seen any significant

differences in performance. But, still, at least we’ve learned how to use Optuna!

Exercise 11.2

Use Optuna to simultaneously optimize the learning rate and the batch size of the

model.

As a final remark, notice how, in the objective function, we have used the validation

accuracy and not the test accuracy. The test dataset, remember, should only be used once

we’ve already picked our best model. Otherwise, its independence is compromised. For

instance, if we had saved the models following each Optuna trial, now it would make sense

for us to compute the test accuracy on the trial 4 model in order to make sure that we have

a low generalization error.

Exercise 11.3

Optuna can be used on any framework, not just TensorFlow — it can be used to

optimize any parameters that you want for any purpose! All you have to do is

build a suitable objective function. To further illustrate this, use Optuna to find the

minimum of the function 𝑓 (𝑥) = (𝑥 − 3)2.

Hybrid architectures in PennyLane 449

To learn more. . .

In these few pages, we haven’t been able to cover all there is to know about Optuna.

If you would like to learn more, you should have a look at its online documentation.

You can find it at https://optuna.readthedocs.io/en/stable/index.html.

That was a short overview of how to train (quantum) machine learning models in real-world

scenarios. In the following subsection, we will leave our comfort zone and use PennyLane

to solve a new problem for us: a multi-class classification task.

11.2.4 A multi-class classification problem
This is going to be an exciting subsection, for we are about to consider a new kind of

problem on which to apply our QML knowledge. Nonetheless, every long journey begins

with a first step, and ours shall be to reset the seeds of NumPy and TensorFlow, just to

make reproducibility easier:

np.random.seed(seed)

tf.random.set_seed(seed)

We are about to consider a multi-class classification problem and, of course, the first thing

we need is data. Our good old make_classification function can help us here, for we can

give it the optional argument n_classes = 3 in order for it to generate a dataset with 3

distinct classes, which will be labeled as 0, 1, and 2. However, there’s a catch. Increasing

the number of classes means that, as per the function’s requirements, we will also have

to tweak some of the default parameters; a valid configuration can be reached by setting

the argument n_clusters_per_class to 1. Thus, we can generate our dataset for ternary

classification as follows:

x, y = make_classification(n_samples = 1000, n_features = 20,

n_classes = 3, n_clusters_per_class = 1)

Now that we have data, it’s time for us to think about the model. We are approaching a

new kind of problem, so we need to go back to the basics. For now, let’s forget about the

https://optuna.readthedocs.io/en/stable/index.html

450 Chapter 11: The Best of Both Worlds: Hybrid Architectures

hybrid component of the network, and let’s try to think about how we could design a QNN

capable of solving a ternary classification problem.

A general perspective on multi-class classification tasks

In this regard, it is useful to look at how this kind of problem is handled with classical neural

networks. We know that, when solving binary classification problems, we consider neural

networks having a single neuron in the final layer with a bounded activation function; in

this way, we assign a label depending on whether the output is closer to 0 or 1. Such an

approach might not be as effective, in general, when having multiple classes.

When working with 𝑘-class classification problems, neural networks are usually designed

to have 𝑘 neurons in their final layer — again, with bounded activation functions that

make the values lie between 0 and 1. And how is a label assigned from the output of

these neurons? Easy. Each neuron is associated to a label, so we just assign the label of

the neuron that has the highest output. Heuristically, you may think of each of these 𝑘

neurons in the final layer as light bulbs — whose brightness is determined by their output

— indicating how likely it is that the input will belong to a certain category. All we do in

the end is assigning the category of the light bulb that shines the most!

Porting this idea to quantum neural networks is easy. Instead of taking the expectation value

of the observable 𝑀 on the first qubit, we return an array of values with the expectation

values of the 𝑀 observable on the first 𝑘 qubits — assigning to each qubit a label. It couldn’t

be easier.

To learn more. . .

There are other ways to build classifiers in problems with multiple classes. For

instance, two popular approaches are the one-versus-all and one-versus-one

methods. They involve training multiple binary classifiers and combining their

results. We invite you to have a look at chapter 3 of Geron’s book if you are curious

[64].

Hybrid architectures in PennyLane 451

That solves the problem of designing a QNN that can handle our task, but we still have

an issue left: we don’t yet have a suitable loss function for this kind of problem. In binary

classification, we could rely on the binary cross-entropy function, but it doesn’t work for

problems with multiple categories. Luckily for us, there’s a loss function that generalizes

the binary cross entropy. Please, let us introduce you to the categorical cross-entropy

loss.

Let us consider an arbitrary neural network 𝑁 that, for any choice of parameters 𝜃 and any

input 𝑥 , returns an array 𝑁𝜃(𝑥) with 𝑘 entries, all of them between 0 and 1. The categorical

cross-entropy loss function depends on the parameters of the neural network 𝜃, the inputs

𝑥 , and the targets 𝑦, but there is an important subtlety: the loss function expects the targets

𝑦 to be in one-hot form. This means that 𝑦 shouldn’t be a number representing a label

(0, 1,… , 𝑘 − 1). Instead, it should be a vector (an array) with 𝑘 entries that are all set to 0

except for the entry in the position of the label, which should be set to 1. Thus, instead of

having 𝑦 = 0, we would have 𝑦 = (1, 0,… , 0), or, instead of having 𝑦 = 𝑘 − 1, we would

have 𝑦 = (0,… , 0, 1). Under these assumptions, the categorical cross-entropy is defined as

follows:

𝐻 (𝜃; 𝑥, 𝑦) = −
𝑘
∑
𝑗=1

𝑦𝑗 log(𝑁𝜃(𝑥)𝑗).

Of course, we have used the subindex 𝑗 in 𝑦 and 𝑁𝜃(𝑥) to denote their 𝑗-th entries. Notice

how, in this definition, we have implicitly assumed that the first neuron in the final layer is

associated to the label 0, the second neuron is associated to 1, and so on.

Exercise 11.4

Prove that the binary cross-entropy loss is a particular case of the categorical cross-

entropy loss for 𝑘 = 2.

Of course, the categorical cross-entropy function is a reasonable loss function for multi-

class classification, and it shares some nice properties with the binary cross-entropy loss

function. For instance, it is zero if a classifier gets an output completely right (it assigns 1

452 Chapter 11: The Best of Both Worlds: Hybrid Architectures

to the correct output and 0 to the rest), but it diverges if a classifier assigns 1 to a wrong

output and 0 to the rest.

So far, we already know how to implement our QNN and we have a loss function, so we just

have to finalize the details of our architecture. Regarding the quantum layer, we already

know which observable we are going to use, so that’s not a problem. For the feature map,

we will rely on angular encoding and, for the variational form, we shall use the two-local

variational form. To keep things somewhat efficient, we will take our QNN to have four

qubits, and we will leave the rest of the hybrid architecture just as it was in the previous

subsection.

That’s enough abstract thinking for now; let’s get to the code. And be prepared, because

things are about to get hot.

Implementing a QNN for a ternary classification problem

According to our plan, the first thing that we need to do is encode our array of targets y in

one-hot form.

Exercise 11.5

There is a variation of the categorical cross entropy loss that doesn’t require the

targets to be in one-hot form. It is the sparse categorical cross entropy loss. Try

to replicate what follows using this loss function and the unencoded targets. You

may access it as tf.keras.losses.SparseCategoricalCrossentropy.

We could implement our own one-hot encoder, but there’s no need to. The scikit-learn

package — once again to our rescue! — already implements a OneHotEncoder class, which

you can import from sklearn.preprocessing. You can work with this class just as you

would with other familiar scikit-learn classes, such as MaxAbsScaler.

In order to one-hot-encode an array of targets, you would need a OneHotEncoder object

and you would just have to pass the array to the fit_transform method. But with a catch:

the array should be a column vector! Our array of targets y is one-dimensional, so we will

Hybrid architectures in PennyLane 453

have to reshape it before we can feed it to the fit_transform method. Thus, this is how

we can encode our array of targets in one-hot form:

from sklearn.preprocessing import OneHotEncoder

hot = OneHotEncoder(sparse = False)

y_hot = hot.fit_transform(y.reshape(-1,1))

Notice how we have added the argument sparse = False. This Boolean value, which

defaults to True, determines whether or not the encoder should return sparse matrices.

Sparse matrices are datatypes that can be very memory-efficient when storing matrices

with lots of zeros, such as one-hot encoded arrays. Essentially, instead of logging the value

of each entry in a matrix, a sparse matrix only keeps track of the non-zero entries in it.

When working with very large matrices, it can save a ton of memory, but, sadly, using

sparse matrices would lead to problems in the training, so we need our one-hot encoder to

give us an ordinary array.

To learn more. . .

The neat thing about the OneHotEncoder class is that, once we have encoded an

array of targets with representatives from each class using fit_transform, we can

use the transform method on any array of targets. In our case, the hot object will

remember that there are 3 classes in our dataset, and hence hot.transform will

encode any targets correctly: even if it’s given an input with nothing other than

zeros, it will still encode them as arrays of length 3.

We have to do nothing more to our data, so we can now split it into some training, validation,

and test datasets:

x_tr, x_test, y_tr, y_test = train_test_split(

x, y_hot, train_size = 0.8)

x_val, x_test, y_val, y_test = train_test_split(

x_test, y_test, train_size = 0.5)

454 Chapter 11: The Best of Both Worlds: Hybrid Architectures

And we can now implement the QNN that will constitute the quantum layer of our model.

In truth, there’s nothing particularly special about this quantum neural network other than

the fact that it will return an array of values rather than a single one. We can define it,

according to our previous specification, as follows:

nqubits = 4

dev = qml.device("lightning.qubit", wires = nqubits)

@qml.qnode(dev, interface="tf", diff_method = "adjoint")

def qnn(inputs, theta):

qml.AngleEmbedding(inputs, range(nqubits))

TwoLocal(nqubits, theta, reps = 2)

return [qml.expval(qml.Hermitian(M, wires = [0])),

qml.expval(qml.Hermitian(M, wires = [1])),

qml.expval(qml.Hermitian(M, wires = [2]))]

weights = {"theta": 12}

The code is pretty self-explanatory. Notice that, as usual, we have taken the chance to

define the weights dictionary that we will use in the definition of the quantum Keras

layer. In this case, we will be using 12 weights, exactly as in the case of our model in

Subsection 11.2.2, because we are using the same variational form and the same number of

qubits and repetitions.

With our QNN ready, we can define the Keras model for our hybrid QNN. This is just

analogous to what we did in the previous subsection, with a few important differences —

don’t copy-paste so fast! First of all, in this case, we need to set the output dimension of

the quantum layer to three, not one. And, much more importantly, we need to add an extra

activation function on the QNN output.

The categorical cross entropy loss function expects probability distributions. In principle,

it assumes that the output of the 𝑗-th neuron is the probability that the input belong to

Hybrid architectures in PennyLane 455

category 𝑗 . Thus, the data that the model outputs should be normalized: it should add up

to 1. Nevertheless, a priori, there’s no way for us to guarantee that the QNN will return

some normalized outputs with our current setup. In order to ensure this, we may use the

softmax activation function, which is defined as

𝜎(𝑥1,… , 𝑥𝑛) =
1

∑𝑛
𝑗=1 𝑒𝑥𝑗

(𝑒𝑥1 ,… , 𝑒𝑥𝑛).

It’s easy to check that 𝜎 is a vector with components bounded by 0 and 1 which add up to

1 and, hence, is a probability distribution.

In addition to these modifications, we will add an extra classical layer with 8 neurons:

model = tf.keras.models.Sequential([

tf.keras.layers.Input(20),

tf.keras.layers.Dense(8, activation = "elu"),

tf.keras.layers.Dense(4, activation = "sigmoid"),

qml.qnn.KerasLayer(qnn, weights, output_dim = 3),

tf.keras.layers.Activation(activation = "softmax")

])

And we can now compile our model with the Adam optimizer and the categorical cross-

entropy loss before training it with the fit method; nothing particularly exciting here. As a

fun fact, if you were forgetful enough to tell TensorFlow to use the binary cross-entropy loss

instead of the categorical cross-entropy one, it would still use the categorical cross-entropy

loss (don’t look at us; we don’t say it from experience, right?). This is a rather nice and

thoughtful feature from the guys behind TensorFlow.

opt = tf.keras.optimizers.Adam(learning_rate = 0.001)

model.compile(opt, loss=tf.keras.losses.CategoricalCrossentropy())

history = model.fit(x_tr, y_tr, epochs = 50, shuffle = True,

validation_data = (x_val, y_val),

456 Chapter 11: The Best of Both Worlds: Hybrid Architectures

batch_size = 10,

callbacks = [earlystop])

After a few minutes of training, we may get a plot of the evolution of the training and

validation losses with the following instruction:

plot_losses(history)

The resulting plot can be found in Figure 11.2, which shows the evolution of both losses.

0 5 10 15 20 25 30 35
Epoch

0.96

0.98

1.00

1.02

1.04

1.06

1.08
Training loss
Validation loss

Figure 11.2: Evolution of the training and validation loss functions in the training of a hybrid
QNN multi-class classifier

We may now compute the training, validation, and test accuracies of our freshly-trained

models, but, in order to do so, the accuracy_score function needs the predicted and actual

labels to be represented by numbers, not encoded in one-hot form as arrays. Hence, we

need to undo the one-hot encoding. For this purpose, we can just use the argmax method,

which returns the entry of the maximum value in an array, and it can be given an optional

axis argument for it to be applied only in one axis. Thus, we may compute the accuracy

scores as follows:

tr_acc = accuracy_score(

model.predict(x_tr).argmax(axis = 1),

Hybrid architectures in PennyLane 457

y_tr.argmax(axis = 1))

val_acc = accuracy_score(

model.predict(x_val).argmax(axis = 1),

y_val.argmax(axis = 1))

test_acc = accuracy_score(

model.predict(x_test).argmax(axis = 1),

y_test.argmax(axis = 1))

print("Train accuracy:", tr_acc)

print("Validation accuracy:", val_acc)

print("Test accuracy:", test_acc)

This returns a training accuracy of 67%, a validation accuracy of 53%, and a test accuracy

of 60%. Notice that the low accuracy on the validation dataset — compared to that of

the training dataset — seems to indicate an overfitting problem. This might be fixed, for

example, by using a larger training dataset; of course, this would lead to longer training

times.

Exercise 11.6

Just to further leave our “classifier comfort zone,” try to implement a hybrid model

able to do regression. This model should be trained on some data with inputs 𝑥 and

target values 𝑦 for which there is a continuous function 𝑓 (𝑥) such that 𝑓 (𝑥) ≃ 𝑦

(you can create such a dataset, for instance, with the make_regression method from

scikit-learn). The model should try to learn the function 𝑓 for all the points in the

dataset.

You may design this model using some classical layers, followed by a quantum layer

like the ones that we have considered, and a final classical layer with no activation

functions and just one neuron. You should train it with the mean squared error loss.

That concludes our study of hybrid architectures in PennyLane. It’s time for us to get to

Qiskit, and that’s going to be a very different adventure!

458 Chapter 11: The Best of Both Worlds: Hybrid Architectures

11.3 Hybrid architectures in Qiskit
In the previous section, we discussed how hybrid QNNs could be implemented and trained

using PennyLane in conjunction with TensorFlow, an ML framework that we already

know how to use. We will devote this section to studying how to work with these hybrid

architectures in Qiskit, and in this mission we will need to face a new challenge.

For better or for worse, Qiskit doesn’t have a built-in TensorFlow interface at the time of

writing. It only has native support for a different ML framework: PyTorch. So, if we want

to get those hybrid NNs working on Qiskit, we better learn a thing or two about PyTorch.

As daunting as this task may seem, it won’t be such a hassle and it will greatly pay off in

the future — and, yes, the future is our next chapter on QGANs.

Important note

We will be using version 1.13 of the PyTorch package. If you are using a different

version, things may be slightly different!

What’s so special about PyTorch to be worth our time beyond this short section? Come

and see.

11.3.1 Nice to meet you, PyTorch!
So far, we have worked with TensorFlow. In our experience, this framework provides a

very easy and streamlined experience for the implementation and training of all sorts of

network-based models. However, there’s a small catch behind all that ease of use. In this

book, we haven’t been using “pure TensorFlow,” but we have been relying heavily on Keras.

In spite of being fully integrated into TensorFlow, Keras is a component that creates some

additional layers of abstraction in order to simplify the handling of neural-network models

in TensorFlow. All this time, Keras has been taking care of lots of things for us behind the

scenes.

At the time of writing, there are two very popular ML frameworks out there: TensorFlow and

PyTorch. The former we already know, the latter we soon will. PyTorch, unlike TensorFlow,

Hybrid architectures in Qiskit 459

doesn’t come with its own Keras (although there are some third-party packages that provide

similar functionalities). In PyTorch, we will have to take care of many details ourselves.

And that’s great. Granted, learning how to use PyTorch will require a tiny bit more effort

on our part, but PyTorch will offer us a level of flexibility that TensorFlow’s Keras simply

can’t. Let’s get started then.

We will be using version 1.13 of the PyTorch package. Please refer to Appendix D, Installing

the Tools, for instructions on how to install it.

As usual, we shall begin by importing NumPy and a few utilities from scikit-learn. We will

also set a seed for NumPy:

import numpy as np

from sklearn.metrics import accuracy_score

from sklearn.model_selection import train_test_split

from sklearn.datasets import make_classification

seed = 1234

np.random.seed(seed)

With those imports out of the way, we can get to our main dish. This is how you can import

PyTorch and give it a seed to ensure reproducibility:

import torch

torch.manual_seed(seed)

Most functionality related to the implementation of models is in the torch.nn module,

and most activation functions can be found in the torch.nn.functional module, so let’s

import these as well:

import torch.nn as nn

import torch.nn.functional as F

Those are all the imports that we need for now.

460 Chapter 11: The Best of Both Worlds: Hybrid Architectures

Setting up a model in PyTorch

In order to understand how the PyTorch package works, we will implement and train a

simple binary classifier as a (classical) neural network. This neural network will take 16

inputs and return a unique output between 0 and 1. As usual, the two possible labels will

be 0 and 1 and the output label will be decided based on whether the network output is

closer to 0 or 1.

Let’s see how we can implement this neural network classifier. In PyTorch, model ar-

chitectures are defined as subclasses of the nn.Module class, and individual models are

objects of these subclasses. When defining subclasses of nn.Module, you should implement

an initializer that first calls the parent’s initializer and then prepares all the variables of

the model architecture; for instance, all the network layers should be initialized here. In

addition, you need to provide a forward method that defines the behavior of the network:

this method should take any input to the network as an argument and return its output.

Our desired neural network could be implemented as follows (don’t worry, we will discuss

this piece of code right away):

class TorchClassifier(nn.Module):

def __init__(self):

Initialize super class.

super(TorchClassifier, self).__init__()

Declare the layers that we will use.

self.layer1 = nn.Linear(16, 8)

self.layer2 = nn.Linear(8, 4)

self.layer3 = nn.Linear(4, 2)

self.layer4 = nn.Linear(2, 1)

Define the transformation of an input.

Hybrid architectures in Qiskit 461

def forward(self, x):

x = F.elu(self.layer1(x))

x = F.elu(self.layer2(x))

x = F.elu(self.layer3(x))

x = torch.sigmoid(self.layer4(x))

return x

There are a few things to digest in this implementation. Let us first look at the initial-

izer. As expected, we are defining a subclass of nn.Module and we are first calling the

parent’s initializer; so far, so good. Then we are defining what seem to be the layers of

the neural network, and here is where some confusion may arise. Our first issue arises

from terminology: “linear layers” are PyTorch’s equivalent of Keras’ “dense” layers — not a

big deal. But then we have a deeper issue. Back in our Keras days, we defined the layers

of a neural network by specifying the number of neurons they had and their activation

function. But here there’s no trace of activation functions and the layers take what seem to

be two-dimensional arguments. What’s going on?

In a neural network, you have a bunch of neurons that are arranged into arrays, and these

arrays are connected by some “linear wiring” between them. In addition, each array of

neurons has a (usually non-linear) activation function. In Keras, layers were associated

to these arrays of neurons themselves (with their activation functions) and to the “linear

wiring” before them. In PyTorch, on the other hand, when we speak of layers, we only

refer to the linear wiring between these arrays of neurons. Hence, nn.Linear(16, 8) is

nothing more than the linear wiring — with its weights and biases — between an array

of 16 neurons and an array of 8 neurons. This will make more sense when we look at the

forward method.

The forward method defines what happens to any input that gets into the network. In its

implementation, we can see how any input, which will be a PyTorch tensor of length 16,

goes through the first layer. This first layer is the “linear wiring” between an array of 16

462 Chapter 11: The Best of Both Worlds: Hybrid Architectures

neurons and an array of 8 neurons; it has its own weights 𝑤𝑗𝑘 and biases 𝑏𝑘 and, for any

input (𝑥1,… , 𝑥16), it returns a vector (�̂�1,… , �̂�8) with

�̂�𝑘 =
16
∑
𝑗=1

𝑤𝑗𝑘𝑥𝑗 + 𝑏𝑘 .

Then, each entry in the resulting tensor goes through the ELU activation function. The

rest of the code is self-explanatory and simply defines a neural network that matches our

specifications.

To learn more. . .

Layers in PyTorch define their own weights and biases. If you wish to remove

the biases — setting them to zero for all eternity — you may do so by sending the

optional argument bias = False when initializing a layer.

Now that we have our model architecture defined, we can instantiate it into an individual

model by initializing an object of the TorchClassifier class. A nice thing about PyTorch

models, by the way, is that they can be printed; their output gives you an overview of the

different model components. Let’s create our model object and see this in action:

model = TorchClassifier()

print(model)

Upon running this, we get the following output from the print instruction:

TorchClassifier(

(layer1): Linear(in_features=16, out_features=8, bias=True)

(layer2): Linear(in_features=8, out_features=4, bias=True)

(layer3): Linear(in_features=4, out_features=2, bias=True)

(layer4): Linear(in_features=2, out_features=1, bias=True)

)

This is somewhat analogous to the model summaries that we could print in Keras.

Hybrid architectures in Qiskit 463

By default, the weights and biases of models are random, so our newly-created model

should already be ready to be used. Let’s try it out! The torch.rand function can create a

random tensor of any specified size. We will use it to feed our model some random data

and see if it works:

model(torch.rand(16))

This is the output that we get:

tensor([0.4240], grad_fn=<SigmoidBackward0>)

And there we have it! As expected, our model returns a value between 0 and 1. By the

way, notice one little thing in the output: right next to the tensor value, there is a grad_fn

value that somehow remembers that this output was last obtained from the application

of a sigmoid function. Interesting, isn’t it? Well, you may remember that TensorFlow

used its own tensor datatype, and PyTorch has its own tensors too. The cool thing about

them is that every PyTorch tensor keeps track of how it was computed in order to enable

gradient computation through backpropagation. We will further discuss this later on in

this subsection.

In any case, now that our network is all set up, let us generate some data and split it into

some training, validation, and test datasets:

x, y = make_classification(n_samples = 1000, n_features = 16)

x_tr, x_test, y_tr, y_test = train_test_split(

x, y, train_size = 0.8)

x_val, x_test, y_val, y_test = train_test_split(

x_test, y_test, train_size = 0.5)

Training a model in PyTorch

In principle, we could work with this raw data just as we did in TensorFlow — perhaps

converting it to PyTorch tensors, but still. However, we know that PyTorch will require us

464 Chapter 11: The Best of Both Worlds: Hybrid Architectures

to take care of many things ourselves; one of which will be splitting our data into batches

should we want to. Doing that ourselves could be tedious to say the least. Thankfully,

PyTorch comes with some tools that can assist us in the process, so we better give them a

shot.

The best way to deal with datasets in PyTorch is by storing data in subclasses of a Dataset

class, which can be found in the torch.utils.data module. Any subclasses of Dataset

should implement an initializer, a __getitem__ method (to access data items by indexing),

and a __len__ method (returning the number of items in the dataset). For our purposes,

we can create a subclass in order to create datasets from our NumPy arrays:

from torch.utils.data import Dataset

class NumpyDataset(Dataset):

def __init__(self, x, y):

if (x.shape[0] != y.shape[0]):

raise Exception("Incompatible arrays")

y = y.reshape(-1,1)

self.x = torch.from_numpy(x).to(torch.float)

self.y = torch.from_numpy(y).to(torch.float)

def __getitem__(self, i):

return self.x[i], self.y[i]

def __len__(self):

return self.y.shape[0]

Hybrid architectures in Qiskit 465

Notice how we have added some size-checking to ensure that the data array and the labels

vector have matching dimensions, and how we have reshaped the array of targets — that’s

in order to avoid problems with the loss functions, which expect them to be column vectors.

With this class set up, we may create dataset objects for the training, validation and test

datasets as follows:

tr_data = NumpyDataset(x_tr, y_tr)

val_data = NumpyDataset(x_val, y_val)

test_data = NumpyDataset(x_test, y_test)

Just to check whether our implementation was successful, let us try to access the first

element in tr_data and get the length of the training dataset:

print(tr_data[0])

print("Length:", len(tr_data))

This is the output returned by these instructions:

(tensor([1.4791, 1.4646, 0.0430, 0.0409, -0.3792, -0.5357,

0.9736, -1.3697, -1.2596, 1.5159, -0.9276, 0.6868,

0.5138, 0.4751, 1.0193, -1.7873]),

tensor([0.]))

Length: 800

We can see how, indeed, it gave us a tuple with a tensor of length 16 and its corresponding

label. Also, a call to the len function did return the correct number of items in our dataset.

Now, you may reasonably wonder why we should bother with all this mess of creating

dataset classes. There are a couple of reasons. For one, this allows us to have our data

organized and structured in a more orderly manner. What is more, using dataset objects,

we can create data loaders. The DataLoader class can be imported from torch.utils.data

and its objects allow us to easily iterate through batches of data. An example may help

clarify this.

466 Chapter 11: The Best of Both Worlds: Hybrid Architectures

Let’s say that we want to iterate over the training dataset in batches of 2. All we would

have to do is to create a data loader with the tr_data dataset specifying the batch size and

the fact that we would like it to shuffle the data. Then, we could create an iterator object

out of the data loader with the iter function and iterate over all the batches. This is shown

in the following piece of code:

from torch.utils.data import DataLoader

tr_loader = iter(DataLoader(

tr_data, batch_size = 2, shuffle = True))

print(next(tr_loader))

You may recall from Python 101 that calling next(tr_loader) for the first time would be

equivalent to running a for x in tr_loader loop and extracting the value of x in the first

iteration. This is the output that we get:

[tensor([[-1.2835, -0.4155, 0.4518, 0.6778, -1.3869, -0.4262, -0.1016,

1.4012, -0.9625, 1.0038, 0.3946, 0.1961, -0.7455, 0.4267,

-0.8352, 0.9295],

[-1.4578, -0.4947, -1.1755, -0.4800, -0.3247, 0.7821, -0.0078,

-0.5397, -1.0385, -1.3466, 0.4591, 0.5761, 0.2188, -0.1447,

0.3534, 0.5055]]),

tensor([[0.],

[0.]])]

And there you have it! In each iteration of the data loader, we get an array with the training

data in the batch and its corresponding array of targets. All is shuffled and taken care of by

PyTorch automatically. Neat, isn’t it? That can and will save us a good deal of effort.

We must say that, in truth, you could technically use data loaders without going through

the whole process of defining datasets — just sending in the numpy arrays. But it wouldn’t

be the most “PyTorchy” of practices. Anyhow, this settles our preparation of datasets.

Hybrid architectures in Qiskit 467

In the training process, we will use, as always, the binary cross-entropy loss. We can save

its function in a variable as follows:

get_loss = F.binary_cross_entropy

Thus, the get_loss function will take a tensor of values between 0 and 1 and a matching

tensor of labels, and will use them to compute the binary cross entropy loss. To see if it

works as expected, we may compute a simple loss:

print(get_loss(torch.tensor([1.]), torch.tensor([1.])))

Since the only value in the tensor matches the expected value, we should get a loss of 0

and, indeed, this instruction returns tensor(0.).

We are already preparing ourselves for the training. In our case, since our dataset has 1000

elements, it could make sense to use a batch size of 100, so let us prepare the training data

loader to that effect:

tr_loader = DataLoader(tr_data, batch_size = 100, shuffle = True)

As usual, we will rely on the Adam optimizer for the training. The optimizer is implemented

as a class in the torch.optim module, and, in order to use it, we need to specify which

parameters it is going to optimize; in our case, that will be the parameters in our model,

which we can retrieve with the parameters method. In addition, we can further configure

the optimizer by passing optional arguments for the learning rate, among other adjustable

parameters. We will use a learning rate of 0.005 and trust the default values of the remaining

parameters. Thus, we can define our optimizer as follows:

opt = torch.optim.Adam(model.parameters(), lr = 0.005)

Now we have all the ingredients ready and we can finally get to the training itself. In Keras,

this would’ve been as easy as calling a method with a bunch of parameters, but here we

have to work the training out ourselves! We will begin by defining a function that will

perform one full training epoch. It will be the following:

468 Chapter 11: The Best of Both Worlds: Hybrid Architectures

def run_epoch(opt, tr_loader):

Iterate through the batches.

for data in iter(tr_loader):

x, y = data # Get the data in the batch.

opt.zero_grad() # Reset the gradients.

Compute gradients.

loss = get_loss(model(x), y)

loss.backward()

opt.step() # Update the weights.

return get_loss(model(tr_data.x), tr_data.y)

The code is pretty much self-explanatory, but a few details deserve clarification. We have

used two new methods: backward and step. Oversimplifying a bit, the backward method on

loss computes the gradient of the loss by tracing back how it was computed and saving the

partial derivatives in the optimizable parameters of the model on which the loss depends.

This is the famous backpropagation technique that we talked about in Chapter 8, What

Is Quantum Machine Learning?. Then, opt.step() prompts the optimizer to update the

optimizable parameters using the derivatives that loss.backward() computed.

To learn more. . .

If you are curious about how differentiation works with the backward method on

PyTorch tensors, we can run a quick example to illustrate. We may define two

variables, a and b, taking the values 2 and 3 respectively as follows:

a = torch.tensor([2.], requires_grad = True)

b = torch.tensor([3.], requires_grad = True)

Notice how we set requires_grad = True to tell PyTorch that these are variables it

should keep track of. We may then define the function 𝑓 (𝑎, 𝑏) = 𝑎2 + 𝑏 and compute

its gradient as follows:

f = a**2 + b

Hybrid architectures in Qiskit 469

f.backward()

We know that 𝜕𝑓 /𝜕𝑎 = (𝜕/𝜕𝑎)𝑎2 + 𝑏 = 2𝑎, which in our case is equal to 2𝑎 =

2 ⋅ 2 = 4. When we run the backward method, PyTorch has already computed this

partial derivative for us, and we can access it by calling a.grad, which, as expected,

returns tensor([4.]). Analogously, 𝜕𝑓 /𝜕𝑏 = 1, and, as expected, b.grad returns

tensor([1.]).

In principle, we could train our model by calling run_epoch manually as many times as we

wanted, but why suffer like that when we can leave Python in charge?

Let us define a training loop in which, at each iteration, we will run an epoch and log the

training and validation loss obtained over the whole dataset. Instead of fixing a specific

number of epochs, we will keep iterating until the validation loss increases — this will be

our own version of the early stopping callback that we used in TensorFlow. The following

piece of code gets the job done:

tr_losses = []

val_losses = []

while (len(val_losses) < 2 or val_losses[-1] < val_losses[-2]):

print("EPOCH", len(tr_losses) + 1, end = " ")

tr_losses.append(float(run_epoch(opt, tr_loader)))

^^ Remember that run_epoch returns the training loss.

val_losses.append(float(

get_loss(model(val_data.x), val_data.y)))

print("| Train loss:", round(tr_losses[-1], 4), end = " ")

print("| Valid loss:", round(val_losses[-1], 4))

Notice how, when logging the losses in tr_losses, we have converted the PyTorch tensors

to floats. This is the output that we get after executing this loop:

470 Chapter 11: The Best of Both Worlds: Hybrid Architectures

EPOCH 1 | Train loss: 0.6727 | Valid loss: 0.6527

EPOCH 2 | Train loss: 0.638 | Valid loss: 0.6315

EPOCH 3 | Train loss: 0.5861 | Valid loss: 0.5929

EPOCH 4 | Train loss: 0.5129 | Valid loss: 0.5277

EPOCH 5 | Train loss: 0.4244 | Valid loss: 0.4428

EPOCH 6 | Train loss: 0.3382 | Valid loss: 0.3633

EPOCH 7 | Train loss: 0.2673 | Valid loss: 0.3024

EPOCH 8 | Train loss: 0.2198 | Valid loss: 0.2734

EPOCH 9 | Train loss: 0.1938 | Valid loss: 0.2622

EPOCH 10 | Train loss: 0.1819 | Valid loss: 0.2616

EPOCH 11 | Train loss: 0.1769 | Valid loss: 0.2687

An image is worth a thousand words, so, just to get a visual overview of the performance

of our training, let us recycle the plot_losses function that we had for TensorFlow and

run it:

import matplotlib.pyplot as plt

def plot_losses(tr_loss, val_loss):

epochs = np.array(range(len(tr_loss))) + 1

plt.plot(epochs, tr_loss, label = "Training loss")

plt.plot(epochs, val_loss, label = "Validation loss")

plt.xlabel("Epoch")

plt.legend()

plt.show()

plot_losses(tr_losses, val_losses)

The resulting plot can be found in Figure 11.3. The plot does show some signs of overfitting,

but likely not something to be concerned about; in any case, let’s wait until we get the

accuracy over the test dataset.

Hybrid architectures in Qiskit 471

2 4 6 8 10
Epoch

0.2

0.3

0.4

0.5

0.6

Training loss
Validation loss

Figure 11.3: Evolution of the training and validation losses over the training of a classical
binary classifier with PyTorch

In order to get the accuracy of our classifier on the training, validation, and test datasets,

we can run the following instructions:

train_acc = accuracy_score(

(model(tr_data.x) >= 0.5).to(float), tr_data.y)

val_acc = accuracy_score(

(model(val_data.x) >= 0.5).to(float), val_data.y)

test_acc = accuracy_score(

(model(test_data.x) >= 0.5).to(float), test_data.y)

print("Training accuracy:", train_acc)

print("Validation accuracy:", val_acc)

print("Test accuracy:", test_acc)

This returns a training accuracy of 94%, a validation accuracy of 92%, and a test accuracy

of 96%.

We have just concluded our not-that-short introduction to PyTorch. Let’s go quantum!

472 Chapter 11: The Best of Both Worlds: Hybrid Architectures

11.3.2 Building a hybrid binary classifier with Qiskit
In this subsection, we will implement our first hybrid QNN with Qiskit. The process will

be fairly straightforward, and we will be able to rely on a good deal of the code that we

already have. To get started, let us import the Qiskit package and the ZZ feature map and

two-local variational form that come bundled with it:

from qiskit import *

from qiskit.circuit.library import ZZFeatureMap, TwoLocal

With a QNN, it will be advisable to use smaller datasets in order for the training time to be

reasonable on our simulators. We can prepare them, along with the corresponding dataset

and data loader objects, as follows:

x, y = make_classification(n_samples = 500, n_features = 16)

x_tr, x_test, y_tr, y_test = train_test_split(x, y, train_size = 0.8)

x_val, x_test, y_val, y_test = train_test_split(x_test, y_test, train_size = 0.5)

tr_data = NumpyDataset(x_tr, y_tr)

val_data = NumpyDataset(x_val, y_val)

test_data = NumpyDataset(x_test, y_test)

tr_loader = DataLoader(tr_data, batch_size = 20, shuffle = True)

Our quantum layer will be a simple 4-qubit QNN with one instance of the ZZ feature map

and the two-local variational form. Thus, the components that we will use in our QNN

circuit will be the following:

zzfm = ZZFeatureMap(2)

twolocal = TwoLocal(2, ['ry','rz'], 'cz', 'linear', reps = 1)

Here, we have instantiated the two-local form as in Chapter 10, Quantum Neural Networks.

Hybrid architectures in Qiskit 473

Also, just as we did in the previous chapter, we could use the TwoLayerQNN class in order

to generate our quantum neural network according to our specifications. We may import

it as follows:

from qiskit_machine_learning.neural_networks import TwoLayerQNN

We are now ready to define our model architecture with PyTorch. Its structure will be

analogous to that of a classical architecture. The only difference is that we will have to

define a quantum neural network object in the initializer, and we will have to rely on the

TorchConnector in order to use the QNN in the forward method. This TorchConnector

is analogous to the qml.qnn.KerasLayer that we used in PennyLane — only that it’s for

Qiskit and PyTorch! This is how we may then define our hybrid network and instantiate a

model:

from qiskit_machine_learning.connectors import TorchConnector

from qiskit.providers.aer import AerSimulator

class HybridQNN(nn.Module):

def __init__(self):

Initialize super class.

super(HybridQNN, self).__init__()

Declare the layers that we will use.

qnn = TwoLayerQNN(2, zzfm, twolocal, input_gradients = True,

quantum_instance = AerSimulator(method="statevector"))

self.layer1 = nn.Linear(16, 2)

self.qnn = TorchConnector(qnn)

self.final_layer = nn.Linear(1,1)

474 Chapter 11: The Best of Both Worlds: Hybrid Architectures

def forward(self, x):

x = torch.sigmoid(self.layer1(x))

x = self.qnn(x)

x = torch.sigmoid(self.final_layer(x))

return x

model = HybridQNN()

Notice how we’ve passed the optional argument input_gradients = True to the TwoLayer

initializer; that is required for the PyTorch interface to work properly. Apart from that,

the construction of the quantum neural network was fully analogous to what we did in

Chapter 10, Quantum Neural Networks. A detail that perhaps deserves an explanation is the

reason why we have included a final classical layer after the quantum one. This is because

our QNN will return values between −1 and 1, not between 0 and 1; by including this final

layer followed by the classical sigmoid activation function, we can ensure that the output

of our network will be bounded between 0 and 1, as we expect.

Now all we have left to do before we can start the training is prepare the optimizer, and

send the model parameters to it:

opt = torch.optim.Adam(model.parameters(), lr = 0.005)

And we can simply reuse the run_epoch function to complete the training, just as we did

in the previous subsection:

tr_losses = []

val_losses = []

while (len(val_losses) < 2 or val_losses[-1] < val_losses[-2]):

print("EPOCH", len(tr_losses) + 1, end = " ")

tr_losses.append(float(run_epoch(opt, tr_loader)))

val_losses.append(float(get_loss(model(val_data.x), val_data.y)))

Hybrid architectures in Qiskit 475

print("| Train loss:", round(tr_losses[-1], 4), end = " ")

print("| Valid loss:", round(val_losses[-1], 4))

This is the output that the execution will yield:

EPOCH 1 | Train loss: 0.6908 | Valid loss: 0.696

EPOCH 2 | Train loss: 0.6872 | Valid loss: 0.691

EPOCH 3 | Train loss: 0.6756 | Valid loss: 0.6811

EPOCH 4 | Train loss: 0.6388 | Valid loss: 0.6455

EPOCH 5 | Train loss: 0.5661 | Valid loss: 0.5837

EPOCH 6 | Train loss: 0.5099 | Valid loss: 0.5424

EPOCH 7 | Train loss: 0.4692 | Valid loss: 0.5201

EPOCH 8 | Train loss: 0.4425 | Valid loss: 0.5014

EPOCH 9 | Train loss: 0.4204 | Valid loss: 0.4947

EPOCH 10 | Train loss: 0.4019 | Valid loss: 0.4923

EPOCH 11 | Train loss: 0.3862 | Valid loss: 0.4774

EPOCH 12 | Train loss: 0.3716 | Valid loss: 0.4668

EPOCH 13 | Train loss: 0.3575 | Valid loss: 0.451

EPOCH 14 | Train loss: 0.3446 | Valid loss: 0.4349

EPOCH 15 | Train loss: 0.3332 | Valid loss: 0.4323

EPOCH 16 | Train loss: 0.3229 | Valid loss: 0.4259

EPOCH 17 | Train loss: 0.3141 | Valid loss: 0.4253

EPOCH 18 | Train loss: 0.3055 | Valid loss: 0.422

EPOCH 19 | Train loss: 0.2997 | Valid loss: 0.4152

EPOCH 20 | Train loss: 0.2954 | Valid loss: 0.4211

As before, we can get a plot of the loss evolution as follows:

plot_losses(tr_losses, val_losses)

This returns the plot shown in Figure 11.4. There does seem to be some overfitting, which

could likely be fixed by giving more data to the classifier.

476 Chapter 11: The Best of Both Worlds: Hybrid Architectures

2 4 6 8 10 12 14 16
Epoch

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70 Training loss
Validation loss

Figure 11.4: Evolution of the training and validation losses over the training of a hybrid binary
classifier with PyTorch

In any case, let’s compute the training, validation, and test accuracies to get a better

insight into the performance of the classifier. We may do that by executing the following

instructions:

tr_acc = accuracy_score(

(model(tr_data.x) >= 0.5).to(float), tr_data.y)

val_acc = accuracy_score(

(model(val_data.x) >= 0.5).to(float), val_data.y)

test_acc = accuracy_score(

(model(test_data.x) >= 0.5).to(float), test_data.y)

print("Training accuracy:", tr_acc)

print("Validation accuracy:", val_acc)

print("Test accuracy:", test_acc)

Upon running this, we get a training accuracy of 92%, a validation accuracy of 86%, and a

test accuracy of 74%. This confirms our suspicions regarding the existence of overfitting. As

Hybrid architectures in Qiskit 477

in other cases, should we want to fix this, we could try training the model with additional

data, for instance.

Of course, all that we’ve learned about how to train hybrid QNNs with PyTorch and Qiskit

also works for ordinary QNNs. If you want to train a simple Qiskit QNN using PyTorch,

you’ve just learned how to do it; all it will take is defining a model with no classical layers.

This concludes our study of hybrid neural networks in Qiskit. But we still have one thing

left before bringing this section to an end.

One of the advantages of Qiskit is its tight integration with IBM’s quantum hardware.

Nevertheless, as was the case in our study of quantum optimization, queueing times make

the training of any QNN model on real hardware unfeasible through the usual interfaces to

IBM’s hardware — that is, just using a real hardware backend, as we discussed in Chapter 2,

The Tools of the Trade in Quantum Computing. Thankfully, there’s a better way.

11.3.3 Training Qiskit QNNs with Runtime
Using Qiskit’s Runtime service, as we did in Chapters 5 and 7, we can effectively train any

QNN model defined in PyTorch through a Qiskit Torch connector on any of the devices

and simulators provided by IBM Quantum. All it takes is waiting on a single queue, and

the whole training process is executed as a unit — with all the executions on quantum

hardware included. The folks at IBM refer to this use case of Qiskit Runtime as “Torch

Runtime.”

That is very convenient. However, we must warn you that, at the time of writing, the

queuing times to run these Torch Runtime programs can be somewhat long: around the

order of a few hours. Also, you should keep in mind that — again, at the time of writing —

this service enables you to train QNNs defined on PyTorch, but not hybrid QNNs! That is,

your PyTorch model should not have any classical layers whatsoever.

We will train a simple QNN model on a real device. As usual, we should firstly load our

IBMQ account and pick a device. We will pick the least busy device among all the real

devices with at least four qubits:

478 Chapter 11: The Best of Both Worlds: Hybrid Architectures

from qiskit.providers.ibmq import *

provider = IBMQ.load_account()

dev_list = provider.backends(

filters = lambda x: x.configuration().n_qubits >= 4,

simulator = False)

dev = least_busy(dev_list)

We may define a simple QNN model with the PyTorch connector as follows:

class QiskitQNN(nn.Module):

def __init__(self):

super(QiskitQNN, self).__init__()

qnn = TwoLayerQNN(2, zzfm, twolocal, input_gradients = True)

self.qnn = TorchConnector(qnn)

def forward(self, x):

x = self.qnn(x)

return x

model = QiskitQNN()

Then, we may generate some data on which to train this model using the make_classification

function:

x, y = make_classification(n_samples = 100, n_features = 2,

n_clusters_per_class = 1, n_informative = 1, n_redundant = 1)

x_tr, x_test, y_tr, y_test = train_test_split(x, y, train_size = 0.8)

Hybrid architectures in Qiskit 479

x_val, x_test, y_val, y_test = train_test_split(x_test, y_test,

train_size = 0.5)

tr_data = NumpyDataset(x_tr, y_tr)

val_data = NumpyDataset(x_val, y_val)

test_data = NumpyDataset(x_test, y_test)

Notice how we have adjusted some of the parameters of the make_classification function

in order to comply with its requirements (check its documentation at https://scikit-l

earn.org/stable/modules/generated/sklearn.datasets.make_classification.html

for more details).

Our model should return values between 0 and 1, but the observable that we have chosen

for our circuit — the default one, the parity observable (check Chapter 10, Quantum Neural

Networks, for reference) — returns two possible values: 1 or −1, not 0 and 1. Thus we need

to update the targets mapping 0 ↦ −1 and 1 ↦ 1. This can be done with the following

instructions:

tr_data.y = 2 * (tr_data.y - 1/2)

val_data.y = 2 * (val_data.y - 1/2)

test_data.y = 2 * (test_data.y - 1/2)

Let us now set up some data loaders for the training, validation, and test data:

tr_loader = DataLoader(tr_data, batch_size = 20, shuffle = True)

val_loader = DataLoader(val_data)

test_loader = DataLoader(test_data)

And the only ingredients that we have left to define are the optimizer and the loss function.

We can still rely on Adam as an optimizer, but the binary cross entropy loss will no longer

work since our labels are now −1 and 1 instead of 0 and 1; thus, we will use the mean

squared error loss instead:

get_loss = F.mse_loss

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html

480 Chapter 11: The Best of Both Worlds: Hybrid Architectures

opt = torch.optim.Adam(model.parameters(), lr = 0.005)

In order to be able to use our model with Torch Runtime, we will have to define a Torch

Runtime Client, client, specifying a few self-explanatory parameters. This is done as

follows:

from qiskit_machine_learning.runtime import TorchRuntimeClient

client = TorchRuntimeClient(provider = provider, backend = dev,

model = model, optimizer = opt, loss_func = get_loss,

epochs = 5)

We have set the number of epochs to 5 in order to get some quick results, but feel free to

increase it.

And now this is the instruction that we need to execute if we want to train our model:

result = client.fit(train_loader = tr_loader, val_loader = val_loader)

This will likely take a while because of the queue time required to run a Torch Runtime

program. Sit back and relax. Eventually, your model will be trained. Once that hap-

pens, you can get information about the training from the result object, whose type is

TorchRuntimeResult. In particular, the attributes train_history and val_history will

show you the evolution of the training and validation losses throughout the training

process.

If you’d like to get the model’s prediction on some data — for instance, the test dataset —

all you have to do is send a data loader object with the data to the predict method. And

this is how you can get your predictions:

pred = client.predict(test_loader).prediction

Don’t expect to get great results! The model that we have defined is not very powerful and

we only trained for a few epochs. As if that were not enough, when you run on real hardware,

there’s always the issue of having to deal with noise. Of course, you could use error

Hybrid architectures in Qiskit 481

mitigation as we did back in Chapter 7, VQE: Variational Quantum Eigensolver, by setting

measurement_error_mitigation = True in the TorchRuntimeClient instantiation.

11.3.4 A glimpse into the future
The way in which we have worked with Torch Runtime is supported by IBM at the time of

writing, but change is the only constant in Qiskit land.

In the future, Torch Runtime will no longer be supported and, instead, it will be necessary

to use a different interface in order to train quantum neural networks with Qiskit Runtime.

This interface — which, at the time of writing, is still in active development — will rely on

the Sampler and Estimator objects that we mentioned in Section 7.3.7. In this subsection,

we will present to you a simple example that will showcase how to work with this new

interface.

The following piece of code can be used to train a simple variational quantum classifier (a

VQC object) using the “new” Qiskit Runtime on the ibmq_lima device:

from qiskit_ibm_runtime import QiskitRuntimeService,Session,Sampler,Options

from qiskit_machine_learning.algorithms.classifiers import VQC

channel = "ibmq_quantum" gives us access to IBM's quantum computers.

service = QiskitRuntimeService(channel = "ibm_quantum", token = "TOKEN")

with Session(service = service, backend = "ibmq_lima"):

sampler = Sampler()

vqc = VQC(sampler = sampler, num_qubits = 2)

vqc.fit(x_tr, y_tr)

Please note that you need to install the qiskit_ibm_runtime package (refer to Appendix D,

Installing the Tools, for instructions) and replace "TOKEN" with your actual IBM Quantum

token.

482 Chapter 11: The Best of Both Worlds: Hybrid Architectures

As a matter of fact, when you send a program through this new Qiskit Runtime interface,

you will likely see a fairly big collection of jobs on your IBM Quantum dashboard. Don’t

worry, Runtime is working just fine. All those jobs correspond to different calls to the

quantum computer, but they are all executed without the need to wait in the queue after

each and every job execution.

And that’s all we wanted to share with you about the Torch Runtime utility. Let’s wrap up

this chapter.

Summary
This has been a long and intense chapter. We began by learning what hybrid neural

networks actually are and in which use cases they can be useful. We then explored how to

implement and train these hybrid networks in PennyLane and, along the way, we discussed

a few good practices that apply to any machine learning project. In addition, we left our

comfort zone and considered a new kind of QML problem: the training of multi-class

classifiers.

Once we finished our study of PennyLane, we dived into Qiskit, and a big surprise was

waiting for us there. Since Qiskit relied on an interface with the PyTorch ML package for

the implementation of hybrid QNNs, we invested a good deal of effort in learning how to

use PyTorch. In the process, we saw how PyTorch provided us with a level of flexibility

that we simply couldn’t get using TensorFlow and Keras. At the point where we had a

solid understanding of the PyTorch package, we got to work with Qiskit and its PyTorch

connector and we trained a hybrid QNN with them.

Lastly, we concluded the chapter by fulfilling a promise we made in Chapter 10, Quantum

Neural Networks, and we discussed how to train quantum neural networks on IBM’s

quantum hardware using Torch Runtime.

12
Quantum Generative
Adversarial Networks

Fake it ‘till you make it

— Someone, somewhere

So far, we have only dealt with quantum machine learning models in the context of

supervised learning. In this final chapter of our QML journey, we will discuss the wonders

and mysteries of a QML model that will lead us into the domain of unsupervised learning.

We will discuss quantum versions of the famous Generative Adversarial Networks (often

abbreviated as GANs) that are called Quantum Generative Adversarial Networks,

quantum GANs, or QGANs.

In this chapter, you will learn what classical and quantum GANs are, what they are useful

for, and how they can be used. We will begin from the basics, exploring the intuitive ideas

that lead to the concept of a GAN. Then, we will get into some of the details and discuss

QGANs. In particular, we will talk about the different types of QGANs out there and their

484 Chapter 12: Quantum Generative Adversarial Networks

(possible) advantages. You will also learn how to work with them using PennyLane (with

its TensorFlow interface) and Qiskit.

We’ll cover the following topics in this chapter:

• GANs and their quantum counterparts

• Quantum GANs in PennyLane

• Quantum GANs in Qiskit

Excited about this last chapter? Let’s begin by understanding what these GANs are all

about.

12.1 GANs and their quantum counterparts
Quantum GANs are generative models that can be trained in a perfectly unsupervised

manner. By the fact that they are generative models we mean that quantum GANs will

be useful for generating data that can mimic a training dataset; for instance, if you had a

large dataset with pictures of people, a good generative model would be able to generate

new pictures of people that would be indiscernible from those coming from the original

distribution. The fact that QGANs can be trained in an unsupervised fashion simply means

that our datasets will not have to be labeled; we won’t have to tell the generator whether

its output is good or bad, the model will figure that out on its own. How exactly? Stay

tuned!

That’s the big picture of GANs, but, before we can explore all their details, there’s something

we need to talk about. Let’s talk about how to counterfeit money.

12.1.1 A seemingly unrelated story about money
Of course, all of us reading these lines are law-abiding citizens — no need to call the police

just now — but, for the purposes of intellectual illustration, let’s put ourselves in the place

of the bad guys for one day. In the process of counterfeiting money, there are two main

actors involved:

GANs and their quantum counterparts 485

• We, the bad guys who create (generate) counterfeit money, trying to make it as close

to the real thing as possible

• Some authority, usually a central bank, which is in charge of designing tools and

techniques to discern real money from counterfeit money

This is shown in Figure 12.1. By the way, we have drawn the fake dollar ourselves. Graphic

design is our passion.

$
"Generated"
money

(Counterfeit)

Discriminator
(Central bank)

Real
money

Figure 12.1: Schematic representation of the agents involved in the generation of counterfeit
money

Now that we are all set, we can imagine what our counterfeiting career could look like.

Since none of us has any experience in this field, our first attempts at faking banknotes

would be extremely disastrous: any of our generated banknotes would be very easily

identified as fake by the central bank. However, that would just be the beginning of the

story. Along the process — and assuming we didn’t get arrested — we could always try

to study how the central bank is discerning real notes from counterfeit ones and use it to

our advantage by trying to fool its detection mechanisms. Naturally, however, that would

only be a temporary solution, for it wouldn’t take long for the central bank to notice our

improved fake notes and design better detection systems, which would take us back to the

drawing board, starting the process all over again.

Banknotes have a finite amount of defining features, so, after a large enough number of

iterations of this process, at some point, we would likely end up producing banknotes that

would be identical to the real ones. And, thus, a beautiful equilibrium would be reached in

486 Chapter 12: Quantum Generative Adversarial Networks

which the central bank would no longer be able to detect our fake notes. Sadly for us, this

adventure would most surely end with the central bank changing the notes completely

and sending us before a judge. But let’s ignore those tiny details!

Important note

Just in case it wasn’t obvious, we are joking when we talk about imagining ourselves

doing counterfeiting. Counterfeiting money is, as you hopefully know, a serious

criminal offense that we, of course, don’t encourage or endorse in any way. Please,

don’t do illegal stuff. The editorial team thought — with good reason! — that this

was worth a disclaimer; so here it is!

Now, you may wonder why we have discussed this. Well, because, as it turns out, the

process of training a GAN is just like that of counterfeiting money — minus the risk of

ending up in prison. Let’s see how it works!

12.1.2 What actually is a GAN?
GANs were introduced in 2014 in a very influential paper [66] by Goodfellow et al. As we

mentioned in the introduction, a GAN is a machine learning model that can be trained to

generate data closely reassembling the patterns and properties of a given dataset. In order

to accomplish this, a GAN has two main components:

• A “generative” neural network (generator), which will be nothing more than a neural

network taking arbitrary seeds as input and returning outputs that match the datatype

of the elements in the original dataset. The goal of this neural network will be, by

the end of the training, to generate new data that be indistinguishable from the data

in the original dataset.

• A discriminator neural network, which will be a binary-classifier neural network

taking as input the original data in the dataset and the output of the generative

network. This discriminator network will be tasked with trying to discern the

generated data from the original data.

GANs and their quantum counterparts 487

These components are depicted in Figure 12.2. By the way, we have drawn the fake tree

ourselves. Graphic design is our passion.

Real
data

Generator
network

Discriminator
network

Figure 12.2: Schematic representation of the agents involved in a generative adversarial network

To learn more. . .

GANs have been very successfully used in practical generative tasks. For instance,

StyleGANs are GANs introduced by NVIDIA researchers [87] that are able to gener-

ate extremely realistic human faces. Their code is open source (you can find it at

https://github.com/NVlabs/stylegan) and they power the mesmerizing website

“This Person Does Not Exist” (https://www.thispersondoesnotexist.com/).

This description settles the question of what a GAN is, but now we need to understand how

these GANs are actually trained. In essence, this is how the whole training process works:

1. You initialize the generator and the discriminator to some random configuration.

2. You train the discriminator to discern the real data from the output of the generator.

At this initial stage, this should be a very easy task for the discriminator.

3. You then train the generator to fool the discriminator: you train it in a way that

the discriminator — as trained in the previous step — will classify as many of the

generated outputs as real. Once trained, you use it to generate a bunch of fake data.

4. And here is where the fun begins. You re-train the discriminator on the new generated

dataset, and then you re-train the generator to fool the new discriminator. And you

repeat this process in as many iterations as you want. Ideally, in each iteration, it

https://github.com/NVlabs/stylegan
https://www.thispersondoesnotexist.com/

488 Chapter 12: Quantum Generative Adversarial Networks

will be harder for the discriminator to tell the generated data from the real data.

And, eventually, an equilibrium will be reached in which the generated data will

be indiscernible from the original data. Just like in our previous counterfeiting

adventure — and with no legal troubles on the horizon!

This process is exemplified schematically in Figure 12.3, where we present a schematic

illustration of the training process of a GAN meant to generate pictures of cute cats. When

the GAN is initialized, the generator just produces random noise. After subsequent training

iterations, the output of the generator will more closely resemble the images in the original

dataset — which, in this example, should be a dataset with pictures of cats. By the way, we

have drawn the fake cats ourselves. Have we mentioned that graphic design is our passion?

We should highlight that this scheme is very oversimplified. In truth, you usually don’t

“fully” train the discriminator and the generator alternately, but you optimize them in an

alternate fashion. For example, if you were using gradient descent with a given batch size,

then, on each epoch and on each batch, you would optimize the weights of the discriminator

in a single optimizer step, and then you would do the same for the weights of the generator.

TRAINING ITERATIONS

Initialize
model

Train the
discriminator

Train the
generator

Train the
discriminator

Train the
generator

Train the
discriminator

Train the
generator

Train the
discriminator

Figure 12.3: Schematic illustration of the training process of a GAN meant to generate pictures
of cute cats

GANs and their quantum counterparts 489

With this description of the training process, we can now make sense of the term GAN.

These models are “generative” because they are aimed at generating data. They are “net-

works” because, well, they use neural networks. And they are “adversarial” because the

whole training process consists in a competition between a generator network and a dis-

criminator network. These networks engage in a fierce competition in which we, their

programmers and creators, shall be the only true winners.

To learn more. . .

All this time, we have been talking about how GANs use neural networks in both

the discriminator and the generator. However, these neural networks are not always

like the ones we have discussed in this book.

The neural networks that we have studied are known as “dense” neural networks.

In these networks, all the layers are dense, which means that neurons in subsequent

layers are fully connected. However, when neural networks are designed to handle

images — whether it be generating them, classifying them, or manipulating them —

a different kind of layer is often employed: convolutional layers. We won’t get into

the details of how these layers work (check Chapter 14 in Gerón’s book [64] for a

thorough explanation), but you should at least know that they exist.

GANs are often used in image generation tasks, so, should you ever decide to study

classical GANs, be aware that you will surely have to deal with these layers at

some point. And, yes, there are quantum versions of convolutional layers and

convolutional networks [88], [89] that, sadly, we do not have the time to cover in

this book.

There are a few details that we should highlight about the training process of a GAN. The

first and most important one is the fact that at no point in the training is the generator

network “exposed” to or fed the original data. The only way the generator network can

learn about the data it has to replicate is through the discriminator. In this way, instead of us

having to tell the generator network what its output should look like, the discriminator takes

490 Chapter 12: Quantum Generative Adversarial Networks

up our role as teachers and enables us to train the whole network in a fully unsupervised

manner.

Another issue to which we should pay attention is that GANs, like any other machine

learning model, are vulnerable to problems in training. For instance, how could we have any

guarantee that the generated outputs are not just slightly distorted copies of the original

data, rather than new data elements that match the patterns in the original dataset? For

instance, in the cat GAN that we considered in Figure 12.3, how could we have guarantees

that the generated images are new cat pictures rather than, say, blurred copies of our

original images that have lost any resemblance to cats but that were nevertheless able

to fool the discriminator network? This could happen, for example, if our discriminator

weren’t powerful enough compared to the generator.

To learn more. . .

The training of a GAN can also fail if the resulting GAN is unable to generate all the

possible variations (or modes) of data that can be found in the dataset. For instance,

in the example that we have been considering, we would find this problem if our

GAN were only able to generate pictures of a small selection of cats, maybe even

only one! This occurrence is known as mode collapse. To try to avoid it, several

modified GANs have been proposed, including Wasserstein GANs (WGANs) [90],

which derive their loss function from a distance called the Wasserstein metric.

In the models that we considered in previous chapters, there was always a simple, straight-

forward way to effectively assess their performance — namely evaluating loss functions on

test datasets. When working with GANs, things can be more subtle. In general, you should

always take a look at the generated data and check if the results are satisfactory.

Important note

A GAN consists of two neural networks: a generator and a discriminator. They

compete against each other in an iterative training process. The discriminator

is tasked with discerning a dataset of real data from the output of the generator

GANs and their quantum counterparts 491

network, while the generator network is tasked with generating data that the

discriminator will mistakenly identify as real.

Just to conclude this overview of classical GANs, let’s discuss a few technicalities about

the training of the generator and discriminator networks.

12.1.3 Some technicalities about GANs
We have already mentioned how the generator and discriminator networks are ordinary

neural network models — even if they may be different from the ones that we’ve discussed

so far — that are constantly re-trained in an iterative process. We will now briefly talk

about how this training is carried out.

Let 𝑋 be a set of real data and let 𝑆 be a set of “seeds” that we give to the generator. In the

case of the discriminator neural network, we are just training a binary classifier and, as is

standard, this classifier will return an output bounded between 0 and 1. Without loss of

generality, we will assume that values closer to 1 are meant to represent inputs from the

real dataset while values closer to 0 are labeled as generated inputs — that’s an arbitrary

choice; it could perfectly be the other way around.

As with any other binary classifier, the most natural loss function to use will be the binary

cross-entropy loss, and hence this classifier will be trained as it would in supervised

learning: assigning the “true label” 1 to any input from the real dataset and the “true label”

0 to any generated input. In this way, if we let 𝐺 and 𝐷 denote the actions of the generator

and the discriminator, the discriminator training loss, 𝐿𝐷, would be computed as

𝐿𝐷 = −
1

|𝑋 | + |𝑆| (
∑
𝑥∈𝑋

log𝐷(𝑥) +∑
𝑠∈𝑆

log (1 − 𝐷(𝐺(𝑠))
)
,

where we are using |𝑋 | and |𝑆| to denote the sizes of the sets 𝑋 and 𝑆, respectively. The job

of the discriminator would be to minimize this loss.

492 Chapter 12: Quantum Generative Adversarial Networks

Now, what about the generator network? What could be a good choice for the loss function

that we would like to minimize in its training process? Our goal when training the generator

is to fool the discriminator trying to get it to classify our generated data as real data. Hence,

the goal in the training of the generator is to maximize the loss function of the discriminator,

that is, to minimize

−𝐿𝐷 =
1

|𝑋 | + |𝑆| (
∑
𝑥∈𝑋

log𝐷(𝑥) +∑
𝑠∈𝑆

log (1 − 𝐷(𝐺(𝑠))
)
.

Nevertheless, the contribution of the first term in the sum is necessarily constant in the

generator training since it does not depend on the generator in any way. Thus, equivalently,

we may consider the goal of the generator training to be the minimization of the generator

loss function

𝐿′𝐺 =
1
|𝑆|

∑
𝑠∈𝑆

log (1 − 𝐷(𝐺(𝑠)) .

That is how things are in theory. However, in practice, it has been shown [66] that it is

usually more stable to take the goal of the generator training to be the minimization of the

loss

𝐿𝐺 = −
1
|𝑆|

∑
𝑠∈𝑆

log (𝐷(𝐺(𝑠)) .

The crucial thing here is that, with both definitions, if these generator loss functions

decrease while training the generator, it will be more likely for our generated data to be

(mistakenly) classified as real data by our classifier. That will mean, in turn, that our data

should be gradually getting more and more similar to the data in the original dataset.

It has also been shown that, in the optimal equilibrium between the generator and the

discriminator, the discriminator assigns values 𝐷(𝑥) and 𝐺(𝐷(𝑠)) equal to 1/2 (because

it cannot distinguish between real and generated data), and, hence, when 𝐿𝐷 = 𝐿𝐺 =

− log 1/2 = log 2 ≈ 0.6931. You can find the proof (with slightly different but equivalent

loss functions) in the original GANs paper [66].

GANs and their quantum counterparts 493

To learn more. . .

It can be shown that the optimal configuration of a GAN is a Nash equilibrium of

an adversarial game between the generator and the discriminator (see, for instance,

the helpful tutorial given by Goodfellow at NIPS [91]). In this equilibrium, the con-

figuration of the GAN is a (local) minimizer of both the generator and discriminator

losses.

That should be enough of an introduction to classical GANs. Let’s now see what quantum

GANs are and what they have to offer.

12.1.4 Quantum GANs
What is a quantum GAN? It’s just a GAN, with its competing discriminator and generator,

where a part of the model is implemented by a quantum model (usually some form of

a quantum neural network), and it is trained just like a classical GAN. In other words,

training a quantum GAN is just like counterfeiting money — but you don’t risk going to

prison and you get to play with quantum stuff.

To learn more. . .

By the way, did you know that there are proposals of quantum money that cannot

be counterfeited at all? The original idea was proposed by Stephen Wiesner [92]

and it became the inspiration for unbreakable quantum cryptographical protocols

such as the famous BB84 proposed by Bennett and Brassard [4].

In truth, that is as close to a precise definition as we can get, because the range of models

that can fit into the category of QGAN is vast. Depending on the kind of problem that you

want to tackle, you may want to use quantum GANs with completely different architectures

which, still, will share the same core elements of a competing discriminator and generator.

The examples that we will consider in the following sections will help us exemplify this.

Broadly speaking, any quantum GAN could fit into one of the following categories:

494 Chapter 12: Quantum Generative Adversarial Networks

• Uses quantum data and both the generator and the discriminator are quan-

tum: This quantum data will just be some quantum states, and the generator and

discriminator will be implemented by quantum circuits.

This situation allows for a very special QGAN architecture, with a fully quantum

model. Since we are dealing with quantum data (states), and all the components of

the GAN are quantum circuits, they can be perfectly joined together without having

to resort to feature maps or measurement operations in the middle of the model.

Later in the chapter, we will study an example of this purely quantum architecture

on PennyLane.

• Uses quantum data and a quantum generator with a classical discriminator:

If the discriminator is classical, the architecture of our QGANs will be more similar

to that of classical GANs. The generator will produce quantum states but, ultimately,

they will be transformed into classical data by some measurement operation in order

to feed them into the classifier. Of course, the original quantum data will also have

to be measured.

• Uses classical data with a quantum generator or discriminator: This is the

scenario in which QGANs can best match their classical counterparts. The use

of QGANs in these cases essentially mounts up to replacing the generator or the

discriminator (or both) with a quantum model with classical inputs and outputs. In

the case of a quantum discriminator, for example, we would have to use a feature

map to load classical data into a quantum state.

Because the availability of classical data is much bigger than that of quantum data,

this is the type of architecture that has been studied more widely by the quantum

computing community.

Later in the chapter, we will consider a QGAN with classical data and a classical

classifier, but with a quantum generator. That will be in our Qiskit section.

Quantum GANs in PennyLane 495

To learn more. . .

In the literature, there are many different proposals of quantum versions of GANs.

Some of the earliest ones include works by Lloyd and Weedbrook [93], by Dallaire-

Demers and Killoran [94], and by Zoufal, Lucchi, and Woerner [95].

Exercise 12.1

In this book, we have discussed four different QML models: quantum support vector

machines, quantum neural networks, hybrid QNNs and quantum GANs. Decide

which of these models would be suitable for the following tasks:

1. Distinguishing cat pictures from dog pictures.

2. Generating pictures of dogs.

3. Deciding whether a financial transaction is fraudulent based on its metadata.

4. Assessing the risk of heart failure from a patients’ medical records and data

from an electrocardiogram.

5. Creating a dataset of random images of electrocardiograms in order to train

future doctors.

We should give you a word of caution. GANs aren’t the easiest models to train. As we

mentioned previously, when you train a GAN, you don’t have a single and straightforward

loss function that can measure how successful your training is. Training a GAN is not a

simple optimization problem, but a more intricate process. Using quantum models, of course,

only makes matters more difficult, and training quantum GANs can be. . . complicated.

We will now consider a couple of interesting QGAN examples, in both PennyLane and

Qiskit. Naturally, since we’ve picked them, our quantum GANs will learn smoothly. But

you have been warned: quantum GANs are usually wild creatures.

12.2 Quantum GANs in PennyLane
In this section, we are going to train a purely quantum GAN that will learn a one-qubit

state. In our previous counterfeiting example, we imagined ourselves as behaving like a

496 Chapter 12: Quantum Generative Adversarial Networks

GAN in order to replicate some training data (a banknote) to produce fake banknotes that,

ideally, would get closer and closer to the real thing in each iteration. In this case, our

training data will be a one-qubit state, characterized by some amplitudes, and the job of

our QGAN will be to replicate that state without the generator having direct access to it.

Our dataset, then, will consist of multiple copies of a one-qubit state, and our goal will be

to train a generator able to prepare that state (or something very close to it).

To learn more. . .

Notice that this setting does not violate the no-cloning theorem that we proved

in Section 1.4.5. We will have multiple copies of the same quantum state and we

will perform operations on them, including measuring them (and, hence, collapsing

their states). From that, we will learn some properties of the state that we will use

to reproduce it with the generator. But we won’t be having a unitary operation (a

quantum gate) that creates an additional, independent copy of a given state. In fact,

we will destroy the original copies in the process!

What we will be doing here is more similar to quantum state tomography (see,

for instance, the review by Altepeter, James, and Kwiat [96]), which can be defined

as the process of applying quantum operations and measurements to multiple copies

of a state and, from the results, learning to reconstruct the original state.

For this example, we will use the PyTorch machine learning package. Please, have a look

at Subsection 11.3.1 if you haven’t already.

The reason behind our choice to use PyTorch is simple. As much as we have used TensorFlow

so far, we only know how to use it at a basic level, relying heavily on the Keras interface.

On the other hand, we have studied PyTorch extensively in the previous chapter, which

makes it a better tool for us when it comes to dealing with more complex architectures. In

other words, this choice isn’t grounded in any technical superiority of any package over

the other, but solely on what’s most practical given the content that we’ve covered in this

book. In fact, virtually any model that can be built and trained on PyTorch can also be dealt

with on TensorFlow and vice versa.

Quantum GANs in PennyLane 497

With those preliminaries aside, let’s get to our model.

12.2.1 Preparing a QGANmodel
The purely quantum GAN that we seek to implement and train will run on a device with

two qubits, and it will be made up of the following components:

• A quantum circuit that will be able to prepare the one-qubit state |𝜓1⟩ that we want

our QGAN to learn. This circuit will run on the first qubit of the device. We should

regard it as a black box, the inner working of which is fully opaque to our model.

The state |𝜓1⟩, which we will refer to as the “true state,” is the quantum training

data that we will use in our QGAN. This circuit will just provide us with a way of

accessing the training data: as many copies of the |𝜓1⟩ state as we may need in the

training process. This emulates, for instance, a physics experiment that produces

some quantum state that we want to learn.

• A quantum generator, which will also run on the first qubit of the device and which

aims to prepare a state similar to |𝜓1⟩ on the first qubit. The quantum generator will

be implemented by a variational form dependent on some trainable parameters.

• A quantum discriminator, which will run on the first and second qubits of the device.

Its “input” will be the state on the first qubit, which can either be the state we want

our QGAN to learn or the state prepared by the generator. Of course, the job of the

discriminator will be to try to distinguish these two states. We implement it with

two qubits (instead of just one) to be sure that it has enough discriminative power.

Since this discriminator already takes a quantum input, it only needs to consist of a

variational form followed by a measurement operation — there will be no need to

use feature maps, as we had to do when working with classical data. As usual, we

will place the measurement operation on the first qubit.

All the components that we have just described are depicted in Figure 12.4.

498 Chapter 12: Quantum Generative Adversarial Networks

|0⟩ PrepareTrueState |𝜓1⟩

|0⟩

(a) Circuit preparing the state |𝜓1⟩ that we
want our QGAN to learn.

|0⟩ Generator
||𝜓𝑔⟩

|0⟩

(b) Generator circuit that outputs a state ||𝜓𝑔⟩.
We aim for ||𝜓𝑔⟩ to be similar to |𝜓1⟩.

|input⟩
Discriminator

|0⟩

(c) Discriminator circuit, tasked with deciding
whether the state |input⟩ is the state |𝜓1⟩ or the
output of the generator.

Figure 12.4: Components of the quantum GAN that we will train to generate |𝜓1⟩

Now that we have a sense of where we are heading, let’s get ready to write some code.

First of all, we will do our usual imports and set some seeds to ensure the reproducibility

of our results:

import pennylane as qml

import numpy as np

import torch

import torch.nn as nn

seed = 1234

np.random.seed(seed)

torch.manual_seed(seed)

We will construct the state |𝜓1⟩ using the universal one-qubit gate 𝑈3(𝜑, 𝜃, 𝛿) since, as we

learned back in Chapter 1, Foundations of Quantum Computing, it allows us to create any

one-qubit state. In particular, we will feed it the values 𝜑 = 𝜋/3, 𝜃 = 𝜋/4, and 𝛿 = 𝜋/5:

Quantum GANs in PennyLane 499

phi = np.pi / 3

theta = np.pi / 4

delta = np.pi / 5

With these values set, we can define a function that will construct the circuit that will

prepare |𝜓1⟩:

def PrepareTrueState():

qml.U3(theta, phi, delta, wires = 0)

Notice that we have defined this as a function and not as a quantum node. That’s because,

for the purposes of the training, we are not interested in running any of the components

of the quantum GAN individually. We will instead have to run them in composition.

For instance, we will have to run this circuit that we’ve just defined composed with the

discriminator.

Now that we have a circuit that can prepare |𝜓1⟩, it’s time for us to think about the two

core components of our QGAN: the generator and the discriminator. Specifically, we will

have to find some suitable variational forms for them.

For the generator, we will simply use a parametrized U3 gate, whereas, for the discriminator,

we will use a variation of the two-local variational form. These can be implemented as

follows:

def GeneratorVF(weights):

qml.U3(weights[0], weights[1], weights[2], wires = 0)

def DiscriminatorVF(nqubits, weights, reps = 1):

par = 0 # Index for parameters.

for rep in range(reps):

for q in range(nqubits):

qml.RX(weights[par], wires = q)

par += 1

500 Chapter 12: Quantum Generative Adversarial Networks

qml.RY(weights[par], wires = q)

par += 1

qml.RZ(weights[par], wires = q)

par += 1

for i in range(nqubits - 1):

qml.CNOT(wires = [i, i + 1])

for q in range(nqubits):

qml.RX(weights[par], wires = q)

par += 1

qml.RY(weights[par], wires = q)

par += 1

qml.RZ(weights[par], wires = q)

par += 1

You can see a graphical representation of the discriminator variational form in Figure 12.5;

its implementation is mostly analogous to that of the two-local variational form with just a

few small differences. On a very minor note, we have renamed the vector of optimizable

parameters to weights (instead of theta) to avoid any sort of confusion with the angle

theta that defines |𝜓1⟩.

Taking advantage of these newly-defined variational forms, we will define the circuits of

the generator and the discriminator as follows:

def Generator(weights):

GeneratorVF(weights)

def Discriminator(weights):

DiscriminatorVF(2, weights, reps = 3)

We are now ready to define the quantum nodes that we will use in the training. In the

classifier, we shall take the measurement operation to be the computation of the expectation

Quantum GANs in PennyLane 501

…

…

𝑅𝑋 (𝜃01𝑥) 𝑅𝑌 (𝜃01𝑦) 𝑅𝑍(𝜃01𝑧)

𝑅𝑋 (𝜃02𝑥) 𝑅𝑌 (𝜃02𝑦) 𝑅𝑍(𝜃02𝑧)

… …

… …

𝑅𝑋 (𝜃11𝑥) 𝑅𝑌 (𝜃11𝑦) 𝑅𝑍(𝜃11𝑧)

𝑅𝑋 (𝜃12𝑥) 𝑅𝑌 (𝜃12𝑦) 𝑅𝑍(𝜃12𝑧)

…

…

𝑅𝑋 (𝜃21𝑥) 𝑅𝑌 (𝜃21𝑦) 𝑅𝑍(𝜃21𝑧)

𝑅𝑋 (𝜃22𝑥) 𝑅𝑌 (𝜃22𝑦) 𝑅𝑍(𝜃22𝑧)

Figure 12.5: Discriminator variational form on two qubits and two repetitions

value of 𝑀 = |0⟩ ⟨0| on the first qubit. For this purpose, we may construct the matrix 𝑀 as

follows:

state_0 = [[1], [0]]

M = state_0 * np.conj(state_0).T

And we can now define two quantum nodes: one concatenating the generation of the state

|𝜓1⟩ with the discriminator, and one concatenating the generator with the discriminator.

We can achieve this with the following piece of code:

dev = qml.device('default.qubit', wires = 2)

@qml.qnode(dev, interface="torch", diff_method = "backprop")

def true_discriminator(weights_dis):

PrepareTrueState()

Discriminator(weights_dis)

return qml.expval(qml.Hermitian(M, wires = [0]))

502 Chapter 12: Quantum Generative Adversarial Networks

@qml.qnode(dev, interface="torch", diff_method = "backprop")

def generator_discriminator(weights_gen, weights_dis):

Generator(weights_gen)

Discriminator(weights_dis)

return qml.expval(qml.Hermitian(M, wires = [0]))

The measurement operation is the computation of the expectation value of 𝑀 on the

first qubit in both nodes; since this operation is the output of the discriminator, these

measurement operations need be identical. Notice, by the way, that, since the discriminator

works on the two qubits of our device, we could have also used the expectation value of 𝑀

on the second qubit.

The training process

Now we have fully set up our model, and we have defined all the nodes that we will use in

its training. But there’s something essential that we haven’t yet defined: the loss functions

of the discriminator and the generator.

As we discussed before, a reasonable choice for the loss function of the discriminator of a

GAN is the binary cross-entropy. In our case, our discriminator only has to classify two

data points: the true state |𝜓1⟩ with intended label 1, and the generated state
||𝜓𝑔⟩ with

intended label 0. Therefore, if we let 𝐷 denote the action of the discriminator under a

certain configuration, the binary cross-entropy loss would be

𝐿𝐷 = −
1
2 (log (1 − 𝐷(||𝜓𝑔⟩)) + log (𝐷(|𝜓1⟩)) .

This loss function can be implemented with our previously-defined nodes as follows:

def discriminator_loss(weights_gen, weights_dis):

Outcome of the discriminator with a generated state.

Quantum GANs in PennyLane 503

out_gen = generator_discriminator(weights_gen, weights_dis)

Outcome of the discriminator with the true state.

out_true = true_discriminator(weights_dis)

return -(torch.log(1 - out_gen) + torch.log(out_true))/2

Now, what about the loss of the generator? We already know that the goal of the generator

is to fool the discriminator into misclassifying the generated state as real. Moreover, we

have also mentioned a reasonable generator loss function is

𝐿𝐺 = − log (𝐷(||𝜓𝑔⟩)) .

This would be the binary cross-entropy loss of the discriminator if it were tasked with

classifying the generated state as the true state.

We can easily implement this loss as follows:

def generator_loss(weights_gen, weights_dis):

out_gen = generator_discriminator(weights_gen, weights_dis)

return -torch.log(out_gen)

And that defines all our losses. Let’s now prepare ourselves for the training process. First

and foremost, let’s initialize the weights of the generator and the discriminator to a tensor

with random values:

weights_gen = torch.rand(3, requires_grad = True)

weights_dis = torch.rand((3 + 1) * 2 * 3, requires_grad = True)

The dimensions of these arrays are justified from the fact that the generator uses 3 weights

and the variational form of the discriminator has 3 + 1 groups of parametrized gates, with

3 parameters being used on each of the 2 qubits on which the form acts. Also, remember

504 Chapter 12: Quantum Generative Adversarial Networks

that we need to set requires_grad = True in order for PyTorch to be able to compute

gradients on these weights later on.

Now we can define the optimizers that we will use in the training. For this problem, we will

rely on the stochastic gradient descent algorithm, which is a more simple version of the

Adam optimizer that we used in previous chapters (see Section 8.2.3 for a refresher). When

invoking the optimizers, we have to provide an array or dictionary with the parameters that

we want our optimizer to look after. Back when we defined PyTorch models as subclasses

of nn.Module, we could just get this with the parameters method, but in this case, we will

create the list ourselves. This can be done as follows:

optg = torch.optim.SGD([weights_gen], lr = 0.5)

optd = torch.optim.SGD([weights_dis], lr = 0.5)

In this call to the optimizers, we have set their learning rate to 0.5.

And those are all the ingredients needed to train our model. We can execute the following

piece of code in order to do so:

dis_losses = [] # Discriminator losses.

gen_losses = [] # Generator losses.

log_weights = [] # Generator weights.

ncycles = 150 # Number of training cycles.

for i in range(ncycles):

Train the discriminator.

optd.zero_grad()

lossd = discriminator_loss(weights_gen.detach(), weights_dis)

lossd.backward()

optd.step()

Train the generator.

Quantum GANs in PennyLane 505

optg.zero_grad()

lossg = generator_loss(weights_gen, weights_dis.detach())

lossg.backward()

optg.step()

Log losses and weights.

lossd = float(lossd)

lossg = float(lossg)

dis_losses.append(lossd)

gen_losses.append(lossg)

log_weights.append(weights_gen.detach().clone().numpy())

Print the losses every fifteen cycles.

if (np.mod((i+1), 15) == 0):

print("Epoch", i+1, end= " ")

print("| Discriminator loss:", round(lossd, 4), end = " ")

print("| Generator loss:", round(lossg, 4))

There is quite a lot to digest here. In the first few lines of code, we are simply defining some

arrays in which we will store data as the training progresses. The arrays dis_losses and

gen_losses will save the discriminator and generator losses in each training cycle, and the

array log_weights will store the generator weights obtained at the end of each training

cycle. We will later use this information in order to assess the effectiveness of the training.

We have fixed the training to run for 150 optimization cycles. In each of them, we will

optimize the values of the discriminator, then optimize those of the generator, and, finally,

log all the results. Let’s go through it step by step:

1. When we optimize the discriminator, we reset its optimizer (optd) and then compute

the discriminator loss function and store it in lossd. Observe that, when we send the

generator weights, we pass them through the detach method. This method removes

506 Chapter 12: Quantum Generative Adversarial Networks

the need to compute gradients for these weights. The discriminator optimizer is not

going to touch those weights either way, so this will save us some computation time.

Once we have the loss, we just compute its gradients with the backward method and

run a step of the discriminator optimizer.

2. The optimization of the generator is fully analogous. We simply use the generator

optimizer optg on the gradients obtained from the generator loss lossg. Of course,

we detach the discriminator weights in the call to the generator loss function instead

of the generator weights.

3. Finally, we log the values of the losses. For this purpose, we simply store the values

of the losses that we computed in the training cycle. These will probably be different

from the ones at the end of the cycle, but they will still be informative enough.

After this, we store the generator weights. Please observe the call to the clone

method. This call ensures that we are getting a copy of the weights and not a

reference to the weights tensor. If we didn’t call this method, all the weight arrays

in log_weights would reference the same tensor and their values would all be the

same and would change (simultaneously) as the training progresses!

Finally, we print some information about the training. Since we are going to execute

this loop for 150 training cycles and the training will be fast, we shall only print

information every 15 cycles.

Notice how, instead of fully training the discriminator and the generator in an alternating

fashion, we are optimizing them in an alternating fashion in every training cycle.

The output that we get upon running the preceding code is the following:

Epoch 15 | Discriminator loss: 0.6701 | Generator loss: 0.7065

Epoch 30 | Discriminator loss: 0.6987 | Generator loss: 0.6791

Epoch 45 | Discriminator loss: 0.6931 | Generator loss: 0.6992

Epoch 60 | Discriminator loss: 0.6931 | Generator loss: 0.6924

Epoch 75 | Discriminator loss: 0.6932 | Generator loss: 0.6927

Quantum GANs in PennyLane 507

Epoch 90 | Discriminator loss: 0.6931 | Generator loss: 0.6934

Epoch 105 | Discriminator loss: 0.6931 | Generator loss: 0.6931

Epoch 120 | Discriminator loss: 0.6931 | Generator loss: 0.6931

Epoch 135 | Discriminator loss: 0.6931 | Generator loss: 0.6932

Epoch 150 | Discriminator loss: 0.6931 | Generator loss: 0.6931

Just by looking at this raw output, we can see that there is a chance that our training may

have been successful: the discriminator loss and the generator loss are both approaching

− log 1/2, just as they should do at the optimal point. This is a good sign!

In order to have a better insight on the evolution of these losses, we may use the gen_losses

and dis_losses array in order to plot their evolution. This can be done as follows:

import matplotlib.pyplot as plt

epochs = np.array(range(len(gen_losses))) + 1

plt.plot(epochs, gen_losses, label = "Generator loss")

plt.plot(epochs, dis_losses, label = "Discriminator loss")

plt.xlabel("Epoch")

plt.legend()

The resulting graph can be found in Figure 12.6 and, indeed, we can see a nice trend from

which to draw some optimism.

But now comes the moment of truth. Let’s see if, indeed, our model has learned as we wanted

it to. We mentioned in the previous section that, when training generative adversarial

networks, the best criteria for determining whether a training process was successful or

not depends on the problem at hand. In our case, our training will be successful if the state

returned by the generator is close to |𝜓1⟩.

Now, how do we determine the state vector of a qubit? It turns out that the state of a qubit

is fully characterized (up to an unimportant global phase, as we saw back in Section 1.3.4) by

its Bloch sphere coordinates. And now that we’ve come across these coordinates, let’s learn

508 Chapter 12: Quantum Generative Adversarial Networks

0 20 40 60 80 100 120 140
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3
Generator loss
Discriminator loss

Figure 12.6: Evolution of the losses of the discriminator and the generator along the training
process

how to compute them with an exercise that we hope you will find interesting — although,

admittedly, is slightly orthogonal to this chapter.

Exercise 12.2

Prove that the Bloch sphere coordinates of a one-qubit state are the expectation

values of the observables given by the three Pauli matrices 𝑋 , 𝑌 , and 𝑍 .

We can prepare two quantum nodes that return these expectation values for both |𝜓1⟩ and

the state returned by the generator after the training. This can be done as follows:

@qml.qnode(dev, interface="torch")

def generated_coordinates(weights_gen):

Generator(weights_gen)

return [qml.expval(qml.PauliX(0)), qml.expval(qml.PauliY(0)),

qml.expval(qml.PauliZ(0))]

Quantum GANs in PennyLane 509

@qml.qnode(dev, interface="torch")

def true_coordinates():

PrepareTrueState()

return [qml.expval(qml.PauliX(0)),

qml.expval(qml.PauliY(0)),

qml.expval(qml.PauliZ(0))]

print("Bloch coordinates")

print("Generated:", generated_coordinates(weights_gen))

print("True:", true_coordinates())

And the output that we get is the following:

Bloch angles

Bloch coordinates

Generated: tensor([0.3536, 0.6124, 0.7071], dtype=torch.float64,

grad_fn=<MvBackward0>)

True: tensor([0.3536, 0.6124, 0.7071], dtype=torch.float64)

The outputs are identical, so we can safely say that our training has been a huge success!

In order to bring this section to an end, we will visually explore how the state created by the

generator has evolved throughout the training. We can do this using the array of weights

log_weights and the generated_coordinates function that we have just defined. This

function takes the weights of the generator as input, so we can get the Bloch coordinates

of the generated states at any point in the training using the saved weights.

We can accomplish this as follows:

true_coords = true_coordinates()

def plot_coordinates(cycle):

510 Chapter 12: Quantum Generative Adversarial Networks

coords = generated_coordinates(log_weights[cycle - 1])

plt.bar(["X", "Y", "Z"], true_coords, width = 1,

color = "royalblue", label = "True coordinates")

plt.bar(["X", "Y", "Z"], coords, width = 0.5,

color = "black", label = "Generated coordinates")

plt.title(f"Training cycle {cycle}")

plt.legend()

This function will plot, for any training cycle, a representation of the Bloch coordinates of

the generated states superposed to the coordinates of the state that we want our QGAN to

learn. In Figure 12.7 you can see the plots corresponding to a wide range of cycles.

Exercise 12.3

Try to replicate this example on a different state (you may need to increase the

number of training cycles to reach convergence in some cases).

That brings this example to an end. Let’s now consider a different QGAN, this time

implemented in Qiskit.

12.3 Quantum GANs in Qiskit
An early proposal of a QGAN was introduced by IBM researchers Zoufal, Lucchi, and

Woerner [95] to learn a probability distribution using a QGAN with a quantum generator

and a classical discriminator. In this section, we will discuss how to implement this kind of

QGAN with Qiskit, so let’s put everything in more precise terms.

This type of quantum GAN is given a dataset of real numbers that follow a certain probability

distribution. This distribution may potentially be continuous, but it could be discretized to

take some values 𝑚,𝑚 + 1, 𝑚 + 2,… , 𝑀 − 1, 𝑀 with 𝑚 < 𝑀 ; this will usually be done by

fixing the values 𝑚 and 𝑀 , rounding the samples and ignoring those that are smaller than

Quantum GANs in Qiskit 511

X Y Z
0.0

0.2

0.4

0.6

0.8

Training cycle 1
Real coordinates
Generated coordinates

X Y Z
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Training cycle 25
Real coordinates
Generated coordinates

X Y Z
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Training cycle 50
Real coordinates
Generated coordinates

X Y Z
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Training cycle 75
Real coordinates
Generated coordinates

X Y Z
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Training cycle 100
Real coordinates
Generated coordinates

X Y Z
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Training cycle 150
Real coordinates
Generated coordinates

Figure 12.7: Evolution of the Bloch coordinates of the generated state as the training progresses

512 Chapter 12: Quantum Generative Adversarial Networks

𝑚 or bigger than 𝑀 . Each of the resulting labels 𝑗 = 𝑚,… , 𝑀 will have a certain probability

𝑝𝑗 of appearing in the dataset. That is the distribution that we want the generator in our

QGAN to learn.

And what does the generator of these QGANs look like? It is a quantum generator that

is dependent on some classical parameters. It needs to be designed to have 𝑛 qubits in

such a way that 𝑀 − 𝑚 < 2𝑛, so that we may assign, to each possible outcome 𝑟 after a

measurement in the computational basis of the generator, a label 𝛼(𝑟) in 𝑚,…𝑀 . Thus, the

goal of the training will be for the state returned by the generator to be as close as possible

to

∑
𝑟

√
𝑝𝛼(𝑟) |𝑟⟩ .

In this way, measuring samples from the trained generator should be equivalent to extract-

ing more data samples from the original distribution, because the probability of measuring

|𝑟⟩ (which is associated to label 𝛼(𝑟)) is exactly
||
√𝑝𝛼(𝑟)||

2 = 𝑝𝛼(𝑟).

The discriminator that enables the training of this QGAN is a classical neural network

tasked with distinguishing whether an input datum belongs to the original dataset or has

been generated by the discriminator.

So that’s the QGAN that we are going to work with: a hybrid QGAN in which the generator

is quantum and the discriminator is classic. Sounds interesting? Let’s see how we can

implement it and train it using Qiskit.

In order to get started, let’s import NumPy and Qiskit while setting some seeds to ensure

the reproducibility of our results:

import numpy as np

from qiskit import *

from qiskit.utils import algorithm_globals

seed = 1234

Quantum GANs in Qiskit 513

np.random.seed(seed)

algorithm_globals.random_seed = seed

We will consider a particular example of the general problem that we outlined previously.

We will take a dataset with 1000 samples generated from the binomial distribution with

𝑛 = 3 trials and probability 𝑝 = 1/2. These distributions can only take 4 = 22 possible

values (0, 1, 2, 3), so will have to use 2 qubits in our generator. We may generate the samples

of our dataset using NumPy as follows:

N = 1000

n = 3

p = 0.5

real_data = np.random.binomial(n, p, N)

The Qiskit framework already incorporates a QGAN class that can create and train the QGAN

architecture that we discussed previously — it’s almost tailor-made for this problem! We

may import the class from the qiskit_machine_learning.algorithms module and define

our QGAN as follows:

from qiskit_machine_learning.algorithms import QGAN

from qiskit.utils import QuantumInstance

ncycles = 3000 # Number of training cycles.

bsize = 100 # Batch size.

Quantum instance on which the QGAN will run.

quantum_instance = QuantumInstance(

backend=Aer.get_backend('statevector_simulator'))

Create the QGAN object.

qgan = QGAN(data = real_data,

514 Chapter 12: Quantum Generative Adversarial Networks

num_qubits = [2],

batch_size = bsize,

num_epochs = ncycles,

bounds = [0,3],

seed = seed,

tol_rel_ent = 0.001)

In the call to the QGAN initializer, we had to specify the dataset whose distribution we want

to learn, the bounds at which we want to “cut” the dataset (in this case, we just specified

the actual bounds of our distribution), an array containing the number of qubits of the

generator circuit, the batch size, the number of training cycles that we want our QGAN to

run for, the quantum instance on which the QGAN will run and, lastly, an optional seed.

You may be confused by the fact that we’ve had to send the number of qubits of the quantum

generator in an array. That’s because this QGAN class could support generating samples of

any dimension 𝑑 (using 𝑑 generators); in our case, we have 𝑑 = 1, hence we only need to

pass an array with a single element.

This QGAN object already comes with a default implementation for the generator and the

discriminator, and we will rely on them.

To learn more. . .

In this default implementation, the discriminator is a dense neural network having

two consecutive intermediate layers with 50 and 20 neurons each; the activation

function in these intermediate layers is the leaky ReLU function and that of the

output layer is the sigmoid function. The generator uses a variational form consisting

of a layer of Hadamard gates applied on each qubit followed by the two-local

variational form with one repetition and circular entanglement.

These details are not specified in the documentation, but they can be found in the

source code.

In order to train the QGAN, we may run the following instruction:

Quantum GANs in Qiskit 515

result = qgan.run(quantum_instance)

The training will take a few minutes to complete, depending on the hardware configuration

of your computer. In order to plot the evolution of the generator and discriminator losses

throughout the training process, we may run the following code:

import matplotlib.pyplot as plt

plt.title("Loss function evolution")

cycles = np.array(range(len(qgan.g_loss))) + 1

plt.plot(cycles, qgan.g_loss, label = "Generator")

plt.plot(cycles, qgan.d_loss, label = "Discriminator")

plt.xlabel("Cycle")

plt.legend()

This yields the plot shown in Figure 12.8. We can see how both losses are approaching

− log 1/2, which can give us hope for the success of our training.

0 200 400 600 800 1000 1200 1400

0.67

0.68

0.69

0.70

0.71

0.72

Loss function evolution
Generator
Discriminator

Figure 12.8: Evolution of the generator and discriminator losses during the QGAN training,
learning a distribution

516 Chapter 12: Quantum Generative Adversarial Networks

In order to check if our training has been successful, we will plot the distribution of the

measurement outcomes of our generator against the original distribution. We may generate

the data for this plot as follows:

samples_g, prob_g = qgan.generator.get_output(qgan.quantum_instance,

shots=10000)

real_distr = []

for i in range(0,3+1):

proportion = np.count_nonzero(real_data == i) / N

real_distr.append(proportion)

plt.bar(range(4), real_distr, width = 0.7, color = "royalblue",

label = "Real distribution")

plt.bar(range(4), prob_g, width = 0.5, color = "black",

label = "Generated distribution")

In this piece of code, we have first asked our QGAN to generate a sample with the distribu-

tion it has learned. Then, we have created an array real_distr with the relative frequencies

of the values in the distribution (entry j corresponds to the relative frequency of the value

𝑗). Lastly, we have plotted the real distribution against our generated distribution. The

output can be found in Figure 12.9.

Of course, for the purposes of this example, this visualization is more than enough to

convince us that the training, indeed, has been effective. In more sophisticated examples,

one may instead want to rely on more quantitative metrics of success. One such metric is

the relative entropy or Kullback–Leibler divergence from one distribution to another.

In layman’s terms, this entropy measures how “different” two distributions are in a way

that if two distributions 𝑃0 and 𝑃1 are identical, the relative entropy from 𝑃0 to 𝑃1 is 0. As

𝑃1 becomes more different from 𝑃0, the relative entropy increases.

Quantum GANs in Qiskit 517

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Figure 12.9: Histogram comparing the real distribution (thicker bar) with the one generated by
the QGAN (thinner bar)

To learn more. . .

When you are given two discrete probability distributions 𝑃0 and 𝑃1 over a space 𝑋 ,

the relative entropy from 𝑃0 to 𝑃1 can be defined as

𝐷(𝑃1‖𝑃)0) = ∑
𝑥∈𝑋

𝑃1(𝑥) log(
𝑃1(𝑥)
𝑃0(𝑥))

.

Qiskit’s QGAN implementation logs the values of the relative entropy throughout the

QGAN training. In this way, we may plot the evolution of the relative entropy over the

training process of our QGAN with the following instructions:

plt.title('Relative entropy evolution')

plt.plot(qgan.rel_entr)

plt.show()

The output is shown in Figure 12.10.

518 Chapter 12: Quantum Generative Adversarial Networks

0 200 400 600 800 1000 1200 1400
0.00

0.02

0.04

0.06

0.08

0.10

0.12
Relative entropy evolution

Figure 12.10: Evolution of the relative entropy over the training of our QGAN, learning a
distribution

Here it can be clearly shown that the relative entropy approaches 0 as the training pro-

gresses, just as we expected. This concludes our example. It’s time to wrap up!

Summary
In this chapter, we have explored a whole new kind of quantum machine learning models:

quantum GANs. Unlike the models we had considered before, these are used primarily for

generation tasks. And, unlike our previous models, they are trained in a fully unsupervised

manner.

After understanding what GANs are in general, we introduced the general notion of a

QGAN, and then we learned how to implement a couple of QGAN models using PennyLane

and Qiskit.

With this, we also conclude our study of quantum machine learning for this book. We hope

that you have had a good time learning about all these ways of making quantum computers

learn! But your quantum journey does not need to end here. Please, keep on reading for a

sneak peek of what you can expect in the near future in the quantum computing field.

Afterword and Appendices

In this part, we provide an afterword that wraps up everything that we have studied in the

book as well as a series of appendices that cover some basic mathematical concepts and

necessary technical details. We also share some notes on how the book was produced.

This part includes the following contents:

• Chapter 13, Afterword: The Future of Quantum Computing

• Appendix A, Complex Numbers

• Appendix B, Basic Linear Algebra

• Appendix C, Computational Complexity

• Appendix D, Installing the Tools

• Appendix E, Production Notes

13
Afterword: The Future of
Quantum Computing

I am not throwing away my shot!

— Alexander Hamilton

This has been a long and (hopefully) interesting journey. In the 12 chapters of this book,

we’ve covered a lot of topics on quantum computing, both from a theoretical and a practical

point of view, so maybe it’s time to take a look back and see what we have learned.

We started by laying the foundations. We studied the most important mathematical concepts

underlying the theory of quantum computing, including how information is stored on

qubits, how we can transform their states with quantum gates, and how we can obtain

results by measuring them. Then, we explored some of the software tools currently available

to implement quantum algorithms, with a special emphasis on the two main software

libraries used in this book: Qiskit and PennyLane. We learned how to implement quantum

522 Chapter 13: Afterword: The Future of Quantum Computing

circuits with both frameworks and how to run them on simulators and on actual quantum

hardware.

Then, we began to uncover how quantum algorithms can be used to solve optimization

problems. To that end, we studied different ways of formulating combinatorial optimization

problems as the search for ground states of certain Hamiltonians. This is how we got to

know the QUBO and Ising formalisms, that we later used with different types of quantum

computers. First, we used quantum annealers, with their heuristic implementation of

adiabatic quantum computing, and we learned different ways of solving optimization

problems with them. Then, we turned to gate-based quantum computers, and studied the

Quantum Approximate Optimization Algorithm and Grover’s Adaptive Search.

After that, we widened the scope of our optimization tasks and studied situations in which

our interest was set on finding ground states of observables related to problems in different

fields, including chemistry and physics. In this case, our focus was on the Variational

Quantum Eigensolver. At the same time that we studied its mathematical definition and

its practical implementation, we also learned about noisy simulations and readout error

mitigation.

Then, we changed gears and started studying the application of quantum computing in

machine learning. We first briefly reviewed classical machine learning and explained what

makes quantum machine learning different. Then, we started studying several quantum

machine learning model architectures. The first was that of Quantum Support Vector

Machines, which we derived from classical SVMs by introducing quantum kernels.

After that, we focused our attention on how to implement a quantum analog of neural

networks that are called — not very imaginatively, we concede — quantum neural networks.

For this, we used parametrized circuits in two different ways:

• First, using the free parameters of a part of the circuit to embed classical data into

the space of quantum states (as we had already done with QSVMs)

• Then, using the rest of the values as trainable parameters to minimize a cost function

523

We learned of different ways of computing the gradients needed for the training and we

implemented some examples in both PennyLane and Qiskit.

Then, we decided to play a little bit with our new, shiny quantum neural networks and

we mixed them with classical neural networks to form hybrid neural networks. We also

learned a thing or two about hyperparameter optimization with Optuna and about building

and training classical and hybrid networks with PyTorch. All this hard work paid off soon,

because it allowed us to implement a very interesting model architecture: that of Quantum

Generative Adversarial Networks. We learned a little bit about the theory behind them

and we showed how to implement and train a couple of simple examples to learn quantum

states and probability distributions.

Most of the methods that we have studied are what we may call modern quantum algorithms:

they have been proposed in the last 10 years or so, mainly with current, noisy intermediate-

scale quantum computers in mind. And they are the subject of intense development and

study by the quantum computing community as we are writing these lines. You may very

well say that, with this book, you now know a good deal about what the present of quantum

computing looks like.

But this should be just the dawn of quantum computing. As wonderful as the ideas behind

the methods and devices that we have studied may be (and they truly are!), they still have

some limitations (that sometimes are painfully obvious). Due to the reduced scale and

resilience to the noise of current quantum computers and due to our incomplete understand-

ing of the capabilities of modern quantum algorithms such as QAOA, VQE, or the different

flavors of quantum neural networks, it is difficult to demonstrate quantum computational

advantage. In fact, in the cases in which this has been achieved (the most famous one being

the quantum supremacy experiment developed by Google researchers [10]), the problems

are mainly academic and of little practical application.

Does this mean that we are pessimistic about the future of quantum computing? On

the contrary! There is still much work to do, but we think that we are experiencing the

beginning of what could very well be a revolution in the way we compute and process

524 Chapter 13: Afterword: The Future of Quantum Computing

information. The famous science fiction writer Arthur C. Clarke formulated three adages

that are popularly known as Clarke’s laws. They go as follows:

1. When a distinguished but elderly scientist states that something is possible, he is

almost certainly right. When he states that something is impossible, he is very

probably wrong.

2. The only way of discovering the limits of the possible is to venture a little way past

them into the impossible.

3. Any sufficiently advanced technology is indistinguishable from magic.

Funnily enough, the three of them could be applied to the field of quantum computing —

and, probably, the third is the one that most often has been quoted when talking about

quantum computers! But we are especially interested in the second one. We need to

keep on investigating, further pushing the frontiers of our knowledge, and exploring new

techniques for processing information with quantum devices. To that end, in the next few

years, we expect to see developments on different fronts.

Of course, we expect to see the introduction of more capable and reliable quantum comput-

ers. In fact, while we were writing this book, IBM announced Osprey, a quantum processor

with 433 qubits [97]. But that is not all. They plan to introduce quantum computers with

thousands of qubits in the next few years and other big companies such as Google and

Honeywell have similar roadmaps. Size is not the only thing that matters, though, and a lot

of effort is being put into decreasing gate and readout errors and in increasing coherence

times. This will be crucial to reach the ultimate goal of having fault-tolerant, scalable

quantum computers.

Thanks to these new, improved quantum computers, we expect to see new demonstrations

of quantum advantage: practical experiments in which a quantum computer solves a

task much faster than what is possible with the most powerful classical supercomputer

available. Probably, the concrete problems tackled in these demonstrations will be not very

useful from a practical point of view. However, we think that pursuing these advantages

525

is still very relevant. The more diverse the range of techniques used to achieve quantum

supremacy, the better for the field of quantum computing.

But, as you know, this book is mainly about quantum algorithms. So, the developments

that we are most excited to see are those related to the development of new quantum

methods, the increase of the applicability of quantum techniques, and the deepening of

our understanding of the properties of quantum algorithms. In fact, as we have tried to

convey throughout this book, this is a field of intense study. To name just a couple of

recent highlights, in the last few months, we have witnessed a new quantum exponential

speedup [98] and the proof that quantum neural networks may need much less data than

their classical counterparts in certain situations [83].

Developing new quantum algorithms, finding new applications of existing quantum tech-

niques, or mathematically proving quantum advantage are, by no means, easy tasks. But

we are confident that, as more and more people learn about quantum computing and as

more and more quantum computers become available to run experiments, our knowledge

and understanding of the power of quantum algorithms will only grow bigger. And with

that, new, exciting, and powerful applications will eventually become a reality.

This is why we wrote this book: to invite you on this exciting and wonderful journey. A

journey that is just beginning. A journey into the future of quantum computing.

We hope you stay for the ride. And do not throw away your (quantum) shots!

A
Complex Numbers

𝑒𝑖𝜋 + 1 = 0

— Leonhard Euler

The set of complex numbers is the set of all numbers of the form 𝑎 + 𝑏𝑖 where 𝑎 and 𝑏 are

real numbers and 𝑖2 = −1. This might not be the most formal way of presenting them, but

it will do for our purposes!

The way you operate with complex numbers is pretty straightforward. Let 𝑎, 𝑏, 𝑥 , and 𝑦 be

some real numbers. We add complex numbers as

(𝑎 + 𝑏𝑖) + (𝑥 + 𝑦𝑖) = (𝑎 + 𝑏) + (𝑥 + 𝑦)𝑖.

Regarding multiplication, we have

(𝑎 + 𝑏𝑖) ⋅ (𝑥 + 𝑦𝑖) = 𝑎𝑥 + 𝑎𝑦𝑖 + 𝑏𝑖𝑥 + 𝑏𝑦𝑖2 = (𝑎𝑥 − 𝑏𝑦) + (𝑎𝑦 + 𝑏𝑥)𝑖.

528 Complex Numbers

In particular, when 𝑏 = 0, we can deduce that

𝑎(𝑥 + 𝑦𝑖) = 𝑎𝑥 + (𝑎𝑦)𝑖.

Given any complex number 𝑧 = 𝑎 + 𝑏𝑖, its real part, which we denote as Re 𝑧, is 𝑎, and

its imaginary part, which we denote as Im 𝑧, is 𝑏. Moreover, any such number 𝑧 can be

represented in the two-dimensional plane as a vector (Re 𝑧, Im 𝑧) = (𝑎, 𝑏). The length of

the resulting vector is said to be the module of 𝑧, and it is computed as

|𝑧| =
√
𝑎2 + 𝑏2.

If 𝑧 = 𝑎 + 𝑏𝑖 is a complex number, its conjugate is 𝑧∗ = 𝑎 − 𝑏𝑖. In layman’s terms, if you

want to get the conjugate of any complex number, all you have to do is flip the sign of its

imaginary part. It is easy to check that, given any complex number 𝑧,

|𝑧|2 = 𝑧𝑧∗,

which shows us, incidentally, that 𝑧𝑧∗ is always a non-negative real number.

One of the most well-known formulas involving the use of complex numbers is Euler’s

identity, which reads that, for any real number 𝜃,

𝑒𝑖𝜃 = cos 𝜃 + 𝑖 sin 𝜃.

This formula can be easily derived by extending the exponential functions from the usual

series that defines it. In particular, according to Euler’s identity and using the usual

properties of exponentiation, we must have, for any real numbers 𝑎 and 𝑏,

𝑒(𝑎+𝑖𝑏) = 𝑒𝑎𝑒𝑖𝑏 = 𝑒𝑎(cos 𝜃 + 𝑖 sin 𝜃).

Complex Numbers 529

Just to conclude this appendix, let us share with you some fun trivia about our beloved

complex numbers:

• Every polynomial of degree 𝑛 with complex coefficients has exactly 𝑛 roots, if we

account for multiplicity

• Any complex-differentiable function ℂ ⟶ ℂ is smooth and analytic

To learn more. . .

If you would like to learn more about complex numbers, we invite you to read the

same book that both of us — with a gap of a few years in the middle — used in the

complex analysis course of our undergraduate studies: Bak and Newman’s Complex

Analysis [99].

B
Basic Linear Algebra

Algebra is generous. She often gives you more than is asked of her.

— Jean le Rond d’Alembert

In this chapter, we will present a very broad overview of linear algebra. More than anything,

this is meant to be a refresher. If you would like to learn linear algebra from the basics,

we suggest reading Sheldon Axler’s wonderful book [100]. If you are all-in with abstract

algebra, we can also recommend the great book by Dummit and Foote [101]. With this out

of the way, let’s do some algebra!

When most people think of vectors, they think of fancy arrows pointing in a direction. But,

where others see arrows, we mathematicians — in our tireless pursuit of abstraction — see

elements of vector spaces. And what is a vector space? Simple!

Vector spaces
Let 𝔽 be the real or the complex numbers. An 𝔽-vector space is a set 𝑉 together with an

“addition” function (usually represented by +, for obvious reasons) and a “multiplication by

532 Basic Linear Algebra

scalars” function (denoted like usual multiplication). Addition needs to take any two vectors

and return another vector, that is, + needs to be a function 𝑉 × 𝑉 ⟶ 𝑉 . Multiplication by

scalars, as the name suggests, must take a scalar (an element of 𝔽) and a vector, and return

a vector, that is, it needs to be a function 𝔽 × 𝑉 ⟶ 𝑉 . Moreover, vector spaces must satisfy,

for any arbitrary 𝛼1, 𝛼2 ∈ 𝔽 and 𝑣1, 𝑣2, 𝑣3 ∈ 𝑉 , the following properties:

• Associativity for addition : (𝑣1 + 𝑣2) + 𝑣3 = 𝑣1 + (𝑣2 + 𝑣3)

• Commutativity for addition: 𝑣1 + 𝑣2 = 𝑣2 + 𝑣1

• Identity element for addition: there must exist a 0 ∈ 𝑉 such that, for every vector

𝑣 ∈ 𝑉 , 𝑣 + 0 = 𝑣

• Opposites for addition: there must exist a −𝑣1 ∈ 𝑉 such that 𝑣1 + (−𝑣1) = 0

• Compatibility of multiplication by scalars with multiplication in 𝔽: (𝛼1 ⋅ 𝛼2) ⋅ 𝑣1 =

𝛼1 ⋅ (𝛼2 ⋅ 𝑣1)

• Distributivity with respect to vector addition: 𝛼1(𝑣1 + 𝑣2) = 𝛼1𝑣1 + 𝛼1𝑣2

• Distributivity with respect to scalar addition: (𝛼1 + 𝛼2)𝑣1 = 𝛼1𝑣1 + 𝛼2𝑣1

• Identity for multiplication by scalars: 1 ⋅ 𝑣1 = 𝑣1

To learn more. . .

If you, like us, love abstraction, you should know that vector spaces are usually

defined over an arbitrary field — not just over the real or complex numbers! If you

want to learn more, we suggest reading the book by Dummit and Foote [101].

These are some examples of vector spaces:

• The set of real numbers with the usual addition and multiplication is a real vector

space.

• The set of complex numbers with complex number addition and multiplication is a

complex vector space. Moreover, it can be trivially transformed into a real vector

Basic Linear Algebra 533

space by restricting multiplication by scalars to multiplication of complex numbers

by real numbers.

• The set ℝ𝑛 with the usual component-wise addition and multiplication by scalars

(real numbers) is a vector space. If we fix 𝑛 = 2, 3, that’s where we can find those

fancy arrows everyone is talking about!

• Most importantly for us, the set ℂ𝑛 with component-wise addition and scalar multi-

plication by complex numbers is a vector space.

• Just to give a cute example, the set of all smooth functions on a closed finite interval

of the real numbers is a vector space. You can try to define addition and multiplication

by scalars of functions yourself.

When we refer to a vector space on a set 𝑉 with addition + and multiplication by scalars ⋅,

we should denote it as (𝑉 ,+, ⋅) in order to indicate what function we are considering as

the addition function and what function we are taking to be the multiplication by scalars.

Nevertheless, in all honesty, (𝑉 ,+, ⋅) is a pain to write, and we mathematicians — like all

human beings — have a natural tendency towards laziness. So we usually just write 𝑉 and

let + and ⋅ be inferred from context whenever that is reasonable to do.

Bases and coordinates
Some 𝔽-vector spaces 𝑉 are finite-dimensional: this means that there is a finite family

of vectors {𝑣1,… , 𝑣𝑛} ⊆ 𝑉 such that, for any vector 𝑣 ∈ 𝑉 , there exist some unique scalars

𝛼1,… , 𝛼𝑛 ∈ 𝔽 for which

𝑣 = 𝛼1𝑣1 +⋯ + 𝛼𝑛𝑣𝑛.

The scalars 𝛼1,… , 𝛼𝑛 are said to be the coordinates of 𝑣 with respect to the basis {𝑣1,… , 𝑣𝑛}.

The natural number 𝑛 is said to be the dimension of the vector space, and it is a fact of life

that any two bases of a vector space need to have the same number of elements, so the

dimension is well-defined. If you want proof (which you should want!), check your favorite

linear algebra textbook; either of the two that we have suggested should do the job.

534 Basic Linear Algebra

Two examples of finite dimensional vector spaces are ℝ𝑛 and ℂ𝑛 (with the natural addition

and multiplication operations). For example, a basis of ℂ3
or ℝ3

would be

{(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

To further illustrate this, if we considered the vector (𝑖, 3 + 2𝑖,−2) in ℂ3
, we would have

(𝑖, 3 + 2𝑖,−2) = 𝑖 ⋅ (1, 0, 0) + (3 + 2𝑖) ⋅ (0, 1, 0) + (−2) ⋅ (0, 0, 1),

and this representation in terms of these basis vectors is, clearly, unique. What is more, this

basis is so natural and common that it has a name, the canonical basis, and its vectors are

usually denoted as {𝑒1, 𝑒2, 𝑒3}. An analogous basis can be defined on ℝ𝑛 and ℂ𝑛 for any 𝑛.

To learn more. . .

We use the canonical basis extensively in this book, but with a different notation.

We refer to it as the computational basis.

When you have a vector in a finite-dimensional vector space, sometimes it is handy to

work with its coordinates with respect to some basis of your choice rather than working

with its “raw” expression. In order to do this, we sometimes represent a vector 𝑣 with

coordinates 𝛼1,… , 𝛼𝑛 by a column matrix having the coordinates as entries. For example, in

the previous example, the vector (1, 3 + 2𝑖,−2) would be represented by the column matrix

of coordinates

⎛
⎜
⎜
⎜
⎜
⎝

1

3 + 2𝑖

−2

⎞
⎟
⎟
⎟
⎟
⎠

with respect to the canonical basis {𝑒1, 𝑒2, 𝑒3}.

Important note

It is very important to remember that the column matrix of coordinates of a vector

is always defined with respect to a certain basis.

Basic Linear Algebra 535

If we considered, for instance, the basis {𝑒1, 𝑒3, 𝑒2}, then the coordinates of the aforemen-

tioned vector would be

⎛
⎜
⎜
⎜
⎜
⎝

1

−2

3 + 2𝑖

⎞
⎟
⎟
⎟
⎟
⎠

.

And, yes, order matters.

Linear maps and eigenstuff
Now that we know what vector spaces are, it is natural to wonder how we can define

transformations 𝐿 ∶ 𝑉 ⟶ 𝑊 between some 𝔽-vector spaces 𝑉 and 𝑊 . In fairness, you

could define any such transformation 𝐿 however you wanted — we are not here to set

boundaries on your mathematical freedom. But, if you want 𝐿 to play nicely with the

vector space structure of 𝑉 and 𝑊 , you will want it to be linear. That is, you will want to

have, for any vectors 𝑣1, 𝑣2 ∈ 𝑉 and any scalar 𝛼 ∈ 𝔽,

𝐿(𝑣1 + 𝑣2) = 𝐿(𝑣1) + 𝐿(𝑣2), 𝐿(𝛼 ⋅ 𝑣1) = 𝛼𝐿(𝑣1).

Keep in mind that the addition and multiplication by scalars on the left-hand side of these

expressions is that of 𝑉 , while the operations on the right-hand side of the expressions are

those of 𝑊 .

Linear maps are wonderful. Not only do they have very nice properties, but they are

also very easy to define. If 𝑣1,… , 𝑣𝑛 is a basis of 𝑉 and you want to define a linear map

𝐿 ∶ 𝑉 ⟶ 𝑊 , all you have to do is give a value — any value — to 𝐿(𝑣𝑘) for every 𝑘 = 1,… , 𝑛.

Then, by linearity, the function can be extended to all of 𝑉 as

𝐿(𝛼1𝑣1 +⋯ + 𝛼𝑛𝑣𝑛) = 𝛼1𝐿(𝑣1) +⋯ + 𝛼𝑛𝐿(𝑣𝑛)

536 Basic Linear Algebra

for any scalars 𝛼1,… , 𝛼𝑛 ∈ 𝔽. Furthermore, if we let {𝑤1,… , 𝑤𝑚} be a basis of 𝑊 and we let

𝑎𝑘,𝑙 ∈ 𝔽 be the unique scalars such that

𝐿(𝑣𝑘) = 𝑎1𝑘𝑤1 +⋯ + 𝑎𝑛𝑘𝑤𝑛,

then the coordinates of 𝐿(𝑣) for any 𝑣 = 𝛼1𝑣1 + ⋯ + 𝛼𝑛𝑣𝑛 ∈ 𝑉 with respect to {𝑤1,… , 𝑤𝑚}

will be

⎛
⎜
⎜
⎜
⎜
⎝

𝑎11 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮

𝑎𝑛1 ⋯ 𝑎𝑛𝑛

⎞
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎝

𝛼1
⋮

𝛼𝑛

⎞
⎟
⎟
⎟
⎟
⎠

.

To put it in perhaps more schematic terms,

⎛
⎜
⎜
⎜
⎜
⎝

|

𝐿(𝑣)

|

⎞
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎝

𝑎11 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮

𝑎𝑛1 ⋯ 𝑎𝑛𝑛

⎞
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎝

|

𝑣

|

⎞
⎟
⎟
⎟
⎟
⎠

,

where the column matrices represent the coordinates of the vectors with respect to the

bases {𝑣1,… , 𝑣𝑛} and {𝑤1,… , 𝑤𝑚}. We say that the matrix (𝑎𝑘𝑙)𝑘𝑙 is the coordinate matrix

of 𝐿 with respect to these bases. If 𝑉 = 𝑊 and we have a map 𝐿 ∶ 𝑉 ⟶ 𝑉 , we say that 𝐿 is

an endomorphism and, usually, we consider the same basis everywhere.

There is a very special kind of endomorphism that can be defined on any vector space: the

identity. This is just a function id that takes any vector 𝑣 to id(𝑣) = 𝑣. If 𝐿 ∶ 𝑉 ⟶ 𝑉 is an

endomorphism, we say that a function 𝐿−1 is the inverse of 𝐿 if both 𝐿 ◦ 𝐿−1 and 𝐿−1 ◦ 𝐿 are

equal to the identity — actually, checking either of the two conditions is already sufficient

when working with endomorphisms on finite-dimensional vector spaces. The coordinate

matrix of the inverse of a map with coordinate matrix 𝐴 is just the usual inverse matrix

𝐴−1
. What is more, a linear map is invertible if and only if so is its coordinated matrix.

When you have an endomorphism 𝐿 ∶ 𝑉 ⟶ 𝑉 , there may be some vectors 0 ≠ 𝑣 ∈ 𝑉 for

which there exists a scalar 𝜆 such that 𝐿(𝑣) = 𝜆𝑣. These vectors are said to be eigenvectors

and the corresponding value 𝜆 is said to be their eigenvalue. In some cases, you will be

Basic Linear Algebra 537

able to find a basis of eigenvectors 𝑣1,… , 𝑣𝑛 with some associated eigenvectors 𝜆1,… , 𝜆𝑛.

With respect to this basis, the coordinate matrix of 𝐿 would be a diagonal matrix

⎛
⎜
⎜
⎜
⎜
⎝

𝜆1
⋱

𝜆𝑛

⎞
⎟
⎟
⎟
⎟
⎠

.

Inner products and adjoint operators
On an 𝔽-vector space 𝑉 , we may wish to define an inner product ⟨−|−⟩. This will be an

operation taking any pair of vectors and returning a scalar, that is, a function 𝑉 × 𝑉 ⟶ 𝔽,

satisfying the following properties for any 𝑢, 𝑣1, 𝑣2 ∈ 𝑉 , and 𝛼1, 𝛼2 ∈ 𝔽:

• Conjugate symmetry: ⟨𝑣1|𝑣2⟩ = ⟨𝑣2|𝑣1⟩∗. Of course, if the vector space is defined

over ℝ, then ⟨𝑣2|𝑣1⟩∗ = ⟨𝑣2|𝑣1⟩, so ⟨𝑣1|𝑣2⟩ = ⟨𝑣2|𝑣1⟩.

• Linearity: ⟨𝑢|𝛼1𝑣1 + 𝛼2𝑣2⟩ = 𝛼1 ⟨𝑢|𝑣1⟩ + 𝛼2 ⟨𝑢|𝑣2⟩.

• Positive-definiteness: If 𝑢 ≠ 0, ⟨𝑢|𝑢⟩ is real and greater than 0.

It is easy to check that the following is an inner product on ℂ𝑛:

⟨(𝛼1,… , 𝛼𝑛)|(𝛽1,… , 𝛽𝑛)⟩ = 𝛼∗1𝛽1 +⋯ + 𝛼∗𝑛𝛽𝑛.

When we have a vector space with an inner product — which is commonly said to be

an inner product space — two vectors 𝑣 and 𝑤 are said to be orthogonal if ⟨𝑣|𝑤⟩ = 0.

Moreover, a basis is said to be orthogonal if all its vectors are pairwise orthogonal.

With an inner product, we can define a norm on a vector space. We won’t get into the

details of what norms are but, very vaguely, we can think of them as a way of measuring

the length of a vector (don’t think about arrows, please, don’t think about arrows. . .). The

norm induced by a scalar product ⟨⋅|⋅⟩ is

‖𝑣‖ =
√
⟨𝑣|𝑣⟩.

538 Basic Linear Algebra

We say that a basis is orthonormal if, in addition to being orthogonal, the norm of all its

vectors is equal to 1.

When we are given a matrix 𝐴 = (𝑎𝑘𝑙), we define its conjugate transpose to be 𝐴† = (𝑎∗𝑘𝑙),

that is

⎛
⎜
⎜
⎜
⎜
⎝

𝑎11 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮

𝑎𝑛1 ⋯ 𝑎𝑛𝑛

⎞
⎟
⎟
⎟
⎟
⎠

†

=

⎛
⎜
⎜
⎜
⎜
⎝

𝑎∗11 ⋯ 𝑎∗𝑛1
⋮ ⋱ ⋮

𝑎∗1𝑛 ⋯ 𝑎∗𝑛𝑛

⎞
⎟
⎟
⎟
⎟
⎠

.

The following identities can be easily checked for square matrices and, therefore, for linear

maps:

(𝐴 + 𝐵)† = 𝐴† + 𝐵†, (𝐴𝐵)† = 𝐵†𝐴†.

Here, 𝐴𝐵 denotes the usual matrix multiplication.

If 𝐿 ∶ 𝑉 ⟶ 𝑉 is an endomorphism on a finite-dimensional vector space 𝑉 , we can define

its Hermitian adjoint as the only linear map 𝐿† ∶ 𝑉 ⟶ 𝑉 that has as coordinate basis

with respect to some basis the conjugate transpose of the coordinated matrix of 𝐿 with

respect to that same basis. It can be shown that this notion is well-defined, that is, that you

always get the same linear map regardless of your choice of basis.

To learn more. . .

The definition that we have given is, well, not the most rigorous one. Usually, when

you have a pair of inner product spaces 𝑉 and 𝑊 with inner products ⟨⋅|⋅⟩𝑉 and

⟨⋅|⋅⟩𝑊 , the adjoint of a linear map 𝐿 ∶ 𝑉 ⟶ 𝑊 is defined to be the only linear map

𝐿† ∶ 𝑊 ⟶ 𝑉 such that, for every 𝑣 ∈ 𝑉 and 𝑤 ∈ 𝑊 ,

⟨𝑤|𝐿(𝑣)⟩𝑊 = ⟨𝐿†(𝑤)
|||𝑣⟩𝑉

.

We invite you to check that, for the particular case that we have considered (𝑉 = 𝑊

finite dimensional), both definitions agree.

Basic Linear Algebra 539

We say that an endomorphism 𝐿 is self-adjoint or Hermitian if 𝐿 = 𝐿†. And it is a fact of

life (again, we encourage you to check your favorite linear algebra textbook) that every

Hermitian operator has an orthonormal basis of real eigenvalues.

Also, we say that an endomorphism 𝑈 is unitary if 𝑈†𝑈 = 𝑈𝑈† = 𝐼 , where 𝐼 denotes the

identity matrix.

Matrix exponentiation
Every calculus student is familiar with the exponential function, which is taken to be

exp(𝑥) = 𝑒𝑥 . If you dive deeper into the wonders of mathematical analysis, you’ll learn

that the exponential function is actually defined as the sum of a series, namely

exp(𝑥) =
∞
∑
𝑘=1

𝑥𝑘

𝑘!
.

As it turns out, this definition can be extended far beyond the real numbers. For instance,

Euler’s formula — which we introduced in Appendix A, Complex Numbers — is the result of

extending the definition of the exponential function to every 𝑥 ∈ ℂ.

Most importantly for our purposes, the exponential function can be extended to. . . matrices!

In this way, the exponential of a square matrix is defined, rather unsurprisingly, as

exp(𝐴) =
∞
∑
𝑘=1

𝐴𝑘

𝑘!
.

What is more, this definition also works for endomorphisms. If the coordinate matrix of an

endomorphism 𝐿 is 𝐴 (with respect to a particular basis), we can define the exponential

of 𝐿 to be the endomorphism that has coordinate matrix exp(𝐴) with respect to the basis

under consideration. It can be checked that this notion is well-defined: we always get the

same endomorphism regardless of the basis we consider.

Of course, setting out to compute the exponential of a matrix just by summing up an

infinite series might not be the best of ideas. Thankfully, there is an easier way. If a matrix

540 Basic Linear Algebra

is diagonal, it can be shown that

exp

⎛
⎜
⎜
⎜
⎜
⎝

𝜆1
⋱

𝜆𝑛

⎞
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎝

𝑒𝜆1

⋱

𝑒𝜆𝑛

⎞
⎟
⎟
⎟
⎟
⎠

.

As we mentioned in the previous section, when an endomorphism is Hermitian, one can

always find a basis with respect to which the coordinate matrix of the endomorphism

is diagonal (a basis of eigenvectors), so this enables us to compute the exponential of

Hermitian operators. In general, it is always possible to compute the exponential of a

matrix [101, Section 12.3], but we won’t discuss how to do that here.

Just to bring this appendix to an end, we will briefly touch upon a fairly unrelated topic

that we will nevertheless use in some parts of the book: modular arithmetic.

A crash course in modular arithmetic
If your watch says it’s 15:00 and we ask you the time, you will say that it is 03:00. But you

would be lying, wouldn’t you? Your watch says it’s 15:00 but you’ve just said that it is 3:00.

What is wrong with you? Well, probably nothing. It turns out that, when you were telling

us the time, you were subconsciously working in arithmetic modulo 12.

Vaguely speaking, when you work with numbers modulo 𝑛 all you are doing is assuming

that 𝑛 and 0 represent the same number. In this way, when you work in arithmetic modulo

4, for example,

0 ≡ 4 ≡ 8 ≡ 12 ≡ 16 (mod 4),

1 ≡ 5 ≡ 9 ≡ 13 ≡ 17 (mod 4),

2 ≡ 6 ≡ 10 ≡ 14 ≡ 18 (mod 4),

and so on, and so forth. Notice how we have written ≡ rather than = to denote that those

numbers are not, well, equal on their own, but just that they are equal modulo 4 — that’s

also why we have that cute (mod 4) on the right.

Basic Linear Algebra 541

In this modular arithmetic setting, you can compute additions and multiplications as usual.

For example, when working modulo 4,

2 × 3 = 6 ≡ 2 (mod 4).

Ha! Look at what we have done! Now you can tell all your friends that 2 times 3 is 2 (you

can then silently whisper “modulo 4” and still be technically correct). But, wait, here comes

our favorite one:

1 + 1 ≡ 0 (mod 2).

In the end, all those people who claimed that “one plus one doesn’t necessarily equal two”

had a point, huh? They surely were talking about modular arithmetic. We have no doubt.

To learn more. . .

Can’t get enough of modular arithmetic? Dummit and Foote have you covered!

Have fun. [101]

C
Computational Complexity

An algorithm is a finite answer to an infinite number of questions

— Stephen Kleene

Computational complexity theory is the branch of theoretical computer science that is

concerned with quantifying the resources needed to solve problems with algorithms. It

asks questions such as “How much time is needed to multiply two integer numbers of 𝑛 bits

each?”, “Do you need more memory space to solve a problem than to check its solution?”,

or “Is randomness useful in computational tasks?”.

In this brief introduction to computational complexity, we will focus mainly on the concepts

involved in estimating how much time is required to solve certain problems. For a thorough

treatment of this and other topics (including space or memory complexity, the role of

randomness in computation, approximation algorithms, and other advanced matters),

you can check standard computational complexity books such as the ones by Sipser [26],

Papadimitriou [102], or Arora and Barak [103].

544 Computational Complexity

To study the kind of questions posed in computational complexity theory, we need first to

introduce a computational model that allows us to measure computation time, memory,

and other resources. The usual choice is that of Turing machines. It is beyond the scope

of this book to mathematically define what Turing machines are (for the details, check the

books cited in the previous paragraph), but let us at least give an informal description so

you can understand how we can use them to model computational tasks and to measure the

resources involved in solving problems with them. Please notice that different textbooks

use slightly different definitions of Turing machines, but it is straightforward to show that

they are all equivalent in power.

A few words on Turing machines
A Turing machine is a (theoretical) device that has a (potentially infinite) tape divided into

cells. Each of these cells can store a symbol from a finite and fixed number of possibilities

(usually, 0, 1, and a “blank” symbol to denote an empty cell). The machine also has a head

that, at any given moment, is scanning one of the tape cells. Additionally, the machine is

in a state (also from a finite number of fixed options) at any step in the computation.

The machine has a list of instructions that, depending on the machine’s state and the

content of the cell that the head is scanning, tell the machine what it should do next. This

can involve changing the machine state, writing a different symbol on the cell that is being

scanned, and moving the head one cell to the left or to the right. For instance, one such

instruction could be “If the state is 𝑞2 and the symbol being read is 1, change the state to 𝑞5,

change the symbol to 0, and stay in the same cell,” while another could be “If the state is

𝑞0 and the symbol is 0, change the state to 𝑞1, leave the symbol unchanged, and move the

head one cell to the right.”

Important note

A Turing machine is a (theoretical) device that has an unbounded tape divided into

cells and a head that scans one of those cells. At any given moment, the machine

is in an internal state from a finite number of possibilities. The instructions of the

Computational Complexity 545

machine specify, depending on the machine state and the content of the cell that

the head is scanning, what the next state is, the new content of the cell, and the

action of the machine (move left, move right, or stay, for instance).

In order to perform a computation, the input is given as a finite string of symbols on the

tape (the rest are left blank). Then, the Turing machine operates in the following way:

it starts in a predefined initial state and with its head scanning the first symbol of the

input; then, it changes its state, tape content, and head position following its instructions

in discrete steps. Eventually, the machine can stop because it reaches a predefined, halting

state. If the machine stops, the output of the computation is the string of symbols written

on the tape.

To learn more. . .

It is not guaranteed that a Turing machine will stop for all its inputs. In fact, it

can be proved that determining whether a Turing machine will eventually stop

with a given input (what is usually called the halting problem) is unsolvable in a

very precise way: there is no algorithm that can give the correct answer for every

possible Turing machine and every possible input. Check the book by Sipser [26]

for a proof of this amazing fact.

Turing machines may seem like too simple a model, but it can be proved that any compu-

tation that can be carried out with any other reasonable computational model can also

be carried out with a Turing machine (maybe with some slowdown). For instance, it is

rather straightforward to prove that if we extend Turing machines by giving them multiple

tapes (multi-tape Turing machines) or the possibility of non-deterministically choos-

ing among several instructions for the same state-symbol situation (non-deterministic

Turing machines), the new devices aren’t more powerful than our original single-tape,

deterministic Turing machines (again, see the book by Sipser [26] for all the details). The

same happens if we consider models that are much closer to the actual architecture of

546 Computational Complexity

modern computers, such as the Random-Access Machines model (see Section 3.4 in the

book by Savage [104]), or even models, such as that of while-Programs (see the book by

Kfoury, Moll, and Arbib [105]) that are based on common programming languages.

This has led to the firm belief that Turing machines indeed formally capture the informal

notion of what an algorithm is. This fact is usually known as the Church-Turing thesis.

Measuring computational time
We can say that the Church-Turing thesis is simply stating that, if you are only interested

in identifying which tasks can be solved algorithmically and which cannot, you can just use

any of a wide number of equivalent models: single-tape Turing machines, multi-tape Turing

machines, non-deterministic Turing machines, Random-Access Machines, while-Programs,

and many, many others. Each of them will give you exactly the same power.

But be cautious! If you care about the resources needed to carry out the computations (and

that is what computational complexity is all about), then the choice of the model can be

important. So let’s fix, for now, the single-tape Turing machines (the ones that we have

described informally in the previous section) as our computational model. In this way, we

can easily measure the time needed to carry out a certain computation with one of these

Turing machines as the number of steps that it must take to complete it.

That works well for a fixed Turing machine with a particular input, but we are usually more

interested in analyzing how the running time grows with the size of the input than we

are in finding concrete running-time values for concrete problem instances. For example,

we could be interested in knowing whether the time needed for a certain task grows so

rapidly that it quickly becomes unfeasible to solve the problem when the input size becomes

moderately big.

For this reason, we will define the running time of a Turing machine as a function of the

input length, not as a function of the particular input. Namely, the running time of a Turing

machine 𝑀 is a function 𝑇 that takes as input a non-negative integer 𝑛 and returns the

maximum number of steps that 𝑀 performs with an input 𝑥 of 𝑛 bits before it stops. Notice

Computational Complexity 547

that this is a worst-case definition of running-time: it is defined in terms of the string that

needs the most time in order to be processed. Note also that, if a machine does not stop

for some inputs, its running time for inputs of those lengths will be infinite. This is not a

problem for our purposes, because we will only consider machines that always stop.

Important note

The running time of a Turing machine 𝑀 is a function 𝑇 such that 𝑇 (𝑛) is the

maximum number of steps that 𝑀 performs when given an input of length 𝑛.

For other computational models, running times can be defined in analogous ways. For

instance, for multi-tape Turing machines, the running time is again measured as the

maximum number of steps performed on inputs of size 𝑛. For computational models that

use idealized programming languages (the while-Programs model, for instance) or abstract

architectures (the Random-Access Machines model), running time can be defined as the

maximum number of basic instructions (setting a variable to zero, incrementing a variable,

comparing the value of two variables...) executed with inputs of size 𝑛.

Asymptotic complexity
In order to compare different running times associated with different Turing machines,

it is convenient to perform some simplifications. We usually do not care about whether

the running time of a Turing machine is exactly 𝑇1(𝑛) = 4321𝑛2 + 784𝑛 + 142 or, rather,

𝑇2(𝑛) = 𝑛3 + 3𝑛2 + 5𝑛 + 3. In fact, we are more interested in whether 𝑇 (𝑛) grows roughly

like 𝑛3 or like 𝑛2, because this implies a qualitative difference: for values of 𝑛 that are big

enough, any polynomial of degree 3 grows more rapidly than any polynomial of 2. In the

context of computational complexity theory, we would always prefer a 𝑇 (𝑛) that grows as

𝑛2 over one that grows as 𝑛3, because its behavior for big inputs (its asymptotic growth, in

other words) is better.

This intuitive idea is captured by the famous Big O notation. Given two time functions

𝑇1(𝑛) and 𝑇2(𝑛), we say that 𝑇1(𝑛) is 𝑂(𝑇2(𝑛)) (and we read it is as “𝑇1(𝑛) is Big O of 𝑇2(𝑛)”)

if there exist an integer constant 𝑛0 and a real constant 𝐶 > 0 such that for all 𝑛 ≥ 𝑛0 it

548 Computational Complexity

holds that

𝑇1(𝑛) ≤ 𝐶𝑇2(𝑛).

For instance, you can check that 4321𝑛2 + 784𝑛 + 142 is 𝑂(𝑛3 + 3𝑛2 + 5𝑛 + 3).

The main idea behind this definition is that if 𝑇1(𝑛) is 𝑂(𝑇2(𝑛)), then the growth of 𝑇1 is

not worse than that of 𝑇2(𝑛). For example, it is easy to prove that 𝑛𝑎 is 𝑂(𝑛𝑏) whenever

𝑎 ≤ 𝑏 and that 𝑛𝑎 is 𝑂(2𝑛) for any 𝑎. But, on the other hand, 𝑛𝑏 is not 𝑂(𝑛𝑎) and 2𝑛 is

not 𝑂(𝑛𝑎). See Figure C.1 for an example with linear, quadratic, cubic, and exponential

functions. Notice how the exponential function eventually dominates all the others despite

having 10−4 as its coefficient.

Figure C.1: Growth of linear, quadratic, cubic, and exponential functions

Computational Complexity 549

Important note

Given two non-negative functions 𝑇1(𝑛) and 𝑇2(𝑛), we say that 𝑇1(𝑛) is 𝑂(𝑇2(𝑛)) if

there exist 𝑛0 and 𝐶 > 0 such that

𝑇1(𝑛) ≤ 𝐶𝑇2(𝑛)

for every 𝑛 ≥ 𝑛0.

Big O notation is extremely useful to estimate the behavior of running times without

having to focus on small, cumbersome details. If the running time of a Turing machine

is 4321𝑛2 + 784𝑛 + 142, we can just say that it is 𝑂(𝑛2) and forget about the particular

coefficients in the time function. This is also the reason why we can abstractly think about

the number of steps and not, for example, milliseconds. The particular amount of time that

each step takes is a constant that will be “absorbed” by the Big O notation.

However, this comes at a price. A running time such as 10100𝑛2 is certainly 𝑂(𝑛2). But

it is not preferable to 𝑛3 unless 𝑛 > 10100, something that will never happen in practical

situations, because 10100 is much, much bigger than the number of atoms in the visible

universe. So use this notation wisely: with Big O comes Big Responsibility.

P and NP
As we mentioned at the beginning of this appendix, computational complexity theory

studies the amount of resources needed to solve problems with algorithms. So far, we

have focused on how to mathematically define the notion of algorithm with the help of

Turing machines and on how to measure the time needed to perform computations with

them. Now, we turn our attention to defining computational problems and classifying

them according to the time they take to be solved. That is, we will think in terms of their

inherent complexity and not in terms of specific algorithms.

In computational complexity theory, a problem consists of an infinite number of instances

or inputs for which an output value needs to be returned. For example, we may be given

550 Computational Complexity

two natural numbers and asked to compute their product. Or we may be given a graph and

asked to check if it has a Hamiltonian path or not. In both cases, the number of possible

inputs is infinite and there is a well-defined output or answer associated with each such

input.

Problem instances are usually encoded as binary strings in some way. For example, we

can represent a natural number by its binary expansion or a graph by (the concatenation

of the rows of) its adjacency matrix. In the same way, outputs can also be represented

by binary strings. Consequently, a problem can be identified with a function that takes a

binary string as its input and returns a binary string as its output. But a Turing machine

does exactly that: it receives binary strings as inputs and returns binary strings as outputs.

This allows us to study which problems can be solved with Turing machines and how much

time is needed to solve them.

In computational complexity, the simplest category of problem that we can consider is that

of decision problems, in which the output is a single bit (we usually identify 1 with “true”

and 0 with “false”). Examples of decision problems include determining whether a natural

number 𝑚 is prime, determining whether a graph has a Hamiltonian path, and determining

whether a Turing machine stops for all its inputs.

We say that a Turing machine is a decider for a decision problem if, given as input a binary

string representing an instance of the problem, it eventually stops and returns the correct

output (0 or 1) for that instance. In that case, we also say that the Turing machine solves

or decides the problem. There exist deciders for the problems of determining whether a

number is prime and of determining whether a graph has a Hamiltonian path, but not for

the problem of determining whether a Turing machine stops for all of its inputs (this is a

consequence of the unsolvability of the halting problem that we mentioned earlier).

Once we know that a problem has a decider, we can try to further refine its classification

by taking into account the resources used by the decider. This leads, for instance, to the

definition of the famous 𝑃 (short for “polynomial time”) class. We say that a decision

problem 𝐴 is in 𝑃 if there exists a decider for 𝐴 that runs in polynomial time. That is,

Computational Complexity 551

there exists a Turing machine 𝐷 that decides 𝐴 and whose running time 𝑇 (𝑛) is 𝑂(𝑛𝑎) for

some non-negative integer 𝑎. Notice that, for a problem to be in 𝑃 , it is enough to find one

polynomial-time decider for it. However, in order to show that a decision problem 𝐴 is

not in 𝑃 , we need to prove that no Turing machine running in polynomial time is able to

decide 𝐴. This is usually much, much harder to do.

As an example, a celebrated result by Agrawal, Kayal, and Saxen [106] shows that the

problem of determining whether a natural number is a prime is indeed in 𝑃 . Other, simpler

examples of problems in 𝑃 include checking whether a number is a perfect square or

checking whether a binary string is a palindrome (that is, it reads the same from left to

right and from right to left). However, for the problem of determining whether a graph has

a Hamiltonian path, we do not know whether it is in 𝑃 or not. We very strongly believe

that it is not in 𝑃 , but despite the best efforts of thousands of mathematicians over several

decades, we still can’t prove it.

Important note

We define 𝑃 as the class of decision problems that can be solved with Turing machines

in polynomial time.

Actually, 𝑃 is interesting for several reasons. First, it is quite robust. We have defined it in

terms of the computation time required by deciders that are single-tape Turing machines.

However, if we had chosen another computational model such as, for instance, multi-tape

Turing machines, then we would have arrived at exactly the same set of problems. This is

so because it is possible to simulate a multi-tape Turing machine with a single-tape Turing

machine with just a polynomial overhead in running time. The same is true for any other

reasonable (classical) computational model, so although the particular running time might

differ from one model to another (say 𝑂(𝑛4) with single-tape Turing machines and 𝑂(𝑛2)

with 2-tape Turing machines), one will be polynomial if and only if the other is.

What is more, 𝑃 seems to capture quite well the notion of a problem being efficiently

solvable. It is true that in 𝑃 we allow running times such as 𝑛1000, which can hardly be

deemed as efficient. However, the running time of naturally-occurring problems that we

552 Computational Complexity

can prove to be in 𝑃 is typically much more tame, such as 𝑂(𝑛2) or 𝑂(𝑛3). Moreover, if a

decision problem is not in 𝑃 , then the running time of any of its deciders will grow faster

than any polynomial (at least, for an infinite number of its inputs). And that is something

that we can unequivocally classify as not efficient at all.

Another central class of problems in computational complexity is 𝑁𝑃 . It is, again, a class

of decision problems. But, in this case, the defining property is not that we can solve

them efficiently (as in the case of 𝑃) but that we can check their solutions with an efficient

algorithm. To make this idea formal, we say that a problem 𝐴 has a polynomial-time

verifier if there exists a Turing machine 𝑉 that runs in polynomial time and a polynomial

𝑞 with the two following properties:

• If 𝑥 is an instance of problem 𝐴 of size 𝑛 for which the answer is “true,” then there

exists a binary string 𝑦 of length at most 𝑞(𝑛) such that 𝑉 on input (𝑥, 𝑦) returns 1.

The string 𝑦 is usually called a witness, a certificate, or a proof for 𝑥 .

• If 𝑥 is an instance of problem 𝐴 of size 𝑛 for which the answer is “false,” then for

every binary string 𝑦 of length at most 𝑞(𝑛), 𝑉 on input (𝑥, 𝑦) returns 0.

This definition is a little bit convoluted, so let’s analyze it in detail. The idea here is that for

an instance 𝑥 of 𝐴 whose answer is positive, we can find a certificate 𝑦 that is not long (its

length is polynomial in the size 𝑥) and that we can check when we are given 𝑦 together

with 𝑥 , with an efficient algorithm. However, for instances whose answer is negative, there

is no such certificate. Note also that the total running time of 𝑉 on (𝑥, 𝑦) is polynomial in

the length of 𝑥 , because 𝑉 runs in polynomial time in its whole input and 𝑦 has a length

that is polynomial in 𝑥 . Hence, this definition really captures the notion of checking that

the answer to 𝑥 is positive (through certificate 𝑦) with an efficient algorithm.

With this notion at our disposal, we can now define 𝑁𝑃 as the class of decision problems

for which there exists a polynomial-time verifier.

Computational Complexity 553

To learn more. . .

An alternative, but equivalent, definition of 𝑁𝑃 can be given in terms of non-

deterministic Turing machines. In fact, 𝑁𝑃 is short for “non-deterministic polyno-

mial time.” You can find all the details in Sipser’s book [26].

Let’s discuss an example to illustrate this definition. The problem of determining whether

a graph has a Hamiltonian path is in 𝑁𝑃 . The certificate 𝑦 can, in this case, be just a

Hamiltonian path in the graph. Indeed, it is easy to write a program (in Python, for

example) that, given a graph represented by 𝑥 and a sequence of vertices represented by 𝑦,

checks whether 𝑦 is a path in 𝑥 that visits all the vertices in the graph. Moreover, we can

easily do this computation in polynomial time and the certificate is always of size linear

in the number of graph vertices. As required, for graphs that have a Hamiltonian path,

there exists at least a certificate. However, for graphs without Hamiltonian paths, no 𝑦

will make the verifier output 1. If needed, we could translate our algorithm into Turing

machine instructions; it is a tedious process, but it has no real difficulty.

Important note

𝑁𝑃 is the class of decision problems whose solution can be verified with Turing

machines in polynomial time.

Similar arguments can be given to prove that many important problems are in𝑁𝑃 , including

determining whether a Boolean formula is satisfiable, determining whether a graph is

3-colorable, or determining whether a graph has a cut of size bigger than a given integer

𝑘. The certificates for them can, of course, be a satisfying assignment, a 3-coloring of the

graph, and a cut of size bigger than 𝑘. All of them are of a size comparable to the problem

instances they certify and can be checked efficiently with obvious procedures.

Additionally, any problem in 𝑃 is also in 𝑁𝑃 . This is easily proved. By definition, a problem

𝐴 in 𝑃 has a decider. But we can directly use this decider to obtain a verifier for 𝐴: we only

need to ignore the candidate certificate 𝑦 and compute the answer with the decider itself.

554 Computational Complexity

If the machine knows how to solve the problem in polynomial time on its own, it does not

need any external help!

So, we know that 𝑃 is contained in 𝑁𝑃 . And it seems like we should be able to prove that

they are different, because there must be problems whose solutions we can check efficiently,

but for which it is impossible to find those same solutions in a reasonable amount of time,

right? Well, it turns out that this is by no means an easy task. In fact, it is literally the

million-dollar question!

Determining whether 𝑃 = 𝑁𝑃 is one of the seven Millennium Problems selected by

the Clay Mathematics Institute in 2000 as the most important open questions in all of

mathematics (for an accessible account of the Millennium Problems, check the book by

Keith Devlin [107]). Whoever is able to give proof showing that 𝑃 ≠ 𝑁𝑃 or to show that

every problem in 𝑁𝑃 is also in 𝑃 , will receive a one-million-dollar prize and will become

world-famous.

Important note

Every problem in 𝑃 is also in 𝑁𝑃 . The question of whether there are problems in

𝑁𝑃 that cannot be solved in polynomial time is one of the most important open

questions in all of mathematics.

Almost every expert in computational complexity believes that, in fact, 𝑃 ≠ 𝑁𝑃 . All the

evidence points in that direction. And it certainly seems logical that checking a solution

should be easier in general than finding a solution. However, no one has yet succeeded

in proving that there are problems in 𝑁𝑃 that are not in 𝑃 , and the most natural proof

techniques have been shown to be insufficient (see Section 6.5 in the epic book by Moore

and Mertens [108]).

Hardness, completeness, and reductions
Although our current mathematical tools are not powerful enough to give satisfactory

lower bounds on the resources needed by computational problems, we do know a good

Computational Complexity 555

deal more about comparing the relative hardness of problems. The main concept used for

that kind of comparison is what we call a reduction.

Intuitively, a reduction is a procedure to solve a problem from the solution to a different

problem. We could say that we reduce solving problem 𝐴 to solving problem 𝐵. So if we

know how to solve 𝐵 with an algorithm, we can use that algorithm and some additional

computation to also solve 𝐴.

To put it more formally, consider two problems 𝐴 and 𝐵, and imagine that we have an

algorithm𝑀𝐵 that solves 𝐵. 𝑀𝐵 is usually called an oracle for 𝐵. We say that 𝐴 is reducible

to 𝐵 if we can solve 𝐴 given an oracle for 𝐵. For instance, multiplying two numbers is

reducible to adding two numbers: if we are given an oracle that adds numbers, we can use

it to multiply by repeated addition.

Of course, when studying computational classes such as 𝑃 and 𝑁𝑃 , we are interested in

reductions that take a polynomial amount of time. But how can we capture that idea

formally? Well, we can simply count each call to the oracle as just another step in the

computation. Then, we say that a problem 𝐴 is polynomial-time reducible to a problem

𝐵 if, given an oracle 𝑀𝐵 for 𝐵, we can solve any instance 𝑥 of 𝐴 with a total number of

computational steps plus calls to 𝑀𝐵 that is polynomial in the size of 𝑥 . Another way

of seeing this is imagining that we extend our Turing machines with the capability of

computing 𝑀𝐵 in a single step (these new devices are unsurprisingly called oracle Turing

machines). Then, showing that 𝐴 is polynomial-time reducible to 𝐵 is the same as finding

an oracle Turing machine (with an oracle for 𝐵) that solves 𝐴 in polynomial time.

Notice that 𝐴 being polynomial-time reducible to 𝐵 has important consequences. The first

one is that if 𝐵 is in 𝑃 , then 𝐴 is also in 𝑃 . This is so because, if 𝐵 is in 𝑃 , we can replace

every call to 𝑀𝐵 with an actual Turing machine that solves 𝐵 and runs in polynomial time,

making the total time involved in solving 𝐴 also polynomial. This also implies that if 𝐴 is

not in 𝑃 , then 𝐵 cannot be in 𝑃 either, because it would lead us to a contradiction.

Now, we say that a problem 𝐵 is 𝑁𝑃-hard if every problem 𝐴 in 𝑁𝑃 is polynomial-time

reducible to 𝐵. This means that 𝐵 is at least as hard as any problem 𝐴 in 𝑁𝑃 , because if

556 Computational Complexity

we knew how to solve 𝐵 efficiently, then we would also know how to solve 𝐴 efficiently.

And if at least one problem in 𝐴 cannot be solved in polynomial time, that implies that 𝐵

cannot be solved in polynomial time either.

Important note

A problem is 𝑁𝑃-hard if every problem in 𝑁𝑃 is polynomial-time reducible to it.

Being 𝑁𝑃-hard seems like a very strong property. Is it really possible for every problem

𝐴 in 𝑁𝑃 to be reduced to a single problem 𝐵? As surprising as this may seem, we know

of hundreds (if not thousands) of problems that occur naturally in practice and that are

indeed 𝑁𝑃-hard. A notable example is the problem of determining whether a Boolean

formula is satisfiable or not, also called SAT. That SAT is 𝑁𝑃-hard is the content of the

famous Cook-Levin theorem (see the book by Sipser for a proof [26]). In Chapter 3, Working

with Quadratic Unconstrained Binary Optimization Problems, we work with many 𝑁𝑃-hard

problems. For many other examples and much more on the concept of 𝑁𝑃-hardness, you

can check the classical book by Garey and Johnson [109].

In fact, it turns out that we can prove that SAT and other decision problems in 𝑁𝑃 have a

property that is a bit stronger than 𝑁𝑃-hardness known as 𝑁𝑃-completeness. In order to

discuss it, we first need to talk about a special type of reduction that is very useful when

studying decision problems. We say that a decision problem 𝐴 is many-one reducible to

a decision problem 𝐵 if there exists an algorithm 𝐹 that transforms an instance 𝑥 of 𝐴 into

an instance 𝐹(𝑥) of 𝐵 with the property that the answer to 𝑥 in 𝐴 is positive if and only if

the answer to 𝑥 in 𝐵 is positive.

Note that, in this case, we indeed have a reduction in the more general sense that we were

discussing earlier. If we are given an oracle 𝑀𝐵 for 𝐵, we can solve any instance 𝑥 of 𝐴 by

computing 𝐹(𝑥) and applying 𝑀𝐵 to 𝐹(𝑥). Here, we are using only one call to 𝑀𝐵, but in a

general reduction, we can use 𝑀𝐵 as many times as we see fit. Thus, a many-one reduction

is a special case of a reduction. Additionally, in the case in which the transformation 𝐹 can

be computed in polynomial time, we say that we have a polynomial-time many-one

reduction.

Computational Complexity 557

Important note

A polynomial-time many-one reduction of a decision problem 𝐴 to a decision

problem 𝐵 is a polynomial-time algorithm 𝐹 that takes instances 𝑥 of 𝐴 to instances

𝐹(𝑥) of 𝐵 with the property that the answer to 𝑥 in 𝐴 is “true” if and only if the

answer to 𝐹(𝑥) in 𝐵 is “true.”

Now, we can actually define that subclass of 𝑁𝑃-hard problems that we talked about

before: the class of 𝑁𝑃-complete problems. We say that a problem is 𝑁𝑃-complete if it

is both in 𝑁𝑃 and every problem in 𝑁𝑃 is polynomial-time many-one reducible to it. As

we mentioned before, SAT, for example, is 𝑁𝑃-complete. Other 𝑁𝑃-complete problems

include determining whether a graph is 3-colorable, determining whether the constraints

of a binary linear program can be satisfied, determining whether a graph has a cut of size

bigger than a given integer 𝑘, and many other natural decision problems.

𝑁𝑃-complete problems are central to the study of the 𝑃 ?= 𝑁𝑃 question because 𝑃 = 𝑁𝑃

if and only if at least one 𝑁𝑃-complete problem is in 𝑃 . So, you can focus on, say, just

studying SAT. If you find a polynomial-time algorithm for it, then 𝑃 = 𝑁𝑃 . If, on the

contrary, you show that it is impossible to solve SAT in polynomial time, you have found a

problem in 𝑁𝑃 that is not in 𝑃 and then, immediately, you can conclude that 𝑃 ≠ 𝑁𝑃 .

Important note

A problem 𝐵 is 𝑁𝑃-complete if it is in 𝑁𝑃 and every other problem 𝐴 in 𝑁𝑃 is

polynomial-time many-one reducible to 𝐵.

There are, of course, 𝑁𝑃-hard problems that are not 𝑁𝑃-complete. This is the case, for

instance, if you have an 𝑁𝑃-hard problem that is not a decision problem (and, hence,

cannot be in 𝑁𝑃). Many problems that we study in Chapter 3, Working with Quadratic

Unconstrained Binary Optimization Problems, fall under that category. For instance, finding

a minimal coloring for a graph is clearly 𝑁𝑃-hard. If you knew how to solve this problem

efficiently, then you could also determine whether a graph is 3-colorable (you just need to

compute the minimal coloring and check whether its number of colors is at most 3). But

558 Computational Complexity

checking whether a graph is 3-colorable is 𝑁𝑃-hard and, thus, finding a minimal coloring

is also 𝑁𝑃-hard.

Many other examples of problems that are optimization versions of 𝑁𝑃-complete problems

are also 𝑁𝑃-hard, including determining the maximum number of clauses that can be

simultaneously satisfied in a Boolean formula in conjunctive normal form (the MAX-SAT

problem), finding a maximum cut in a graph (the Max-Cut problem), finding a minimum-

cost solution of a binary linear program, or solving the Traveling Salesperson problem.

However, none of them is 𝑁𝑃-complete because they are not in 𝑁𝑃 : they are not decision

problems to start with and, moreover, it is far from clear that you could check efficiently

that a candidate solution is, indeed, an optimal solution!

A very brief introduction to quantum
computational complexity
So far, we have focused only on measuring time complexity with classical models. However,

this is a book on quantum computing, so it is natural to ask what will change if we consider

quantum computational models instead. This is studied in quantum computational

complexity theory, a fascinating topic that is totally beyond the scope of this book.

Let us, however, say a few words on the kind of concepts that arise when quantum models

are considered instead of classical Turing machines. This is not at all needed to understand

any other part of the book, so feel completely free to skip it. We will need to be brief, but

you can refer to the survey by Watrous [110] for more details.

It turns out that it is possible to define a class of problems that can be seen as a quantum

analogous to 𝑃 . This class is known as 𝐵𝑄𝑃 , and it contains those decision problems that

can be solved with bounded error in polynomial time with a quantum algorithm.

There are a couple of things that we need to clarify here. The first one is that quantum

algorithms being probabilistic, we cannot expect the correct answer to a decision problem

to always be obtained. Instead, we impose that this correct answer is returned, for each

input, with high probability. Formally, the requirement is that for every positive instance 𝑥 ,

Computational Complexity 559

the probability of obtaining 1 when the input to the algorithm is 𝑥 should be at least 2/3;

similarly, for every negative instance 𝑥 , the probability of obtaining 0 when the algorithm

runs on 𝑥 should be at least 2/3. In this way, we can repeat the procedure with the same

input several times and take the majority result. If the number of repetitions is big enough

(but fixed), we can make the probability of error arbitrarily small while still having a total

running time that is polynomial.

To learn more. . .

𝐵𝑄𝑃 is not exactly analogous to 𝑃 but to another (classical) computational class

called 𝐵𝑃𝑃 . The class 𝐵𝑃𝑃 contains those decision problems that can be solved with

bounded error in polynomial time with a probabilistic Turing machine (that is, a

Turing machine with multiple instructions for certain state-symbol situations and

that can decide which instruction to execute based on a sequence of random bits).

𝐵𝑃𝑃 stands for bounded-error probabilistic polynomial time while 𝐵𝑄𝑃 stands

for bounded-error quantum polynomial time.

The other thing that needs to be clarified about our definition of 𝐵𝑄𝑃 is what we exactly

understand by a quantum algorithm. In the classical case, we have identified this notion

with a (single-tape) Turing machine. It is possible to define a quantum version of Turing

machines (see, for instance, the paper by Bernstein and Vazirani [111]) and use it in our

definition. But since our primary model for quantum computations throughout this book

is the quantum circuit model, a natural question is whether we can also use it to formalize

the notion of quantum algorithm.

In fact, we can give a definition of what is a quantum algorithm in terms of quantum

circuits, and this definition is equivalent in computational power to the one in terms of

quantum Turing machines (and polynomially equivalent with respect to running time).

However, there exist several subtleties that need to be confronted.

The first one is related to being able to consistently measure the execution time of a

quantum circuit. To do that, we need to fix a finite set of gates and express every circuit

using only those gates. Then, we can assign a cost of one unit to each of those gates and

560 Computational Complexity

measure the running time of a circuit as its total number of gates. Otherwise, if we allow

arbitrary gates, then we could argue that any circuit is just a single unitary gate (plus some

measurements), something that is clearly meaningless in terms of analyzing its complexity.

Notice that fixing a finite set of permitted gates also allows us to describe every circuit as a

finite binary string, for instance, giving a list of the gates that we use and the qubits on

which we apply them.

The finite set of gates needs to be chosen in a way that we can approximate any given

quantum circuit to arbitrary precision. A possible way of doing this is explained in the

survey by Watrous [110].

A second technical problem that we need to tackle is that, while a Turing machine can

process inputs of any size, every quantum circuit has a fixed number of qubits and, hence,

only admits inputs of a fixed size. As a consequence, we cannot represent a full algorithm

(that needs to be able to solve every possible instance of a problem) with just one quantum

circuit: we need to consider an infinite family of circuits, one for each input size. So, a

quantum algorithm is not a single quantum circuit, but a collection {𝐶𝑛} of circuits, one for

each natural number 𝑛, so that 𝐶𝑛 admits 𝑛 qubits as its input.

The final issue that we need to address is related to the way in which we select that infinite

family of circuits. If we allow any collection of circuits to represent a quantum algorithm,

then we can end up in pathological situations such as being able to solve (a problem

equivalent to) the Halting problem, which we know to be uncomputable! This is because

we could just select a different, totally unrelated quantum circuit for each size in a way

that the quantum circuit already “knows” the answer to the Halting problem for its input

size. This is not something particular to just quantum circuits. The same happens with

classical Boolean circuits (as we mentioned, this is a subtle point; see Section 2.2 in the

book by Kitaev et al. [112] or Chapter 6 in the book by Arora and Barak [103], especially

what is said there about the 𝑃/𝑝𝑜𝑙𝑦 class of problems).

The solution to this issue is to specify all the quantum circuits in the family in a uniform

way. For instance, we can impose that there exists a (classical) Turing machine that, given

Computational Complexity 561

a natural number 𝑛, generates the circuit for input size 𝑛 in polynomial time (in 𝑛). In

this way, we can’t hide any additional complexity in the selection of the quantum circuits.

Remember that we can represent our quantum circuits as finite binary strings (because we

have fixed a finite number of allowable quantum gates), so it makes sense to obtain them

as the output of a Turing machine. Moreover, every circuit will have a polynomial size (a

polynomial-time Turing machine can only output a polynomial number of bits, after all)

and hence a polynomial running time.

Important note

𝐵𝑄𝑃 is the class of decision problems that can be solved with bounded error by

polynomial-time uniform families of quantum circuits.

Now that we have defined 𝐵𝑄𝑃 , it is natural to ask about its relationship with 𝑃 and 𝑁𝑃

in order to be able to assess the power of quantum computers when compared to that of

classical ones.

It is easy to show that 𝑃 ⊆ 𝐵𝑄𝑃 , that is, that every problem in 𝑃 is also in 𝐵𝑄𝑃 . This follows

directly from the fact that we can simulate any classical Boolean circuit with a quantum

circuit (as we show in Section 1.5.2) and from the fact that polynomial-time uniform families

of classical circuits are equivalent to polynomial-time Turing machines (see Section 6.2 in

the book by Arora and Barak [103]). But this is not surprising at all, because we expect

quantum computers to be at least as powerful as classical computers.

So the question that we should really ask is whether there are problems in 𝐵𝑄𝑃 that are

not in 𝑃 . The short answer is that. . . we don’t know. Proving it would imply a major break-

through not only in quantum computational complexity but also in classical computational

complexity theory. It can be proved that 𝐵𝑄𝑃 is contained in 𝑃𝑆𝑃𝐴𝐶𝐸, the class of decision

problems solvable in polynomial space. Showing that 𝑃 is different from 𝐵𝑄𝑃 would also

imply that 𝑃 is different from 𝑃𝑆𝑃𝐴𝐶𝐸, which is a major open question in computational

complexity (although it should be easier to solve than the 𝑃 versus 𝑁𝑃 problem, because

𝑁𝑃 is also contained in 𝑃𝑆𝑃𝐴𝐶𝐸).

562 Computational Complexity

That being said, we have good reasons to believe that there are problems in 𝐵𝑄𝑃 that are

not in 𝑃 . In fact, we have a very good candidate: the factoring problem (given natural

numbers 𝑚 and 𝑘, check whether 𝑚 has a factor 𝑙 ≠ 1 that is less than 𝑘) is in 𝐵𝑄𝑃 thanks

to Shor’s algorithm [6], but it would be really, really surprising if it were in 𝑃 . In fact, many

cryptographic protocols currently in use rely on the assumption that factoring is not in 𝑃 .

So, every time that you buy something online and you send your credit card number over

the internet, you are implicitly trusting that 𝑃 and 𝐵𝑄𝑃 are not equal (and that nobody

owns a powerful enough quantum computer!).

And what about 𝐵𝑄𝑃 and 𝑁𝑃? The situation there is a little bit more complicated. The

evidence that we have seems to imply that there are problems in 𝐵𝑄𝑃 that are not in 𝑁𝑃

(one of the strongest results in this direction can be found in a recent paper by Raz and

Tal [113]). But we also have some evidence that seems to suggest that there are problems in

𝑁𝑃 that are not in 𝐵𝑄𝑃 , due to results by Bennett, Bernstein, Brassard, and Vazirani [114]

that show that Grover’s algorithm is, in a certain sense, optimal among quantum algorithms

for search tasks.

If all this is true, it would imply that there are problems that we can solve efficiently

with quantum algorithms that we couldn’t solve efficiently even with non-deterministic

machines. But, contrary to what can be read sometimes in the media, it also would imply

that not every problem in 𝑁𝑃 could be solved efficiently with a quantum computer, even if

it were fault-tolerant. In particular, it would imply that no 𝑁𝑃-complete problem could be

solved efficiently with quantum algorithms (we have represented all these relationships in

Figure C.2).

Does this mean that quantum computers are not useful at all for optimization problems? Not

necessarily. The methods that we describe in Part 2 of this book may not be able to give the

optimal solution to every optimization problem out there. But they provide approximation

algorithms that might beat whatever is possible with just classical algorithms. For instance,

the QAOA algorithm that we study in Chapter 5, QAOA: Quantum Approximate Optimization

Algorithm, is considered a possible candidate for that kind of advantage (for some recent

results in this direction, see the papers by Basso et al. [115] and by Farhi et al. [116], but

Computational Complexity 563

NP

BQP

P

NP-complete

Figure C.2: Possible relationships between 𝑃 , 𝑁𝑃 , 𝐵𝑄𝑃 , and 𝑁𝑃-complete problems according
to the available evidence and the most accepted conjectures. Be warned: some of these classes
might end up being completely equal!

also check the response by Hastings [117]). And even if that were not the case, methods

such as quantum annealing (described in Chapter 4, Adiabatic Quantum Computing and

Quantum Annealing) or QAOA may provide good heuristics that are useful in practice, in

the same way that genetic algorithms, simulated annealing, or particle-swarm optimization

are used to solve practical problems in many different fields.

D
Installing the Tools

Man is a tool-using animal. Without tools he is nothing, with tools he is all.

— Thomas Carlyle

In this appendix, we will give you all the instructions needed to run the code examples

provided in the main text. We will start by guiding you through the process of installing

the software that we will use, then we will learn how to access the real quantum computers

on which we will run our code, and finally, we will also show you how to accelerate some

of the executions by using a GPU.

Getting Python
All the quantum programming libraries that we use in this book are based on Python, so

you need to have a working Python distribution. If your operating system is Linux or

macOS, you probably have one already. If your Python version is at least 3.7, then you are

ready to go.

566 Installing the Tools

However, even if you already have Python installed on your system, we recommend that

you consider following one of these two options:

• Installing Anaconda: Anaconda is a data science software distribution that includes,

among other things, Python and many of its scientific libraries. In addition, it also

includes Jupyter, an extremely useful web-based interactive computing platform that

allows you to run code, write text and formulas, and visualize graphics, all organized

into notebooks. For convenience, we provide all the code of the book in Jupyter

notebooks that you can download from https://github.com/PacktPublishing/A

-Practical-Guide-to-Quantum-Machine-Learning-and-Quantum-Optimization.

If you install Anaconda, you will have most of the non-quantum software libraries

that we use in the book already on your system, plus some additional ones that you

may find convenient for other, related projects.

There is a version of Anaconda called Anaconda Distribution that is free to down-

load from https://www.anaconda.com/products/distribution. It is available for

Windows, Linux, and Mac. Anaconda Distribution provides a graphical installer, so

it is super easy to set up. In case of doubt, you can always check the installation

instructions at https://docs.anaconda.com/anaconda/install/index.html.

Once you install Anaconda, we recommend that you launch it and run JupyterLab.

This will open an IDE in your web browser that you can use to manage Jupyter

notebooks and start running code right away. For a quick introduction to how to use

JupyterLab, you can check this overview of its interface included in the JupyterLab

documentation: https://jupyterlab.readthedocs.io/en/stable/user/interfa

ce.html.

• Using Google Colab: If you prefer not to install anything on your own computer,

we also have an option for you. Google Colab is a web-based environment provided

by Google in which you can run Jupyter notebooks with Python code. In fact, its

interface its very similar to that of Jupyter and can be used to run all the code in

https://github.com/PacktPublishing/A-Practical-Guide-to-Quantum-Machine-Learning-and-Quantum-Optimization
https://github.com/PacktPublishing/A-Practical-Guide-to-Quantum-Machine-Learning-and-Quantum-Optimization
https://www.anaconda.com/products/distribution
https://docs.anaconda.com/anaconda/install/index.html
https://jupyterlab.readthedocs.io/en/stable/user/interface.html
https://jupyterlab.readthedocs.io/en/stable/user/interface.html

Installing the Tools 567

this book (we know because we did it ourselves!) in addition to many other projects,

especially those related to machine learning and data science.

The main difference between using Jupyter and Google Colab is that Colab does

not run on your computer but is cloud-based: it uses hardware owned by Google.

They provide you with a (usually modest) CPU, some amount of RAM, and some

disk space, and you also have the chance to request a GPU to accelerate the training

of your machine learning models.

The basic version of Google Colab is free to use: you only need a working Google

account to start using it at https://colab.research.google.com/. And should you

ever need more computational power, you can upgrade to a paid version (see more

details at https://colab.research.google.com/signup).

By the way, the tutorials at https://colab.research.google.com/ are really

helpful, so you will be running your projects in almost no time.

Each of these options has its pros and cons. With Anaconda, you have perfect control over

what you install, you get to use your own hardware (which probably is more powerful

than that available at Google Colab, maybe with the exception of those sweet GPUs), and

you can work offline. But you need to install everything yourself, keep it up to date, and

solve any version conflicts that may arise.

With Google Colab, you can start running code right away from any computer connected

to the internet, without the burden of having to install Python and many other libraries,

and you can use quite powerful GPUs for free. However, you need to be online all the time,

there are some restrictions on the number of projects that you can run simultaneously (at

least, with the free version), and the CPU speed is not that great.

The good thing is that any of these possibilities (or any other that gets you a running

Python distribution) works perfectly well for the purpose of running the code in this

book. Moreover, they are perfectly compatible with each other, so you can start writing

a notebook on Google Colab and complete it with Anaconda or vice versa. Since both

https://colab.research.google.com/
https://colab.research.google.com/signup
https://colab.research.google.com/

568 Installing the Tools

are free, you can try them both and use the one that better suits your needs at any given

moment.

Of course, we don’t want to be too prescriptive. If you don’t feel like relying on Anaconda

or on a cloud service, you can use your local machine without any add-ons and everything

will work just fine as long as you have the right versions of the packages that we will use.

Installing the libraries
Although both Anaconda and Google Colab come with a lot of data science, visualization,

and machine learning libraries already installed by default, they do not yet include any of

the quantum computing libraries that we use in this book.

However, getting them set up and running is a breeze with pip, a package manager that

comes bundled with Python — you don’t need to install Anaconda or access Google Colab

to use it. In order to install a new library with pip, you just need to run the following

instruction on your terminal:

pip install name-of-library

If you are using a Jupyter notebook to run your code, you can use exactly that same

instruction, but you need to write it in a cell of its own, with no additional code. If you

need to install several different libraries and you do not want to create a different cell for

each pip instruction, then you can put them all together in the same cell but you need to

use the escape symbol !. So, for instance, you can install three libraries in the same cell of

your Jupyter notebook like this:

!pip install first-library

!pip install second-library

!pip install last-library

Sometimes, you need to install a particular version of a library. This is the case with some

of the examples in this book. Don’t worry, because pip has your back in this too. You just

need to run the following instruction:

Installing the Tools 569

pip install name-of-library==version-number

For example, to install version 0.39.2 of Qiskit, which is the one that we use in this book,

you need to run the following instruction:

pip install qiskit==0.39.2

Of course, the same comments that we just made about escape symbols in Jupyter notebooks

apply to this case.

Important note

If you run a pip install command on a Jupyter notebook to install a different

version of a library that was already present on the system, you will probably need

to restart the kernel (if you are running a Jupyter notebook on your local machine)

or the runtime (in Google Colab) for the changes to take place.

In Table D.1 we have collected all the libraries needed for the code in this book, in the order

they appear in the main text, together with the version that we have used to create the

examples. The second column specifies the name of each library in pip, so that is the one

that you need to use with the pip install command.

You may have noticed that there are a couple of libraries in the list that we never explicitly

imported into our code. However, they are used by other packages to be able to plot circuits

(Pylatexenc) and to obtain Hamiltonians for molecular problems (PySCF), so they need to

be present in your system.

Some of the libraries already come with Anaconda and Google Colab. In fact, it is very likely

that the code in this book works with whatever version is included in those distributions,

so installing the exact version we mention in the table should not be especially important.

The only exceptions are PyTorch and TensorFlow: for them, the versions that you should

use are the ones listed in the table.

570 Installing the Tools

Library name Pip name Version number

Qiskit qiskit 0.39.2

Pylatexenc pylatexenc 2.10

Numpy numpy 1.21.6

Qiskit Aer GPU qiskit-aer-gpu 0.11.1

PennyLane pennylane 0.26

PennyLane Qiskit plugin pennylane-qiskit 0.24.0

Ocean dwave-ocean-sdk 6.0.1

Qiskit Optimization qiskit-optimization 0.4.0

Qiskit Nature qiskit-nature 0.4.5

Scipy scipy 1.7.3

Matplotlib matplotlib 3.2.2

PySCF pyscf 2.11

scikit-learn scikit-learn 1.0.2

TensorFlow tensorflow 2.9.1

Qiskit Machine Learning qiskit-machine-learning 0.5.0

Optuna optuna 3.0.3

PyTorch torch 1.13

Qiskit IBM Runtime qiskit-ibm-runtime 0.7.0

Table D.1: Libraries used in the book and their version numbers

For the libraries that do not come with Anaconda and Google Colab, it is highly recom-

mended to stick to the versions listed in the table. This is especially important for Qiskit

and all its modules, which tend to change their APIs quite frequently.

In any case, for convenience, in the book notebooks that you can download from https:

//github.com/PacktPublishing/A-Practical-Guide-to-Quantum-Machine-Learnin

g-and-Quantum-Optimization, we have explicitly included the installation commands of

those libraries with the exact version that we have used to create the examples. If you’re

running the code on a local Python installation, you just need to install these libraries

once, so you can remove the pip install commands after the first execution. However, if

you’re using Google Colab, you will need to run those commands every time you create a

new runtime, because there is no persistence of data from one session to another.

https://github.com/PacktPublishing/A-Practical-Guide-to-Quantum-Machine-Learning-and-Quantum-Optimization
https://github.com/PacktPublishing/A-Practical-Guide-to-Quantum-Machine-Learning-and-Quantum-Optimization
https://github.com/PacktPublishing/A-Practical-Guide-to-Quantum-Machine-Learning-and-Quantum-Optimization

Installing the Tools 571

Accessing IBM’s quantum computers
In order to be able to run circuits on IBM’s quantum computers from your Python programs,

you first need to create an IBM account. This can be done through the IBM Quantum login

page located at https://quantum-computing.ibm.com/login, and it is completely free.

Then, you need to obtain your API token. You can do this by going to https://quantu

m-computing.ibm.com/account, logging in if necessary, and finding the field titled API

token (see Figure D.1). Then, you can click the icon with the two rectangles next to the

string of asterisks to copy the token to your clipboard. Should you need it, this is also the

page where you can generate a new API token by clicking on Generate new token.

Figure D.1: Getting your IBM Quantum API token

Once you have the token, if you want to access IBM’s devices from your Qiskit programs,

you need to run the following instructions:

from qiskit import IBMQ

IBMQ.save_account("TOKEN")

where, of course, you should replace TOKEN with your actual token. Then, you can obtain

access to the IBM provider by using IBMQ.load_account(), as we do in the main text.

If you are using your local Python installation, you only need to save your account once

(and, additionally, whenever you change your API token). However, if you are using

Google Colab, you need to save your account in each new runtime. We have prepared the

notebooks that you can download from https://github.com/PacktPublishing/A-Pra

https://quantum-computing.ibm.com/login
https://quantum-computing.ibm.com/account
https://quantum-computing.ibm.com/account
https://github.com/PacktPublishing/A-Practical-Guide-to-Quantum-Machine-Learning-and-Quantum-Optimization
https://github.com/PacktPublishing/A-Practical-Guide-to-Quantum-Machine-Learning-and-Quantum-Optimization

572 Installing the Tools

ctical-Guide-to-Quantum-Machine-Learning-and-Quantum-Optimization so that you

only need to write your actual token in the ibm_token = instruction.

If you need to access IBM quantum computers from PennyLane, the process is almost the

same. The only difference is that you need to, additionally, install the PennyLane-Qiskit

plugin as seen in the previous section.

Accessing D-Wave quantum annealers
In order to access D-wave quantum annealers from your code, you first need to create a

free D-Wave Leap account at https://cloud.dwavesys.com/leap/signup/. This will give

you 1 minute of free access to run your problems on actual quantum devices, as explained

in Chapter 4, Adiabatic Quantum Computing and Quantum Annealing. If you want to extend

this access to get one additional free minute per month recurringly, you can provide your

GitHub username and repository by going to https://cloud.dwavesys.com/leap/plans/

#Custom and clicking Get Developer Access.

In any case, as with IBM quantum computers, you now need to get your API token. You

can achieve this by going to https://cloud.dwavesys.com/leap/, signing in if needed,

and finding the field titled API Token. This is usually located on the left part of the page,

under your name and account type (see Figure D.2). There, you can click on COPY to copy

the token to your clipboard and on RESET to generate a new token.

Then, you need to configure your access by running dwave config create. You can do

this either on a terminal or on a Python notebook or program, but in this latter case, you

need to use the escape symbol ! before the command. Then, you will be prompted to

enter some options for your configuration. You just need to go with the default values

(by pressing Enter) on all the questions with the exception of Authentication token, for

which you need to provide the API token that you copied from the D-Wave Leap website.

If you are using a local Python installation, this only has to be done once and, afterward, you

can access D-Wave’s quantum annealers as we describe in Chapter 4, Adiabatic Quantum

https://github.com/PacktPublishing/A-Practical-Guide-to-Quantum-Machine-Learning-and-Quantum-Optimization
https://github.com/PacktPublishing/A-Practical-Guide-to-Quantum-Machine-Learning-and-Quantum-Optimization
https://github.com/PacktPublishing/A-Practical-Guide-to-Quantum-Machine-Learning-and-Quantum-Optimization
https://cloud.dwavesys.com/leap/signup/
https://cloud.dwavesys.com/leap/plans/#Custom
https://cloud.dwavesys.com/leap/plans/#Custom
https://cloud.dwavesys.com/leap/

Installing the Tools 573

Figure D.2: Getting your D-Wave API token

Computing and Quantum Annealing. If you are using Google Colab, you need to run the

configuration step every time you use a new runtime.

Using GPUs to accelerate simulations in Google
Colab
As we mention in Chapter 2, The Tools of the Trade in Quantum Computing, using a GPU to

simulate quantum circuits can offer, in some cases, a noticeable speedup in computation

time. In general, the process of setting up a GPU to work with quantum libraries such as

Qiskit depends heavily on your hardware configuration and your GPU model (although, in

principle, only Nvidia GPUs are supported).

However, if you are using Google Colab, you have the chance of requesting a GPU to run

your circuits. The advantages of this approach are two-fold. Not only do you not need to

buy the GPU yourself, but you also don’t have to set it up.

To request a GPU for one of your Google Colab notebooks, you need to select the Change

runtime type option in the Runtime menu. Then, you need to select the GPU option (see

Figure D.3) and click Save. If there is availability, you will be assigned a GPU. To check the

574 Installing the Tools

status of the GPU, you can run !nvidia-smi -L. You will get an output like the following

(the model of GPU may vary from one session to another):

GPU 0: Tesla T4 (UUID: GPU-a6c87248-f520-fbc1-d604-309890a20713)

Figure D.3: Requesting a GPU

If this command executes without error, it means that you have access to a GPU. Now, to

use it in Qiskit, you need to install the Qiskit Aer GPU package by running the following

instruction:

pip install qiskit-aer-gpu==0.11.1

Notice that this will replace the usual Qiskit Aer module (the one that works with CPUs

only), so you may need to restart your runtime if you had already run some Qiskit code.

Now, you can try the GPU simulation by executing, for instance, the following instructions:

from qiskit import *

from qiskit.providers.aer import AerSimulator

sim = AerSimulator(device = 'GPU')

qc = QuantumCircuit(2, 2)

qc.h(0)

qc.cnot(0,1)

qc.measure(range(2), range(2))

Installing the Tools 575

job = execute(qc, sim, shots = 1024)

result = job.result()

counts = result.get_counts()

print(counts)

You will get an output exactly as if you were running the simulation on your CPU. It would

be something like this:

{'00': 489, '11': 535}

E
Production Notes

There are two things nobody should ever have to watch being made, sausage and laws.

— Mark Twain

This book was written in LATEX by the two of us in three different countries (Ireland,

Spain, and Switzerland) and in a wide variety of places: in offices at Maynooth University,

the University of Oviedo and CERN; in an apartment in Oviedo, a university dorm in

Maynooth, and an apartment in Geneva; in a sports pavilion; in the waiting rooms of

emergency departments of two different hospitals; near the beach; near the mountains; on

the backseat of a car; on some commuter trains; at several different airports; at a hotel in

Almería; and, probably, in some other locations that we do not remember now.

All this wouldn’t have been possible without adequate tools and apps. The main one

was Overleaf (https://www.overleaf.com), which allowed us to collaborate and work

simultaneously even while we were thousands of kilometers away from each other.

To help us write formulas, draw circuits, and format code in LATEX, we used quite a lot

of useful packages such as quantikz, physics, siunitx, and listings. To create the figures,

https://www.overleaf.com

578 Production Notes

we used TikZ, Graphviz (https://graphviz.org/), and the Graphviz Visual Editor

(http://magjac.com/graphviz-visual-editor/). To write the code examples and run

them, we used both Anaconda and Google Colab (as described in Appendix D, Installing the

Tools).

All of them are excellent tools that made writing this book a much more pleasant and easy

experience.

https://graphviz.org/
http://magjac.com/graphviz-visual-editor/

Assessments

Chapter 1, Foundations of Quantum Computing
(1.1) The probability of measuring 0 if the state of a qubit is

√
1/2 |0⟩+

√
1/2 |1⟩ is exactly

|||
√
1/2|||

2
= 1/2.

In the same way, the probability of measuring 1 is also 1/2. If the state of the qubit is

√
1/3 |0⟩ +

√
2/3 |1⟩, the probability of measuring 0 is

|||
√
1/3|||

2
= 1/3

and the probability of measuring 1 is

|||
√
2/3|||

2
= 2/3.

Finally, if the qubit state is

√
1/2 |0⟩ −

√
1/2 |1⟩, the probability of measuring 0 is

|||
√
1/2|||

2
= 1/2

and the probability of measuring 1 is

|||−
√
1/2|||

2
= 1/2.

580 Assessments

(1.2) The inner product of

√
1/2 |0⟩ +

√
1/2 |1⟩ and

√
1/3 |0⟩ +

√
2/3 |1⟩ is

√
1/2

√
1/3 +

√
1/2

√
2/3 =

√
1/6 +

√
1/3.

The inner product of

√
1/2 |0⟩ +

√
1/2 |1⟩ and

√
1/2 |0⟩ −

√
1/2 |1⟩ is

√
1/2

√
1/2 −

√
1/2

√
1/2 = 0.

(1.3) The adjoint of 𝑋 is 𝑋 itself and it holds that 𝑋𝑋 = 𝐼 . Hence, 𝑋 is unitary and its

inverse is 𝑋 itself. The operation 𝑋 takes 𝑎 |0⟩ + 𝑏 |1⟩ to 𝑏 |0⟩ + 𝑎 |1⟩.

(1.4) The adjoint of 𝐻 is 𝐻 itself and it holds that 𝐻𝐻 = 𝐼 . Hence, 𝐻 is unitary and its

inverse is 𝐻 itself. The operation 𝐻 takes |+⟩ to |0⟩ and |−⟩ to |1⟩. Finally, it holds that

𝑋 |+⟩ = |+⟩ and that 𝑋 |−⟩ = − |−⟩.

(1.5) It holds that

𝑍 |0⟩ = 𝐻𝑋𝐻 |0⟩ = 𝐻𝑋 |+⟩ = 𝐻 |+⟩ = |0⟩

and that

𝑍 |1⟩ = 𝐻𝑋𝐻 |1⟩ = 𝐻𝑋 |−⟩ = −𝐻 |−⟩ = − |1⟩ .

It also holds that

(

1√
2

1√
2

1√
2 − 1√

2
)(

0 1

1 0)(

1√
2

1√
2

1√
2 − 1√

2
)

=
(

1√
2

1√
2

1√
2 − 1√

2
)(

1√
2 − 1√

2
1√
2

1√
2
)

=
(
1 0

0 −1)
.

(1.6) Since 𝑒𝑖
𝜋
4 𝑒𝑖

𝜋
4 = 𝑒𝑖

𝜋
2 , it is apparent that 𝑇 2 = 𝑆. Also, we have 𝑒𝑖

𝜋
2 𝑒𝑖

𝜋
2 = 𝑒𝑖𝜋 = −1 by

Euler’s identity, so 𝑆2 = 𝑍 . As a consequence, 𝑆𝑆3 = 𝑆2𝑆2 = 𝑍𝑍 = 𝐼 , so 𝑆† = 𝑆3. Also,

𝑇 𝑇 7 = 𝑇 2𝑇 2𝑇 2𝑇 2 = 𝑆4 = 𝐼 , and it follows that 𝑇 † = 𝑇 7.

Assessments 581

(1.7) By the definition of 𝑅𝑋 we have that

𝑅𝑋 (𝜋) = (
cos 𝜋

2 −𝑖 sin 𝜋
2

−𝑖 sin 𝜋
2 cos 𝜋

2
)

=
(

0 −𝑖

−𝑖 0)
= −𝑖𝑋 .

Analogously,

𝑅𝑌 (𝜋) = (
cos 𝜋

2 − sin 𝜋
2

sin 𝜋
2 cos 𝜋

2
)

=
(
0 −1

1 0)
= −𝑖𝑌

and

𝑅𝑍(𝜋) = (
𝑒−𝑖

𝜋
2 0

0 𝑒𝑖
𝜋
2)

=
(
−𝑖 0

0 𝑖)
= −𝑖𝑍.

Also,

𝑅𝑍 (
𝜋
2)

=
(
𝑒−𝑖

𝜋
4 0

0 𝑒𝑖
𝜋
4)

= 𝑒−𝑖
𝜋
4 𝑆

and

𝑅𝑍 (
𝜋
4)

=
(
𝑒−𝑖

𝜋
8 0

0 𝑒𝑖
𝜋
8)

= 𝑒−𝑖
𝜋
8 𝑇 .

(1.8) From the definition of 𝑈 (𝜃, 𝜑, 𝜆), we have that

𝑈 (𝜃, 𝜑, 𝜆)𝑈 (𝜃, 𝜑, 𝜆)† =
(

cos 𝜃
2 −𝑒𝑖𝜆 sin 𝜃

2

𝑒𝑖𝜑 sin 𝜃
2 𝑒𝑖(𝜑+𝜆) cos 𝜃

2
)(

cos 𝜃
2 𝑒−𝑖𝜑 sin 𝜃

2

−𝑒−𝑖𝜆 sin 𝜃
2 𝑒−𝑖(𝜑+𝜆) cos 𝜃

2
)

= 𝐼

and, analogously, 𝑈 (𝜃, 𝜑, 𝜆)† 𝑈 (𝜃, 𝜑, 𝜆) = 𝐼 . Then, 𝑈 (𝜃, 𝜑, 𝜆) is unitary.

Also, we get that

𝑈 (𝜃,−𝜋/2, 𝜋/2) =
(

cos 𝜃
2 −𝑖 sin 𝜃

2

−𝑖 sin 𝜃
2 cos 𝜃

2
)

= 𝑅𝑋 (𝜃).

582 Assessments

Analogously, it holds that

𝑈 (𝜃, 0, 0) =
(
cos 𝜃

2 − sin 𝜃
2

sin 𝜃
2 cos 𝜃

2
)

= 𝑅𝑌 (𝜃)

and that

𝑈 (0, 0, 𝜃) =
(
1 0

0 𝑒𝑖𝜃)
= 𝑒𝑖

𝜃
2𝑅𝑍(𝜃).

(1.9) Since 𝜃 = 2 arccos√𝑝, it holds that the state before measurement is

cos
𝜃
2
|0⟩ + sin

𝜃
2
|1⟩ =

√
𝑝 |0⟩ +

√
1 − 𝑝 |1⟩ .

As a consequence, the probability of measuring 0 is 𝑝 and the probability of measuring 1 is

1 − 𝑝.

(1.10) The probability of obtaining 1 will be |𝑎10|2 + |𝑎11|2. Upon that measurement result,

the state will collapse to

𝑎10 |10⟩ + 𝑎11 |11⟩√
|𝑎10|2 + |𝑎11|2

.

(1.11) It holds that

(𝑈1 ⊗ 𝑈2)(𝑈
†
1 ⊗ 𝑈†

2) = (𝑈1𝑈
†
1) ⊗ (𝑈2𝑈

†
2) = 𝐼 ⊗ 𝐼 .

Analogously, (𝑈†
1 ⊗ 𝑈†

2)(𝑈1 ⊗ 𝑈2) = 𝐼 ⊗ 𝐼 . Hence, the inverse of 𝑈1 ⊗ 𝑈2 is 𝑈†
1 ⊗ 𝑈†

2 .

Assessments 583

Also, from the definition of tensor product of two matrices we get that, for every matrix 𝐴

and 𝐵 (even in they are non-unitary), it holds that

𝐴† ⊗ 𝐵† =
(
𝑎∗11 𝑎∗21
𝑎∗12 𝑎∗22)

⊗
(
𝑏∗11 𝑏∗21
𝑏∗12 𝑏∗22)

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑎∗11 (
𝑏∗11 𝑏∗21
𝑏∗12 𝑏∗22)

𝑎∗21 (
𝑏∗11 𝑏∗21
𝑏∗12 𝑏∗22)

𝑎∗12 (
𝑏∗11 𝑏∗21
𝑏∗12 𝑏∗22)

𝑎∗22 (
𝑏∗11 𝑏∗21
𝑏∗12 𝑏∗22)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑎∗11𝑏∗11 𝑎∗11𝑏∗21 𝑎∗21𝑏∗11 𝑎∗21𝑏∗21
𝑎∗11𝑏∗12 𝑎∗11𝑏∗22 𝑎∗21𝑏∗12 𝑎∗21𝑏∗22
𝑎∗12𝑏∗11 𝑎∗12𝑏∗21 𝑎∗22𝑏∗11 𝑎∗22𝑏∗21
𝑎∗12𝑏∗12 𝑎∗12𝑏∗22 𝑎∗22𝑏∗12 𝑎∗22𝑏∗22

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= (𝐴 ⊗ 𝐵)†.

(1.12) The matrix for 𝑋 ⊗ 𝑋 is

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The matrix for 𝐻 ⊗ 𝐼 is

1√
2

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(1.13) In the circuit

𝐻 𝐻

𝐻 𝐻

584 Assessments

the states |00⟩ and |10⟩ are left unchanged, while |01⟩ and |11⟩ are mapped to each other.

This is exactly the action of a CNOT gate whose control is the bottom qubit and whose

target is the top one.

The matrix for the circuit is

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

which is exactly the matrix for the CNOT gate from bottom qubit to top qubit.

On the other hand, the circuit

leaves |00⟩ and |11⟩ unchanged, while it maps |01⟩ and |10⟩ to each other. This is exactly

the action of a SWAP gate.

Alternatively, the matrix for the circuit is

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

which is, again, the matrix of the SWAP gate.

(1.14) The state

√
1/3(|00⟩ + |01⟩ + |11⟩) is indeed entangled. However,

1
2 (|00⟩ + |01⟩ +

|10⟩ + |11⟩) is a product state because it can be written as |+⟩ |+⟩ .

(1.15) If the matrix of 𝑈 is (𝑢𝑖𝑗)2𝑖,𝑗=1, then |00⟩ and |01⟩ are taken to themselves by C𝑈 .

What is more, |10⟩ is taken to |1⟩ (𝑢11 |0⟩ + 𝑢21 |1⟩) and |11⟩ is taken to |1⟩ (𝑢12 |0⟩ + 𝑢22 |1⟩).

Assessments 585

Hence, the matrix of C𝑈 is

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0

0 1 0 0

0 0 𝑢11 𝑢12
0 0 𝑢21 𝑢22

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The adjoint of C𝑈 is C𝑈†
and it holds that C𝑈C𝑈† = C𝑈†

C𝑈 = 𝐼 . Hence, C𝑈 is unitary.

(1.16) The equivalence follows directly from the fact that 𝐻𝑋𝐻 = 𝑍 .

(1.17) We can prepare

√
1/2 (|00⟩ − |11⟩) with the following circuit:

|0⟩ 𝐻

|0⟩ 𝑍

We can use the circuit

|0⟩ 𝐻 𝑋

|0⟩

to prepare

√
1/2(|10⟩ + |01⟩).

Finally, the circuit

|0⟩ 𝐻 𝑋

|0⟩ 𝑍

can be used to obtain

√
1/2(|10⟩ − |01⟩).

Notice that, to prepare these states, we are only using tensor product gates appended to

the circuit that we used to obtain the original Bell state

√
1/2(|00⟩ + |11⟩). For instance, we

have that

√
1/2(|10⟩ − |01⟩) = (𝑋 ⊗ 𝑍)

√
1/2(|00⟩ + |11⟩)

586 Assessments

and, then, it also holds that

(𝑋 ⊗ 𝑍)
√
1/2(|10⟩ − |01⟩) =

√
1/2(|00⟩ + |11⟩).

If

√
1/2(|10⟩ − |01⟩) were a product state, then

√
1/2(|00⟩ + |11⟩) would also be a product

state. But that is impossible, because we know that

√
1/2(|00⟩ + |11⟩) is entangled.

(1.18) We can prove it by induction. We know that the result is true for 𝑛 = 1. Now,

assume that it is true for 𝑛 > 1 and consider a basis state |𝜓⟩ of 𝑛+ 1 qubits. If |𝜓⟩ = |0⟩ |𝜓′⟩,

then the column vector for |𝜓⟩ will start with the elements of the column vector of |𝜓′⟩ and

then it will have 2𝑛 zeroes. But the column vector for |𝜓′⟩ is, by the induction hypothesis,

exactly of the form that we are interested in. It follows that |𝜓⟩ also has the desired structure.

The case when |𝜓⟩ = |1⟩ |𝜓′⟩ is analogous.

On the other hand, since every 𝑛-qubit state can be written as a normalized linear combina-

tion of basis states, it follows that its vector representation is a unit length column vector

with 2𝑛 coordinates.

(1.19) If we measure the 𝑗-th qubit of a generic multi-qubit state, the probability of

obtaining 1 is given by

∑
𝑙∈𝐽1

|𝑎𝑙 |2,

where 𝐽1 is the set of numbers whose 𝑗-th bit is 1. The state after the collapse will be

∑𝑙∈𝐽1 𝑎𝑙 |𝑙⟩√
∑𝑙∈𝐽1 |𝑎𝑖|

2
.

(1.20) The probability of getting 0 when we measure the second qubit of (1/2) |100⟩ +

(1/2) |010⟩ +
√
1/2 |001⟩ is

||||
1
2
||||

2
+
||||
1√
2
||||

2
=

1
4
+
1
2
=

3
4
.

Assessments 587

The result after measuring the second qubit and obtaining 0 would be

1√
3
|100⟩ +

√
2√
3
|001⟩ .

(1.21) Let’s denote 𝑥 = 𝑥1… 𝑥𝑛 and 𝑦 = 𝑦1… 𝑦𝑛, where 𝑥𝑖 is the 𝑖-th bit of 𝑥 and 𝑦𝑖 is the

𝑖-th bit of 𝑦. Then, it holds that

⟨𝑦 |𝑥⟩ = ⟨𝑦1|𝑥1⟩… ⟨𝑦𝑛|𝑥𝑛⟩ .

As a consequence, ⟨𝑦 |𝑥⟩ = 1 if 𝑥 = 𝑦 and ⟨𝑦 |𝑥⟩ = 0 if 𝑥 ≠ 𝑦. From this, it follows that the

elements in {|𝑥⟩}𝑥∈{0,1}𝑛 are orthonormal. Since the cardinality of this set is 2𝑛, which is the

dimension of 𝑛-qubit states, we can conclude that the set forms a basis.

(1.22) It holds that

1√
2
(⟨000| + ⟨111|)

1
2
(|000⟩ + |011⟩ + |101⟩ + |110⟩)

=
1

2
√
2
(⟨000|000⟩ + ⟨000|011⟩ + ⟨000|101⟩ + ⟨000|110⟩+

⟨111|000⟩ + ⟨111|011⟩ + ⟨111|101⟩ + ⟨111|110⟩)

=
1

2
√
2
,

because all the inner products are 0 except ⟨000|000⟩, which is 1.

588 Assessments

(1.23) From its action of the basis states, we deduce that the matrix for the CCNOT gate

is:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

It holds that this matrix is its own adjoint and that its square is the identity. As a conse-

quence, the matrix is unitary.

(1.24) The circuit

𝐻 𝑇 † 𝑇 𝑇 † 𝑇 𝐻

𝑇 𝑇 †

𝑇

leaves all the states but |011⟩ and |111⟩ unchanged. It also interchanges |011⟩ and |111⟩.

That is exactly the action of a CCNOT gate with target on the top qubit.

Chapter 2, The Tools of the Trade in Quantum
Computing
(2.1) We already gave you the solution in Appendix D, Installing the Tools.

(2.2) In order to construct the circuit in Figure 2.3b, you would have to execute the

following piece of code:

from qiskit import *

import numpy as np

Assessments 589

qc = QuantumCircuit(2)

qc.z(0)

qc.y(1)

qc.cry(np.pi/2, 0, 1)

qc.u(np.pi/4, np.pi, 0, 0)

qc.rz(np.pi/4,1)

If you want to visualize the circuit, of course, you can use qc.draw("mpl").

(2.3) You can check IBM’s own implementation (https://github.com/Qiskit/qiskit

-terra/blob/5ccf3a41cb10742ae2158b6ee9d13bbb05f64f36/qiskit/circuit/quantumc

ircuit.py#L2205) of the method and compare it to your own!

They take some additional steps that we have not considered, such as adding barriers in

the circuit, but you can ignore those details.

(2.4) You already have the solution in Appendix D, Installing the Tools.

(2.5) We have already seen how to construct these circuits in Qiskit. In order to construct

them in PennyLane, we would need to run the following piece of code:

import pennylane as qml

import numpy as np

dev = qml.device('default.qubit', wires = 2)

@qml.qnode(dev)

def qcircA():

qml.PauliX(wires = 0)

qml.RX(np.pi/4, wires = 1)

qml.CNOT(wires = [0,1])

qml.U3(np.pi/3, 0, np.pi, wires = 0)

https://github.com/Qiskit/qiskit-terra/blob/5ccf3a41cb10742ae2158b6ee9d13bbb05f64f36/qiskit/circuit/quantumcircuit.py#L2205
https://github.com/Qiskit/qiskit-terra/blob/5ccf3a41cb10742ae2158b6ee9d13bbb05f64f36/qiskit/circuit/quantumcircuit.py#L2205
https://github.com/Qiskit/qiskit-terra/blob/5ccf3a41cb10742ae2158b6ee9d13bbb05f64f36/qiskit/circuit/quantumcircuit.py#L2205

590 Assessments

return qml.state()

@qml.qnode(dev)

def qcircB():

qml.PauliZ(wires = 0)

qml.PauliY(wires = 1)

qml.CRY(np.pi/2, wires = [0,1])

qml.U3(np.pi/4, np.pi, 0, wires = 0)

qml.RZ(np.pi/4, wires = 1)

return qml.state()

If we run this, for instance, for circuit B by executing print(qcircB(), we get the following

state vector:

tensor([0. +0.j , -0.35355339+0.85355339j,

0. +0.j , 0.14644661-0.35355339j],

requires_grad=True)

On the other hand, if we simulate that very same circuit with Qiskit, we get this output:

Statevector([-5.65831421e-17-3.20736464e-17j,

2.34375049e-17+1.32853393e-17j,

-3.53553391e-01+8.53553391e-01j,

1.46446609e-01-3.53553391e-01j],

dims=(2, 2))

Notice that this is the same result that we got with PennyLane. We first have to take into

account the fact that the first two entries are — computationally speaking — zero. And

then we have to draw our attention to how Qiskit, following its own conventions, gives us

the amplitudes of the basis states in the following order: |00⟩, |10⟩, |01⟩, and |11⟩.

Assessments 591

Chapter 3, Working with Quadratic
Unconstrained Binary Optimization Problems
(3.1) We can put vertices 0, 1, and 4 in one group, and vertices 2 and 3 in the other. Then,

five edges belong to the cut, namely (0, 2), (1, 2), (1, 3), (2, 4), and (3, 4).

(3.2) The optimization problem for the Max-Cut of the graph in Figure 3.3 is

Minimize 𝑧0𝑧1 + 𝑧0𝑧2 + 𝑧1𝑧2 + 𝑧1𝑧4 + 𝑧2𝑧3 + 𝑧3𝑧4 + 𝑧3𝑧5 + 𝑧4𝑧5

subject to 𝑧𝑗 ∈ {−1, 1}, 𝑗 = 0,… , 5.

The value of the cut given by 𝑧0 = 𝑧1 = 𝑧2 = 1 and 𝑧3 = 𝑧4 = 𝑧5 = −1 is 4. This cut is not

optimal, because, for instance, 𝑧0 = 𝑧1 = 𝑧2 = 𝑧5 = 1 and 𝑧3 = 𝑧4 = −1 achieves a lower

value.

(3.3) It holds that ⟨010| (𝑍0𝑍1 + 𝑍0𝑍2) |010⟩ = 0 and that ⟨100| (𝑍0𝑍1 + 𝑍0𝑍2) |100⟩ = −2.

This latter value is the minimum possible, because we only have two edges in our graph.

(3.4) We can compute the required expectation values with the following code:

from qiskit.quantum_info import Pauli

from qiskit.opflow.primitive_ops import PauliOp

from qiskit.quantum_info import Statevector

H_cut = PauliOp(Pauli("ZZI")) + PauliOp(Pauli("ZIZ"))

for x in range(8): # We consider x=0,1...7

psi = Statevector.from_int(x, dims = 8)

print("The expectation value of |",x,">", "is",

psi.expectation_value(H_cut))

If we run it, we obtain the following output:

The expectation value of | 0 > is (2+0j)

The expectation value of | 1 > is 0j

592 Assessments

The expectation value of | 2 > is 0j

The expectation value of | 3 > is (-2+0j)

The expectation value of | 4 > is (-2+0j)

The expectation value of | 5 > is 0j

The expectation value of | 6 > is 0j

The expectation value of | 7 > is (2+0j)

Thus, we can see that there are two states that obtain the optimal value and both correspond

to the cut in which 0 is in one group and 1 and 2 in the other.

(3.5) The QUBO problem would be

Minimize 𝑥20 − 4𝑥0𝑥1 + 6𝑥0𝑥2 − 8𝑥0𝑥3 + 4𝑥21 − 12𝑥1𝑥2 + 16𝑥1𝑥3 + 9𝑥22

− 24𝑥2𝑥3 + 16𝑥23

subject to 𝑥𝑗 ∈ {0, 1}, 𝑗 = 0, 1, 2, 3.

The equivalent Ising ground state problem would be

Minimize − 𝑧0𝑧1 +
3𝑧0𝑧2
2

− 2𝑧0𝑧3 + 𝑧0 − 3𝑧1𝑧2 + 4𝑧1𝑧3 − 2𝑧1 − 6𝑧2𝑧3 + 3𝑧2 − 4𝑧3

subject to 𝑧𝑗 ∈ {1,−1}, 𝑗 = 0, 1, 2, 3,

where we have dropped the independent term
17
2 .

(3.6) The binary linear program would be

Minimize − 3𝑥0 − 𝑥1 − 7𝑥2 − 7𝑥3

subject to 2𝑥0 + 𝑥1 + 5𝑥2 + 4𝑥3 ≤ 8,

𝑥𝑗 ∈ {0, 1}, 𝑗 = 0, 1, 2, 3.

Assessments 593

(3.7) The QUBO problem is

Minimize (𝑥00 + 𝑥01 − 1)2 + (𝑥10 + 𝑥11 − 1)2 + (𝑥20 + 𝑥21 − 1)2 + (𝑥30 + 𝑥31 − 1)2

+ 𝑥00𝑥10 + 𝑥01𝑥11 + 𝑥00𝑥20 + 𝑥01𝑥21 + 𝑥10𝑥30 + 𝑥11𝑥31 + 𝑥20𝑥30 + 𝑥21𝑥31

subject to 𝑥𝑗𝑘 ∈ {0, 1}, 𝑗 = 0, 1, 2, 3, 𝑘 = 0, 1.

(3.8) The expression for the route cost is

+2𝑥00𝑥11 + 𝑥00𝑥21 + 3𝑥00𝑥31 + 2𝑥10𝑥01 + 4𝑥10𝑥21 + 𝑥10𝑥31 + 𝑥20𝑥01

+4𝑥20𝑥11 + 𝑥20𝑥31 + 3𝑥30𝑥01 + 𝑥30𝑥11 + 𝑥30𝑥21 + 2𝑥01𝑥12 + 𝑥01𝑥22

+3𝑥01𝑥32 + 2𝑥11𝑥02 + 4𝑥11𝑥22 + 𝑥11𝑥32 + 𝑥21𝑥02 + 4𝑥21𝑥12 + 𝑥21𝑥32

+3𝑥31𝑥02 + 𝑥31𝑥12 + 𝑥31𝑥22 + 2𝑥02𝑥13 + 𝑥02𝑥23 + 3𝑥02𝑥33 + 2𝑥12𝑥03

+4𝑥12𝑥23 + 𝑥12𝑥33 + 𝑥22𝑥03 + 4𝑥22𝑥13 + 𝑥22𝑥33 + 3𝑥32𝑥03 + 𝑥32𝑥13 + 𝑥32𝑥23.

Chapter 4, Adiabatic Quantum Computing and
Quantum Annealing
(4.1) We first consider a state |𝑥⟩ = |𝑥0⟩ |𝑥1⟩⋯ |𝑥𝑛−1⟩ where each

||𝑥𝑗⟩ is either |+⟩ or |−⟩.

The set of all 2𝑛 such states for an orthonormal basis and, hence, any generic state |𝜓⟩ can

be written as |𝜓⟩ = ∑𝑥 𝑎𝑥 |𝑥⟩ , where ∑ |𝑎𝑥 |2 = 1.

Then, for each 𝑗 , it holds that

⟨𝑥 |𝑋𝑗 |𝑥⟩ = ⟨𝑥𝑗 ||𝑋𝑗 ||𝑥𝑗⟩ .

But ⟨𝑥𝑗 ||𝑋𝑗 ||𝑥𝑗⟩ is 1 if
||𝑥𝑗⟩ = |+⟩ and it is −1 if

||𝑥𝑗⟩ = |−⟩. Hence, it holds that

⟨𝜓|𝑋𝑗 |𝜓⟩ = ∑
𝑥

|𝑎𝑥 |2 ⟨𝑥 |𝑋𝑗 |𝑥⟩ ≤ 1,

because |𝑎𝑥 |2 ≥ 0 for every 𝑥 and ∑ |𝑎𝑥 |2 = 1.

594 Assessments

Then, since 𝐻0 = −∑𝑛−1
𝑗=0 𝑋𝑗 , by linearity we have

⟨𝜓|𝐻0 |𝜓⟩ = −
𝑛−1
∑
𝑗=0

⟨𝜓|𝑋𝑗 |𝜓⟩ ≥ −𝑛.

On the other hand, if we consider |𝜓0⟩ = ⨂𝑛−1
𝑖=0 |+⟩, by the previous reasoning we have that

⟨𝜓0|𝑋𝑗 |𝜓0⟩ = 1. Hence, ⟨𝜓0|𝐻0 |𝜓0⟩ = −𝑛, which is the minimum possible value and, hence,

|𝜓0⟩ is the ground state that we were looking for.

(4.2) We can define the QUBO problem of minimizing 𝑥0𝑥2−𝑥0𝑥1+2𝑥1 with the following

code:

import dimod

J = {(0,1):-1, (0,2):1}

h = {1:2}

problem = dimod.BinaryQuadraticModel(h, J, 0.0, dimod.BINARY)

print("The problem we are going to solve is:")

print(problem)

We can then solve it with the following:

from dwave.system import DWaveSampler

from dwave.system import EmbeddingComposite

sampler = EmbeddingComposite(DWaveSampler())

result = sampler.sample(problem, num_reads=10)

print("The solutions that we have obtained are")

print(result)

(4.3) For simplicity, we will denote the slack variables as 𝑠0 and 𝑠1. Then, the penalty

term is (𝑦0 + 2𝑦1 + 𝑠0 + 𝑠1 − 2)2. When you multiply by 5, expand it, and add it to the cost

function, you obtain exactly the expression computed by the cqm_to_bqm method.

(4.4) For qubits 0 through 7, we have the following connections:

Assessments 595

{0: {4, 5, 6, 7, 128}, 1: {4, 5, 6, 7, 129},

2: {4, 5, 6, 7, 130}, 3: {4, 5, 6, 7, 131},

4: {0, 1, 2, 3, 12}, 5: {0, 1, 2, 3, 13},

6: {0, 1, 2, 3, 14}, 7: {0, 1, 2, 3, 15}}

Clearly, each vertex from 0 to 3 is connected to each from 4 to 7, as we need. Moreover,

each vertex from 0 to 3 is connected to one vertex from 128 to 131, which are in the cell

below the first one, and each vertex from 4 to 7 is connected to one vertex from 12 to 15,

which are in the cell to the right of the first one.

(4.5) You can easily check those values with the following instructions:

sampler = DWaveSampler(solver = "DW_2000Q_6")

print("The default annealing time is",

sampler.properties["default_annealing_time"],"microsends")

print("The possible values for the annealing time (in microseconds)"\

" lie in the range",sampler.properties["annealing_time_range"])

The output, in this case, will be as follows:

The default annealing time is 20.0 microsends

The possible values for the annealing time (in microseconds)

lie in the range [1.0, 2000.0]

Chapter 5, QAOA: Quantum Approximate
Optimization Algorithm
(5.1) The QAOA circuit for 𝑍1𝑍3 + 𝑍0𝑍2 − 2𝑍1 + 3𝑍2 with 𝑝 = 1 is the following:

596 Assessments

𝐻 𝑅𝑋 (2𝛽1)

𝐻 𝑅𝑍(−4𝛾1) 𝑅𝑋 (2𝛽1)

𝐻 𝑅𝑍(2𝛾1) 𝑅𝑍(6𝛾1) 𝑅𝑋 (2𝛽1)

𝐻 𝑅𝑍(2𝛾1) 𝑅𝑋 (2𝛽1)

(5.2) It holds that

⟨100|𝐻1 |100⟩ = 3 ⟨100|𝑍0𝑍2 |100⟩ − ⟨100|𝑍1𝑍2 |100⟩ + 2 ⟨100|𝑍0 |100⟩ = −3 − 1 − 2 = −6.

(5.3) We can rewrite the problem as

Minimize (1 − 𝑥0)(1 − 𝑥1)𝑥2(1 − 𝑥3) + 𝑥0(1 − 𝑥1)(1 − 𝑥2)(1 − 𝑥3) + 𝑥0(1 − 𝑥1)𝑥2𝑥3

subject to 𝑥𝑗 ∈ {0, 1}, 𝑗 = 0, 1, 2, 3.

(5.4) The operation can be implemented with the following circuit:

|𝑥0⟩
|𝑥1⟩
|𝑥2⟩
|𝑥3⟩

|𝑥4⟩ 𝑅𝑍(𝜋2)

Assessments 597

(5.5) It holds that

⟨100|𝐻1 |100⟩ = ⟨100|𝑍0𝑍1𝑍2 |100⟩ + 3 ⟨100|𝑍0𝑍2 |100⟩ − ⟨100|𝑍1𝑍2 |100⟩

+ 2 ⟨100|𝑍0 |100⟩ = −1 − 3 − 1 − 2 = −7.

(5.6) You can use the following code to obtain reproducible results:

from qiskit import Aer

from qiskit.algorithms import QAOA

from qiskit.algorithms.optimizers import COBYLA

from qiskit.utils import algorithm_globals, QuantumInstance

from qiskit_optimization.algorithms import MinimumEigenOptimizer

seed = 1234

algorithm_globals.random_seed = seed

quantum_instance = QuantumInstance(Aer.get_backend("aer_simulator"),

shots = 1024, seed_simulator=seed, seed_transpiler=seed)

qaoa = QAOA(optimizer = COBYLA(),

quantum_instance=quantum_instance, reps = 1)

qaoa_optimizer = MinimumEigenOptimizer(qaoa)

result = qaoa_optimizer.solve(qp)

print('Variable order:', [var.name for var in result.variables])

for s in result.samples:

print(s)

(5.7) We can define the −3𝑍0𝑍1𝑍2 + 2𝑍1𝑍2 − 𝑍2 Hamiltonian using the following instruc-

tions:

coefficients = [-3,2,-1]

paulis = [PauliZ(0)@PauliZ(1)@PauliZ(2),

PauliZ(1)@PauliZ(2),PauliZ(2)]

598 Assessments

H = qml.Hamiltonian(coefficients,paulis)

We can also use

H = -3*PauliZ(0)@PauliZ(1)@PauliZ(2)

+ 2*PauliZ(1)@PauliZ(2) -PauliZ(2)

Chapter 6, GAS: Grover Adaptative Search
(6.1) From our definition, 𝑂𝑓 always takes one basis state to another basis state. Hence,

in matrix representation, its columns are vectors in which exactly one element is 1 and the

rest are 0. This means that, in particular, all its entries are real.

What is more, this matrix is symmetric. To prove this, suppose that the matrix has entries

𝑚𝑗𝑘 . If it is not symmetric, there exist 𝑗 , 𝑘 such that 𝑚𝑗𝑘 ≠ 𝑚𝑘𝑗 . We can suppose, without

loss of generality, that 𝑚𝑗𝑘 = 0 and 𝑚𝑘𝑗 = 1. We also know that 𝑂𝑓𝑂𝑓 = 𝐼 , so the square of

the matrix is the identity. In particular, ∑𝑙 𝑚𝑗 𝑙𝑚𝑙𝑗 = 1, because this is the element in row 𝑗 ,

column 𝑗 of the square of the matrix. But we know that 𝑚𝑗𝑘𝑚𝑘𝑗 = 0 ⋅ 1 = 0 and that 𝑚𝑙𝑗 = 0

if 𝑙 ≠ 𝑘, because there is a single 1 in each column. Nevertheless, then, ∑𝑙 𝑚𝑗 𝑙𝑚𝑙𝑗 = 0,

which is a contradiction.

Thus, we have 𝑂†
𝑓 = 𝑂𝑓 and, since 𝑂𝑓𝑂𝑓 = 𝐼 , it follows that 𝑂𝑓 is unitary.

(6.2) We can use the following circuit:

𝑋 𝑋 𝑋 𝑋

𝑋 𝑋

𝑋 𝑋

Assessments 599

(6.3) The representation of 10 is 01010 and the representation of −7 is 11001. Their

addition is 00011, which encodes 3.

(6.4) We can use the following circuit:

𝐻 𝑃(6𝜋) 𝑃(−4𝜋)

𝐻 𝑃(6𝜋2) 𝑃(−4𝜋2)

𝐻 𝑃(6𝜋4) 𝑃(−4𝜋4)

𝐻 𝑃(6𝜋8) 𝑃(−4𝜋8)

(6.5) We can use the following circuit:

|𝑥0⟩

|𝑥1⟩

|𝑥2⟩

|0⟩ 𝐻 𝑃(2𝜋) 𝑃(−3𝜋) 𝑃(𝜋)

|0⟩ 𝐻 𝑃(2𝜋2) 𝑃(−3𝜋2) 𝑃(𝜋2)

|0⟩ 𝐻 𝑃(2𝜋4) 𝑃(−3𝜋4) 𝑃(𝜋4)

(6.6) We can use the following code:

from qiskit_optimization.problems import QuadraticProgram

from qiskit_optimization.algorithms import GroverOptimizer

from qiskit import Aer

from qiskit.utils import algorithm_globals, QuantumInstance

seed = 1234

algorithm_globals.random_seed = seed

600 Assessments

qp = QuadraticProgram()

qp.binary_var('x')

qp.binary_var('y')

qp.binary_var('z')

qp.minimize(linear = {'x':3,'y':2,'z':-3}, quadratic = {('x','y'):3})

quantum_instance = QuantumInstance(Aer.get_backend("aer_simulator"),

shots = 1024, seed_simulator = seed, seed_transpiler=seed)

grover_optimizer = GroverOptimizer(num_value_qubits = 5,

num_iterations=4, quantum_instance=quantum_instance)

results = grover_optimizer.solve(qp)

print(results)

Chapter 7, VQE: Variational Quantum Eigensolver
(7.1) This all follows from the fact that the matrix is diagonal and all its diagonal entries

are different, with eigenvalues corresponding to the actual labels of the measurement

outcomes.

Remember that, if the coordinate matrix of an operator with respect to a basis is diagonal,

this means that the basis vectors are eigenvectors of the operator and, what is more, the

corresponding eigenvalues are found on the diagonal.

(7.2) We know that

(𝐴1 ⊗⋯ ⊗ 𝐴𝑛) |𝜆1⟩ ⊗⋯ ⊗ |𝜆𝑛⟩ = 𝐴1 |𝜆1⟩ ⊗⋯ ⊗ 𝐴𝑛 |𝜆𝑛⟩ .

Since 𝐴𝑗 ||𝜆𝑗⟩ = 𝜆𝑗 ||𝜆𝑗⟩, the result follows directly.

(7.3) It holds that𝑍 |0⟩ = |0⟩, 𝑍 |1⟩ = − |1⟩,𝑋 |+⟩ = |+⟩,𝑋 |−⟩ = − |−⟩, 𝑌 (1/
√
2) (|0⟩ + 𝑖 |1⟩) =

(1/
√
2) (|0⟩ + 𝑖 |1⟩), and 𝑌 (1/

√
2) (|0⟩ − 𝑖 |1⟩) = − (1/

√
2) (|0⟩ − 𝑖 |1⟩).

Assessments 601

Since it is also true that 𝐼 |𝜓⟩ = |𝜓⟩ for any |𝜓⟩, the result follows.

(7.4) A possible orthonormal basis of eigenvectors of 𝑍 ⊗ 𝐼 ⊗ 𝑋 is formed by |0⟩ |0⟩ |+⟩,

|0⟩ |1⟩ |−⟩, |1⟩ |0⟩ |−⟩, |1⟩ |1⟩ |+⟩, |0⟩ |0⟩ |−⟩, |0⟩ |1⟩ |+⟩, |1⟩ |0⟩ |+⟩ and |1⟩ |1⟩ |−⟩. The first four

eigenvectors are associated with the 1 eigenvalue, and the rest with the −1 eigenvalue.

Let’s denote, for simplicity, |𝑖⟩ = (1/
√
2) (|0⟩ + 𝑖 |1⟩) and |−𝑖⟩ = (1/

√
2) (|0⟩ − 𝑖 |1⟩). Then,

a possible orthonormal basis of eigenvalues for 𝐼 ⊗ 𝑌 ⊗ 𝑌 is |0⟩ |𝑖⟩ |𝑖⟩, |0⟩ |−𝑖⟩ |−𝑖⟩, |1⟩ |𝑖⟩ |−𝑖⟩,

|1⟩ |−𝑖⟩ |𝑖⟩, |0⟩ |𝑖⟩ |−𝑖⟩, |0⟩ |−𝑖⟩ |𝑖⟩, |1⟩ |𝑖⟩ |𝑖⟩ and |1⟩ |−𝑖⟩ |−𝑖⟩. The first four eigenvectors are

associated to the 1 eigenvalue and the rest, to the −1 eigenvalue.

(7.5) It holds that 𝐻 |0⟩ = |+⟩ and 𝐻 |1⟩ = |−⟩. This proves that 𝐻 takes the compu-

tational basis to the eigenvectors of 𝑋 . Also, 𝑆𝐻 |0⟩ = (1/
√
2) (|0⟩ + 𝑖 |1⟩) and 𝑆𝐻 |1⟩ =

(1/
√
2) (|0⟩ − 𝑖 |1⟩), so 𝑆𝐻 takes the computational basis to the eigenvectors of 𝑌 .

(7.6) This follows directly from the fact that if {||𝑢𝑗⟩}𝑗 and {|𝑣𝑘⟩}𝑘 are eigenvector bases of

𝐴1 and 𝐴2, respectively, then {||𝑢𝑗⟩ ⊗ |𝑣𝑘⟩}𝑗 ,𝑘 is an eigenvector basis of 𝐴1 ⊗ 𝐴2.

(7.7) The Hamiltonian for our problem is

𝐻 = 𝑍0𝑍1 + 𝑍1𝑍2 + 𝑍2𝑍3 + 𝑍3𝑍4 + 𝑍4𝑍0.

Then, we can use the following code to solve it with VQE:

from qiskit.circuit.library import EfficientSU2

from qiskit.algorithms import VQE

from qiskit import Aer

from qiskit.utils import QuantumInstance

import numpy as np

from qiskit.algorithms.optimizers import COBYLA

from qiskit.opflow import Z, I

seed = 1234

602 Assessments

np.random.seed(seed)

H= (Z^Z^I^I^I) + (I^Z^Z^I^I) + (I^I^Z^Z^I) + (I^I^I^Z^Z) + (Z^I^I^I^Z)

ansatz = EfficientSU2(num_qubits=5, reps=1, entanglement="linear",

insert_barriers = True)

optimizer = COBYLA()

initial_point = np.random.random(ansatz.num_parameters)

quantum_instance = QuantumInstance(backend =

Aer.get_backend('aer_simulator_statevector'))

vqe = VQE(ansatz=ansatz, optimizer=optimizer,

initial_point=initial_point,

quantum_instance=quantum_instance)

result = vqe.compute_minimum_eigenvalue(H)

print(result)

(7.8) We can use the following code:

from qiskit_nature.drivers import Molecule

from qiskit_nature.drivers.second_quantization import \

ElectronicStructureMoleculeDriver, ElectronicStructureDriverType

from qiskit_nature.problems.second_quantization import \

ElectronicStructureProblem

from qiskit_nature.converters.second_quantization import QubitConverter

from qiskit_nature.mappers.second_quantization import JordanWignerMapper

from qiskit_nature.algorithms import VQEUCCFactory

from qiskit import Aer

from qiskit.utils import QuantumInstance

from qiskit_nature.algorithms import GroundStateEigensolver

import matplotlib.pyplot as plt

Assessments 603

import numpy as np

quantum_instance = QuantumInstance(

backend = Aer.get_backend('aer_simulator_statevector'))

vqeuccf = VQEUCCFactory(quantum_instance = quantum_instance)

qconverter = QubitConverter(JordanWignerMapper())

solver = GroundStateEigensolver(qconverter, vqeuccf)

energies = []

distances = np.arange(0.2, 2.01, 0.01)

for d in distances:

mol = Molecule(geometry=[['H', [0., 0., -d/2]],

['H', [0., 0., d/2]]])

driver = ElectronicStructureMoleculeDriver(mol, basis='sto3g',

driver_type=ElectronicStructureDriverType.PYSCF)

problem = ElectronicStructureProblem(driver)

result = solver.solve(problem)

energies.append(result.total_energies)

plt.plot(distances, energies)

plt.title('Dissociation profile')

plt.xlabel('Distance')

plt.ylabel('Energy');

(7.9) We can use the following code:

from qiskit import *

604 Assessments

from qiskit.providers.aer import AerSimulator

from qiskit.utils.mitigation import CompleteMeasFitter

from qiskit.utils import QuantumInstance

provider = IBMQ.load_account()

backend = AerSimulator.from_backend(

provider.get_backend('ibmq_manila'))

shots = 1024

qc = QuantumCircuit(2,2)

qc.h(0)

qc.cx(0,1)

qc.measure(range(2),range(2))

result = execute(qc, backend, shots = shots)

print("Result of noisy simulation:")

print(result.result().get_counts())

quantum_instance = QuantumInstance(

backend = backend, shots = shots,

measurement_error_mitigation_cls=CompleteMeasFitter)

result = quantum_instance.execute(qc)

print("Result of noisy simulation with error mitigation:")

print(result.get_counts())

Our results when running these instructions were the following:

Result of noisy simulation:

Assessments 605

{'01': 88, '10': 50, '00': 453, '11': 433}

Result of noisy simulation with error mitigation:

{'00': 475, '01': 12, '10': 14, '11': 523}

We know that the ideal result of running this circuit should not produce any 01 or 10

measurement. These are present quite prominently in the noisy simulation, but not so

much when we use readout error mitigation.

(7.10) We can use the following code:

from qiskit.opflow import Z

from qiskit.providers.aer import AerSimulator

from qiskit.algorithms import QAOA

from qiskit.utils import QuantumInstance

from qiskit import Aer, IBMQ

from qiskit.algorithms.optimizers import COBYLA

from qiskit.utils.mitigation import CompleteMeasFitter

H1 = Z^Z

provider = IBMQ.load_account()

backend = AerSimulator.from_backend(

provider.get_backend('ibmq_manila'))

quantum_instance = QuantumInstance(backend=backend,

shots = 1024)

qaoa = QAOA(optimizer = COBYLA(), quantum_instance=quantum_instance)

result = qaoa.compute_minimum_eigenvalue(H1)

print("Result of noisy simulation:",result.optimal_value)

quantum_instance = QuantumInstance(backend=backend,

606 Assessments

measurement_error_mitigation_cls=CompleteMeasFitter,

shots = 1024)

qaoa = QAOA(optimizer = COBYLA(), quantum_instance=quantum_instance)

result = qaoa.compute_minimum_eigenvalue(H1)

print("Result of noisy simulation with error mitigation:",

result.optimal_value)

The results that we obtained when we ran it were the following:

Result of noisy simulation: -0.8066406250000001

Result of noisy simulation with error mitigation: -0.93359375

We know that the actual optimal value for our Hamiltonian is −1. We observe, then, that

noise has a negative effect on the performance of QAOA in this case and that it is reduced

by the use of readout error mitigation.

Chapter 8, What is Quantummachine Learning?
(8.1) Let’s proceed by a proof by contradiction. We will assume that there exist some

coefficients 𝑤1, 𝑤2, 𝑏 such that

0𝑤1 + 1𝑤2 + 𝑏 = 1, 1𝑤1 + 0𝑤2 + 𝑏 = 1,

0𝑤1 + 0𝑤2 + 𝑏 = 0, 1𝑤1 + 1𝑤2 + 𝑏 = 0.

Simplifying, these are equivalent to

𝑤2 + 𝑏 = 1, 𝑤1 + 𝑏 = 1, 𝑏 = 0, 𝑤1 + 𝑤2 + 𝑏 = 0.

The first three identities imply that 𝑏 = 0 and 𝑤1 = 𝑤2 = 1, hence the last identity cannot

be satisfied.

Assessments 607

(8.2) Histograms are usually versatile and powerful options. In this case, however, since

our dataset has two features, we could have also drawn a scatter plot using the plt.scatter

function.

(8.3) The function is clearly strictly increasing, for its derivative is

𝑒𝑥

(𝑒𝑥 + 1)2
> 0.

Moreover, it is immediate that lim𝑥→∞ 𝑆(𝑥) = 1 and lim𝑥→−∞ 𝑆(𝑥) = 0.

The ELU function is smooth because the derivative of 𝑥 at 0 is 1 and so is that of 𝑒𝑥 − 1 at 0.

Both functions are strictly increasing and lim𝑥→∞ 𝑥 = ∞ and lim𝑥→−∞ 𝑒𝑥 − 1 = −1.

The image of the ReLU function is, clearly, [0,∞). It is not smooth because (𝑥)′ = 1 yet

(0)′ = 0.

(8.4) Without loss of generality, we will assume 𝑦 = 1 (the case 𝑦 = 0 is fully analogous).

If 𝑀𝜃(𝑥) = 𝑦 = 1, then 𝐻 (𝜃; 𝑥, 𝑦) = −1 log(1) + 0 = 0 because 1 − 𝑦 is 0 for any value of 𝑥 .

On the other hand, when 𝑀𝜃(𝑥) → 0, then − log(𝑀𝜃(𝑥)) → ∞, hence 𝐻 also diverges.

(8.5) We can plot the losses using the following piece of code:

val_loss = history.history["val_loss"]

train_loss = history.history["loss"]

epochs = range(len(train_loss))

plt.plot(epochs, train_loss, label = "Training loss")

plt.plot(epochs, val_loss, label = "Validation loss")

plt.legend()

plt.show()

(8.6) The result is less accurate when we decrease the learning rate without increasing

the number of epochs, because the algorithm can’t take enough steps to reach a minimum.

We also get worse results when we reduce the training dataset to 20, because we have

608 Assessments

overfitting. This can be identified by looking at the evolution of the validation loss and

noticing how it skyrockets while the training loss plummets.

Chapter 9, Quantum Support Vector Machines
(9.1) We will prove that the distance between a hyperplane 𝐻1, characterized by either

�⃗� ⋅ 𝑥 + 𝑏 = 1 or �⃗� ⋅ 𝑥 + 𝑏 = −1, and 𝐻0, given by �⃗� ⋅ 𝑥 + 𝑏 = 0, is 1/‖𝑤‖. The result will then

follow from the fact that �⃗� ⋅ 𝑥 + 𝑏 = ±1 are projections of each other over 𝐻0.

Let us consider a point 𝑥0 ∈ 𝐻0. The distance between 𝐻0 and 𝐻1 will be the length of the

only vector in the direction normal to 𝐻0 that connects 𝑥0 to a point in 𝐻1. What is more,

since �⃗� is normal to 𝐻0, such a vector needs to be of the form 𝛼�⃗� for some scalar 𝛼. Let us

find that scalar.

We know that 𝑥0 + 𝛼𝑥1 ∈ 𝐻1, so we must have

�⃗� ⋅ (𝑥0 + 𝛼�⃗�) + 𝑏 = 1.

But taking into account that 𝑥0 ∈ 𝐻0 and, therefore, �⃗� ⋅ 𝑥0 + 𝑏 = 0, this can be further

simplified to

�⃗� ⋅ 𝛼�⃗� = 1 ⟺ 𝛼 =
1

‖𝑤‖2
.

The length of 𝛼�⃗� will just be |𝛼| ⋅ ‖‖�⃗�‖‖, which is 1/‖𝑤‖, just as we wanted to prove.

(9.2) Let’s assume that the kernel function is defined as 𝑘(𝑎, 𝑏) = |⟨𝜑(𝑎)|𝜑(𝑏)⟩|2. The inner

product in ℂ𝑛 is conjugate-symmetric, so we must have

𝑘(𝑏, 𝑎) = |⟨𝜑(𝑏)|𝜑(𝑎)⟩|2 = |||⟨𝜑(𝑎)|𝜑(𝑏)⟩
|||
2
= |⟨𝜑(𝑎)|𝜑(𝑏)⟩|2 = 𝑘(𝑎, 𝑏).

(9.3) Quantum states need to be normalized and, therefore, the scalar product with

themselves must be one.

(9.4) The following piece of code would implement that function:

Assessments 609

from qiskit import *

from qiskit . circuit import ParameterVector

def AngleEncodingX(n):

x = ParameterVector("x", length = n)

qc = QuantumCircuit(n)

for i in range(n):

qc.rx(parameter[i], i)

return qc

Chapter 10, Quantum Neural Networks
(10.1) It suffices to remember that, while kets are represented by column matrices, bras

are represented by row matrices. In this way,

|0⟩ ⟨0| =
(
1

0)(1 0) =
(
1 0

0 0)
.

Analogously,

|1⟩ ⟨1| =
(
0

1)(0 1) =
(
0 0

0 1)
.

The results follow trivially from this.

(10.2) The process would be fully analogous. The only differences would be found in

the definition of the network, the device, and the weights dictionary, which could be the

following:

nqubits = 5

dev = qml.device("default.qubit", wires=nqubits)

def qnn_circuit(inputs, theta):

qml.AmplitudeEmbedding(features = [a for a in inputs],

610 Assessments

wires = range(nqubits), normalize = True, pad_with = 0.)

TwoLocal(nqubits = nqubits, theta = theta, reps = 2)

return qml.expval(qml.Hermitian(M, wires = [0]))

qnn = qml.QNode(qnn_circuit, dev, interface="tf")

weights = {"theta": 15}

Also, remember that you should train this model on the original dataset (x_tr and y_tr),

not on the reduced one!

(10.3) On quantum hardware, one may use — for most return types — the finite differences

method and the parameter shift rule. On simulators — under certain conditions — one may

use these methods in addition to backpropagation and adjoint differentiation.

Chapter 11, The Best of Both Worlds: Hybrid
Architectures
(11.1) In order to include the extra classical layers, we would have to execute the same

code but define the model in the following manner:

model = tf.keras.models.Sequential([

tf.keras.layers.Input(20),

tf.keras.layers.Dense(16, activation = "elu"),

tf.keras.layers.Dense(8, activation = "elu"),

tf.keras.layers.Dense(4, activation = "sigmoid"),

qml.qnn.KerasLayer(qnn, weights, output_dim=1)

])

This model has similar performance after training. The addition of the classical layers

doesn’t make a very significant difference.

Assessments 611

(11.2) In order to have optimized both the learning rate and the batch size, we could have

defined the objective function as follows:

def objective(trial):

Define the learning rate as an optimizable parameter.

lrate = trial.suggest_float("learning_rate", 0.001, 0.1)

bsize = trial.suggest_int("batch_size", 5, 50)

Define the optimizer with the learning rate.

opt = tf.keras.optimizers.Adam(learning_rate = lrate)

Prepare and compile the model.

model = tf.keras.models.Sequential([

tf.keras.layers.Input(20),

tf.keras.layers.Dense(4, activation = "sigmoid"),

qml.qnn.KerasLayer(qnn, weights, output_dim=1)

])

model.compile(opt, loss=tf.keras.losses.BinaryCrossentropy())

Train it!

history = model.fit(x_tr, y_tr, epochs = 50, shuffle = True,

validation_data = (x_val, y_val),

batch_size = bsize,

callbacks = [earlystop],

verbose = 0 # We want TensorFlow to be quiet.

)

Return the validation accuracy.

return accuracy_score(model.predict(x_val) >= 0.5, y_val)

612 Assessments

(11.3) We could try to find a numerical approximation of 𝑓 (𝑥) = (𝑥 − 3)2 using Optuna

as follows:

import optuna

from optuna.samplers import TPESampler

seed = 1234

def objective(trial):

x = trial.suggest_float("x", -10, 10)

return (x-3)**2

study = optuna.create_study(direction='minimize',

sampler=TPESampler(seed = seed))

study.optimize(objective, n_trials=100)

Of course, Optuna was not designed with (general) function minimization in mind, but it

was conceived solely as a hyperparameter optimizer.

(11.4) Let 𝑦 = 0, 1 be the expected label. It suffices to notice that 𝑦 in one-hot form is

(1 − 𝑦, 𝑦) and that the probability assigned by the model to 𝑥 being of class 𝑦 is 𝑁𝜃(𝑥)𝑗 .

Hence

𝐻 (𝜃; 𝑥, (1 − 𝑦, 𝑦)) = ∑
𝑗
−𝑦𝑗 log(𝑁𝜃(𝑥)𝑗)

= −(1 − 𝑦) log(𝑁𝜃(𝑥)0) − 𝑦 log(𝑁𝜃(𝑥)1)

= −(1 − 𝑦) log(1 − 𝑁𝜃(𝑥)1) − 𝑦 log(𝑁𝜃(𝑥)1),

where we assume that 𝑁𝜃(𝑥) is normalized and, therefore, 𝑁𝜃(𝑥)0 + 𝑁𝜃(𝑥)1 = 1. The result

now follows from the fact that, in binary cross entropy, the probability that we consider is

that of assigning label 1, that is, 𝑁(𝜃)1.

Assessments 613

(11.5) We just have to use the y targets instead of the y_hot targets when preparing the

datasets and then call the sparse categorical cross-entropy loss given in the statement when

compiling the model.

(11.6) You can create a suitable dataset with 1000 samples and 20 features with the

following instruction:

x, y = make_regression(n_samples = 1000, n_features = 20)

Then, you can construct the model as follows:

nqubits = 4

dev = qml.device("lightning.qubit", wires = nqubits)

@qml.qnode(dev, interface="tf", diff_method = "adjoint")

def qnn(inputs, theta):

qml.AngleEmbedding(inputs, range(nqubits))

TwoLocal(nqubits, theta, reps = 2)

return [qml.expval(qml.Hermitian(M, wires = [0]))]

weights = {"theta": 12}

model = tf.keras.models.Sequential([

tf.keras.layers.Input(20),

tf.keras.layers.Dense(16, activation = "elu"),

tf.keras.layers.Dense(8, activation = "elu"),

tf.keras.layers.Dense(4, activation = "sigmoid"),

qml.qnn.KerasLayer(qnn, weights, output_dim=1),

tf.keras.layers.Dense(1)

])

614 Assessments

Then it would be trained like any of our previous models using the MSE loss function,

which you can access with tf.keras.losses.MeanSquaredError().

Chapter 12, Quantum Generative Adversarial
Networks
(12.1) (1) QSVMs, QNNs or Hybrid QNNs (2) QGANs. (3) QSVMs, QNNs or Hybrid QNNs.

(4) QSVMs, QNNs or Hybrid QNNs. (5) QGANs.

(12.2) The steps to produce the solution are analogous to what we did in the main text;

it’s only necessary to change the values of the angles that define the state |𝜓1⟩, and, possibly,

to increase the number of training cycles.

(12.3) Let’s consider a point (𝑥, 𝑦, 𝑧) in the Bloch sphere. Its spherical coordinates are

(𝜃, 𝜑) such that

(𝑥, 𝑦, 𝑧) = (sin 𝜃 cos 𝜑, sin 𝜃 sin 𝜑, cos 𝜃)

and a state with those spherical Bloch sphere coordinates is in the state

|𝜓⟩ = cos(𝜃/2) |0⟩ + 𝑒𝑖𝜑 sin(𝜃/2) |1⟩ .

The expectation value of 𝑍 = |0⟩ ⟨0| − |1⟩ ⟨1| in the state |𝜓⟩ is

⟨𝜓|𝑍 |𝜓⟩ = cos2(𝜃/2) − 𝑒−𝑖𝜑+𝑖𝜑 sin2(𝜃/2) = cos 𝜃 = 𝑧.

Regarding the expectation value 𝑌 = 𝑖 |1⟩ ⟨0| − 𝑖 |0⟩ ⟨1|, we have

⟨𝜓| 𝑌 |𝜓⟩ = 𝑖𝑒−𝑖𝜑 sin(𝜃/2) cos(𝜃/2) − 𝑖𝑒𝑖𝜑 sin(𝜃/2) cos(𝜃/2)

= 𝑖(𝑒−𝑖𝜑 − 𝑒𝑖𝜑)(sin(𝜃/2) cos(𝜃/2))

= sin 𝜑 ⋅ 2 sin(𝜃/2) cos(𝜃/2) = sin 𝜑 sin 𝜃 = 𝑦.

Assessments 615

Lastly, in regard to the expectation value of 𝑋 = |1⟩ ⟨0| + |0⟩ ⟨1|,

⟨𝜓|𝑋 |𝜓⟩ = 𝑒−𝑖𝜑 sin(𝜃/2) cos(𝜃/2) + 𝑒𝑖𝜑 sin(𝜃/2) cos(𝜃/2)

= (𝑒−𝑖𝜑 + 𝑒𝑖𝜑)(sin(𝜃/2) cos(𝜃/2))

= cos 𝜑 ⋅ 2 sin(𝜃/2) cos(𝜃/2) = cos 𝜑 sin 𝜃 = 𝑥.

Bibliography

[1] E. F. Combarro, S. Vallecorsa, L. J. Rodríguez-Muñiz, Á. Aguilar-González, J. Ranilla,

and A. Di Meglio, “A report on teaching a series of online lectures on quantum

computing from CERN,” The Journal of Supercomputing, vol. 77, no. 12, pp. 14 405–

14 435, 2021.

[2] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters,

“Teleporting an unknown quantum state via dual classical and einstein-podolsky-

rosen channels,” Physical review letters, vol. 70, no. 13, p. 1895, 1993.

[3] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger,

“Experimental quantum teleportation,” Nature, vol. 390, no. 6660, pp. 575–579, 1997.

[4] C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution

and coin tossing,” in Proceedings of IEEE International Conference on Computers,

Systems, and Signal Processing, Bangalore, 1984, p. 175.

[5] D. Deutsch and R. Jozsa, “Rapid solution of problems by quantum computation,”

Proceedings of the Royal Society of London. Series A: Mathematical and Physical

Sciences, vol. 439, no. 1907, pp. 553–558, 1992.

[6] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete loga-

rithms on a quantum computer,” SIAM Review, vol. 41, no. 2, pp. 303–332, 1999.

[7] R. S. Sutor, Dancing with Qubits: How quantum computing works and how it can

change the world. Packt Publishing Ltd, 2019.

[8] D. R. Simon, “On the power of quantum computation,” SIAM journal on computing,

vol. 26, no. 5, pp. 1474–1483, 1997.

618 Bibliography

[9] L. K. Grover, “A fast quantum mechanical algorithm for database search,” in Pro-

ceedings of the twenty-eighth annual ACM symposium on Theory of computing, 1996,

pp. 212–219.

[10] F. Arute, K. Arya, R. Babbush, et al., “Quantum supremacy using a programmable

superconducting processor,” Nature, vol. 574, no. 7779, pp. 505–510, 2019.

[11] E. Pednault, J. Gunnels, D. M. Maslov, and J. Gambetta, On “Quantum Supremacy”,

https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/.

[12] F. Pan, K. Chen, and P. Zhang, “Solving the sampling problem of the Sycamore

quantum circuits,” Physical Review Letters, vol. 129, no. 9, p. 090 502, 2022.

[13] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures

and public-key cryptosystems,” Commun. ACM, vol. 21, no. 2, pp. 120–126, 1978.

[14] A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum algorithm for linear systems

of equations,” Physical Review Letters, vol. 103, no. 15, p. 150 502, 2009.

[15] J. Preskill, “Quantum computing in the NISQ era and beyond,” Quantum, vol. 2,

p. 79, 2018.

[16] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information:

10th Anniversary Edition. Cambridge University Press, 2011.

[17] A. Acín and L. Masanes, “Certified randomness in quantum physics,” Nature, vol. 540,

no. 7632, pp. 213–219, 2016.

[18] A. Einstein and M. Born, Born-Einstein Letters 1916-1955: Friendship, Politics and

Physics in Uncertain Times. Springer, 2014.

[19] A. Aspect, J. Dalibard, and G. Roger, “Experimental test of Bell’s inequalities using

time-varying analyzers,” Physical Review Letters, vol. 49, pp. 1804–1807, 25 1982.

[20] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test

local hidden-variable theories,” Physical Review Letters, vol. 23, no. 15, p. 880, 1969.

[21] S. J. Freedman and J. F. Clauser, “Experimental test of local hidden-variable theories,”

Physical Review Letters, vol. 28, no. 14, p. 938, 1972.

[22] M. S. ANIS, Abby-Mitchell, H. Abraham, et al., Qiskit: An open-source framework for

quantum computing, 2021. doi: 10.5281/zenodo.2573505.

https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/
https://doi.org/10.5281/zenodo.2573505

Bibliography 619

[23] V. Bergholm, J. Izaac, M. Schuld, et al., “PennyLane: Automatic differentiation of

hybrid quantum-classical computations,” arXiv preprint arXiv:1811.04968, 2018.

[24] J. Håstad, “Some optimal inapproximability results,” Journal of the ACM (JACM),

vol. 48, no. 4, pp. 798–859, 2001.

[25] G. Gallavotti, Statistical mechanics: A short treatise. Springer Science & Business

Media, 1999.

[26] M. Sipser, Introduction to the Theory of Computation. Cengage Learning, 2012.

[27] R. M. Karp, “Reducibility among combinatorial problems,” in Complexity of computer

computations, Springer, 1972, pp. 85–103.

[28] R. J. Wilson, Four Colors Suffice: How the Map Problem Was Solved - Revised Color

Edition. Princeton University Press, 2021.

[29] R. Diestel, Graph Theory, 5th. Springer Publishing Company, Incorporated, 2017.

[30] K. H. Rosen, Discrete Mathematics and its Applications, 8th ed. New York; McGraw-

Hill, 2019.

[31] M. Garey, D. Johnson, and L. Stockmeyer, “Some simplified NP-complete graph

problems,” Theoretical Computer Science, vol. 1, no. 3, pp. 237–267, 1976.

[32] B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algorithms, 5th.

Springer Publishing Company, Incorporated, 2012.

[33] A. Lucas, “Ising formulations of many NP problems,” Frontiers in physics, p. 5, 2014.

[34] Ö. Salehi, A. Glos, and J. A. Miszczak, “Unconstrained binary models of the travel-

ling salesman problem variants for quantum optimization,” Quantum Information

Processing, vol. 21, no. 2, pp. 1–30, 2022.

[35] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, “Quantum computation by

adiabatic evolution,” arXiv preprint quant-ph/0001106, 2000.

[36] M. Born and V. Fock, “Beweis des adiabatensatzes,” Zeitschrift für Physik, vol. 51,

no. 3, pp. 165–180, 1928.

[37] D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, and O. Regev, “Adiabatic

quantum computation is equivalent to standard quantum computation,” SIAM

Journal on Computing, vol. 37, no. 1, pp. 166–194, 2007.

620 Bibliography

[38] T. S. Cubitt, D. Perez-Garcia, and M. M. Wolf, “Undecidability of the spectral gap,”

Nature, vol. 528, no. 7581, pp. 207–211, 2015.

[39] C. Carugno, M. Ferrari Dacrema, and P. Cremonesi, “Evaluating the job shop schedul-

ing problem on a D-Wave quantum annealer,” Scientific Reports, vol. 12, no. 1, pp. 1–

11, 2022.

[40] G. Palubeckis, “Multistart tabu search strategies for the unconstrained binary

quadratic optimization problem,” Annals of Operations Research, vol. 131, no. 1,

pp. 259–282, 2004.

[41] S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi, “Optimization by simulated anneal-

ing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

[42] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate optimization

algorithm,” arXiv preprint arXiv:1411.4028, 2014.

[43] B. Barak, A. Moitra, R. O’Donnell, et al., “Beating the random assignment on

constraint satisfaction problems of bounded degree,” arXiv preprint arXiv:1505.03424,

2015.

[44] A. Biere, M. Heule, and H. van Maaren, Handbook of satisfiability. IOS press, 2009,

vol. 185.

[45] M. Fernández-Pendás, E. F. Combarro, S. Vallecorsa, J. Ranilla, and I. F. Rúa, “A study

of the performance of classical minimizers in the quantum approximate optimization

algorithm,” Journal of Computational and Applied Mathematics, vol. 404, p. 113 388,

2022.

[46] J. Watrous, Quantum computation lecture notes, 2005. [Online]. Available: https:

//cs.uwaterloo.ca/~watrous/QC-notes/.

[47] N. S. Yanofsky and M. A. Mannucci, Quantum computing for computer scientists.

Cambridge University Press, 2008.

[48] M. Boyer, G. Brassard, P. Høyer, and A. Tapp, “Tight bounds on quantum searching,”

Fortschritte der Physik: Progress of Physics, vol. 46, no. 4-5, pp. 493–505, 1998.

[49] C. Durr and P. Høyer, “A quantum algorithm for finding the minimum,” arXiv

preprint quant-ph/9607014, 1996.

https://cs.uwaterloo.ca/~watrous/QC-notes/
https://cs.uwaterloo.ca/~watrous/QC-notes/

Bibliography 621

[50] A. Gilliam, S. Woerner, and C. Gonciulea, “Grover adaptive search for constrained

polynomial binary optimization,” Quantum, vol. 5, p. 428, 2021.

[51] L. Ruiz-Perez and J. C. Garcia-Escartin, “Quantum arithmetic with the quantum

Fourier transform,” Quantum Information Processing, vol. 16, no. 6, pp. 1–14, 2017.

[52] A. Peruzzo, J. McClean, P. Shadbolt, et al., “A variational eigenvalue solver on a

photonic quantum processor,” Nature communications, vol. 5, no. 1, pp. 1–7, 2014.

[53] J. Preskill, Lecture notes for physics 229: Quantum information and computation,

1998. [Online]. Available: http://theory.caltech.edu/~preskill/ph219/index.

html#lecture.

[54] S. McArdle, S. Endo, A. Aspuru-Guzik, S. C. Benjamin, and X. Yuan, “Quantum

computational chemistry,” Reviews of Modern Physics, vol. 92, no. 1, p. 015 003, 2020.

[55] Y. Cao, J. Romero, J. P. Olson, et al., “Quantum chemistry in the age of quantum

computing,” Chemical reviews, vol. 119, no. 19, pp. 10 856–10 915, 2019.

[56] P. J. O’Malley, R. Babbush, I. D. Kivlichan, et al., “Scalable quantum simulation of

molecular energies,” Physical Review X, vol. 6, no. 3, p. 031 007, 2016.

[57] K. L. Sharkey and A. Chancé, Quantum Chemistry and Computing for the Curious.

Packt Publishing Ltd, 2022.

[58] O. Higgott, D. Wang, and S. Brierley, “Variational quantum computation of excited

states,” Quantum, vol. 3, p. 156, 2019.

[59] S. Bravyi, S. Sheldon, A. Kandala, D. C. Mckay, and J. M. Gambetta, “Mitigating

measurement errors in multiqubit experiments,” Physical Review A, vol. 103, no. 4,

p. 042 605, 2021.

[60] K. Temme, S. Bravyi, and J. M. Gambetta, “Error mitigation for short-depth quantum

circuits,” Physical review letters, vol. 119, no. 18, p. 180 509, 2017.

[61] S. Endo, Z. Cai, S. C. Benjamin, and X. Yuan, “Hybrid quantum-classical algorithms

and quantum error mitigation,” Journal of the Physical Society of Japan, vol. 90,

no. 3, p. 032 001, 2021.

[62] R. LaRose, A. Mari, S. Kaiser, et al., “Mitiq: A software package for error mitigation

on noisy quantum computers,” Quantum, vol. 6, p. 774, 2022.

http://theory.caltech.edu/~preskill/ph219/index.html#lecture
http://theory.caltech.edu/~preskill/ph219/index.html#lecture

622 Bibliography

[63] Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, Learning from data. AMLBook

New York, 2012, vol. 4.

[64] A. Géron, Hands-on machine learning with Scikit-Learn, Keras and TensorFlow, 2nd ed.

O’Reilly, 2019.

[65] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning: From Theory

to Algorithms. Cambridge University Press, 2014.

[66] I. Goodfellow, J. Pouget-Abadie, M. Mirza, et al., “Generative adversarial nets,”

Advances in neural information processing systems, vol. 27, 2014.

[67] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT Press,

2018.

[68] A. Skolik, S. Jerbi, and V. Dunjko, “Quantum agents in the gym: A variational

quantum algorithm for deep Q-learning,” Quantum, vol. 6, p. 720, 2022.

[69] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are

universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366, 1989.

[70] M. Ford, Architects of Intelligence: The truth about AI from the people building it.

Packt Publishing, 2018.

[71] M. Schuld and F. Petruccione, Machine Learning with Quantum Computers (Quantum

Science and Technology). Springer International Publishing, 2021.

[72] H.-Y. Huang, M. Broughton, J. Cotler, et al., “Quantum advantage in learning from

experiments,” Science, vol. 376, no. 6598, pp. 1182–1186, 2022.

[73] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, “Quantum

machine learning,” Nature, vol. 549, no. 7671, pp. 195–202, 2017.

[74] Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, Learning from data, e-chapter

8: Support vector machines. [Online]. Available: https://amlbook.com/eChapters.

html.

[75] V. Havlíček, A. D. Córcoles, K. Temme, et al., “Supervised learning with quantum-

enhanced feature spaces,” Nature, vol. 567, no. 7747, pp. 209–212, 2019.

[76] M. Schuld, “Supervised quantum machine learning models are kernel methods,”

arXiv preprint arXiv:2101.11020, 2021.

https://amlbook.com/eChapters.html
https://amlbook.com/eChapters.html

Bibliography 623

[77] S. Sim, P. D. Johnson, and A. Aspuru-Guzik, “Expressibility and entangling capabil-

ity of parameterized quantum circuits for hybrid quantum-classical algorithms,”

Advanced Quantum Technologies, vol. 2, no. 12, p. 1 900 070, 2019.

[78] D. Dua and C. Graff, UCI machine learning repository, 2017. [Online]. Available:

http://archive.ics.uci.edu/ml.

[79] R. Orús, “A practical introduction to tensor networks: Matrix product states and

projected entangled pair states,” Annals of physics, vol. 349, pp. 117–158, 2014.

[80] M. Schuld, V. Bergholm, C. Gogolin, J. Izaac, and N. Killoran, “Evaluating analytic

gradients on quantum hardware,” Phys. Rev. A, vol. 99, p. 032 331, 3 Mar. 2019.

[81] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and H. Neven, “Barren

plateaus in quantum neural network training landscapes,” Nature communications,

vol. 9, no. 1, pp. 1–6, 2018.

[82] M. Cerezo, A. Sone, T. Volkoff, L. Cincio, and P. J. Coles, “Cost function dependent

barren plateaus in shallow parametrized quantum circuits,” Nature communications,

vol. 12, no. 1, pp. 1–12, 2021.

[83] M. C. Caro, H.-Y. Huang, M. Cerezo, et al., “Generalization in quantum machine

learning from few training data,” Nature Communications, vol. 13, no. 1, p. 4919,

2022.

[84] A. Pérez-Salinas, A. Cervera-Lierta, E. Gil-Fuster, and J. I. Latorre, “Data re-uploading

for a universal quantum classifier,” Quantum, vol. 4, p. 226, Feb. 2020.

[85] M. Schuld, R. Sweke, and J. J. Meyer, “Effect of data encoding on the expressive

power of variational quantum-machine-learning models,” Phys. Rev. A, vol. 103,

p. 032 430, 3 Mar. 2021.

[86] D. Kraft, A software package for sequential quadratic programming, Technical Report

DFVLR-FB 88-28, 1988.

[87] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for generative

adversarial networks,” in Proceedings of the IEEE/CVF conference on computer vision

and pattern recognition, 2019, pp. 4401–4410.

http://archive.ics.uci.edu/ml

624 Bibliography

[88] I. Cong, S. Choi, and M. D. Lukin, “Quantum convolutional neural networks,” Nature

Physics, vol. 15, pp. 1273–1278, 2019.

[89] M. Henderson, S. Shakya, S. Pradhan, and T. Cook, “Quanvolutional neural networks:

Powering image recognition with quantum circuits,” Quantum Machine Intelligence,

vol. 2, no. 1, pp. 1–9, 2020.

[90] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adversarial net-

works,” in International conference on machine learning, PMLR, 2017, pp. 214–223.

[91] I. Goodfellow, “NIPS 2016 tutorial: Generative adversarial networks,” arXiv preprint

arXiv:1701.00160, 2016.

[92] S. Wiesner, “Conjugate coding,” ACM Sigact News, vol. 15, no. 1, pp. 78–88, 1983.

[93] S. Lloyd and C. Weedbrook, “Quantum generative adversarial learning,” Physical

review letters, vol. 121, no. 4, p. 040 502, 2018.

[94] P.-L. Dallaire-Demers and N. Killoran, “Quantum generative adversarial networks,”

Physical Review A, vol. 98, no. 1, p. 012 324, 2018.

[95] C. Zoufal, A. Lucchi, and S. Woerner, “Quantum generative adversarial networks

for learning and loading random distributions,” npj Quantum Information, vol. 5,

no. 1, pp. 1–9, 2019.

[96] J. B. Altepeter, E. R. Jeffrey, and P. G. Kwiat, “Photonic state tomography,” Advances

in Atomic, Molecular, and Optical Physics, vol. 52, pp. 105–159, 2005.

[97] IBM, IBM Unveils 400 Qubit-Plus Quantum Processor and Next-Generation IBM Quan-

tum System Two, https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-

Qubit-Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System-

Two.

[98] T. Yamakawa and M. Zhandry, “Verifiable quantum advantage without structure,”

arXiv preprint arXiv:2204.02063, 2022.

[99] J. Bak and D. J. Newman, Complex analysis, 3, Ed. Springer, 2010.

[100] S. Axler, Linear algebra done right. Springer, 2015.

[101] D. S. Dummit and R. M. Foote, Abstract algebra, 3rd ed. John Wiley and Sons, 2004.

[102] C. H. Papadimitriou, Computational complexity. Addison-Wesley, 1994.

https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two
https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two
https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two

Bibliography 625

[103] S. Arora and B. Barak, Computational complexity: a modern approach. Cambridge

University Press, 2009.

[104] J. E. Savage, Models of computation. Addison-Wesley Reading, MA, 1998, vol. 136.

[105] A. J. Kfoury, R. N. Moll, and M. A. Arbib, A programming approach to computability.

Springer Science & Business Media, 2012.

[106] M. Agrawal, N. Kayal, and N. Saxena, “PRIMES is in P,” Annals of mathematics,

pp. 781–793, 2004.

[107] K. Devlin, The Millennium Problems: The Seven Greatest Unsolved Mathematical

Puzzles of Our Time. Basic Books, 2002.

[108] C. Moore and S. Mertens, The nature of computation. OUP Oxford, 2011.

[109] M. R. Garey and D. S. Johnson, Computers and intractability. Freeman, 1979, vol. 174.

[110] J. Watrous, “Quantum computational complexity,” arXiv preprint arXiv:0804.3401,

2008.

[111] E. Bernstein and U. Vazirani, “Quantum complexity theory,” SIAM journal on com-

puting, vol. 26, no. 5, pp. 1411–1473, 1997.

[112] A. Y. Kitaev, A. Shen, M. N. Vyalyi, and M. N. Vyalyi, Classical and quantum

computation. American Mathematical Soc., 2002.

[113] R. Raz and A. Tal, “Oracle separation of BQP and PH,” ACM Journal of the ACM

(JACM), vol. 69, no. 4, pp. 1–21, 2022.

[114] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, “Strengths and weaknesses

of quantum computing,” SIAM journal on Computing, vol. 26, no. 5, pp. 1510–1523,

1997.

[115] J. Basso, E. Farhi, K. Marwaha, B. Villalonga, and L. Zhou, “The quantum approxi-

mate optimization algorithm at high depth for maxcut on large-girth regular graphs

and the Sherrington-Kirkpatrick model,” arXiv preprint arXiv:2110.14206, 2021.

[116] E. Farhi, J. Goldstone, S. Gutmann, and L. Zhou, “The quantum approximate opti-

mization algorithm and the Sherrington-Kirkpatrick model at infinite size,” Quan-

tum, vol. 6, p. 759, 2022.

626 Bibliography

[117] M. B. Hastings, “A Classical Algorithm Which Also Beats
1
2 +

2
𝜋

1√
𝐷 For High Girth

Max-Cut,” arXiv preprint arXiv:2111.12641, 2021.

Index

3-CNF, 185

activation function, 323

Adam algorithm, 330

adiabatic evolution, 127

adiabatic quantum computing, 7, 126–129

discretizing, 172, 174

adiabatic theorem, 128

adjacent vertices, 116

adjoint transpose, 11

Aer simulator

for PennyLane device, 78

Amazon Braket, 48

amplitude amplification, 219

amplitude encoding, 369, 370

amplitudes, 10

Anaconda, 566

Distribution version, 566

installation, 566

analogous quantum model

data output, 392

data preparation, 391

data processing, 391

AND gate, 8

angle encoding, 368, 369

anneal fraction, 157

annealer topologies, 150

annealing parameters

controlling, 155–160

annealing process, 155

annihilation operator, 269

ansatzs, 261, 427

API token field, 571

arithmetic modulo 4, 540, 541

artificial feed-forward dense neural

network, 324

asymptotic complexity, 547–549

attributes, 307

AUC (area under ROC curve), 346

Authentication token, 572

autoencoders, 435

automated machine learning (AutoML),

444

Azure Quantum, 45

628 Index

backpropagation, 331

barren plateaus, 403

BasicAer, 58

batch gradient descent, 332

Big O notation, 547–549

binary classifier

performance, 340–347

recall, 341

binary cross-entropy, 328

binary linear programming problems,

110–113

bipartite graphs, 118

bit (binary digit), 9

Bloch sphere, 18–21

qubit state, 20

rotations, 20

BPP, 559

BQP, 558–561

bra-kets, 11

bras, 11

C++, 46

canonical basis, 534

categorical cross-entropy loss, 451

CCNOT gate, 40

change of basis operator, 257

Chimera topology, 150, 152

chromatic number, 116

Church-Turing thesis, 546

circuit engineering 101, 70–77

CircuitQNN class, 426

circuits, QAOA, 178–180

energy estimation, 181–183

Cirq, 46, 49

Clarke’s laws, 524

classical neural network

data output, 391

data preparation, 391

data processing, 391

classical solvers, 165

SimulatedAnnealingSampler, 167

SteepestDescentSolver, 165

TabuSolver, 166

classifier model, 307

clustering, 318

CNOT gate, 28, 29

combinatorial optimization problems,

109

binary linear programming, 110

graph coloring problem, 116

Knapsack problem, 114

Traveling Salesperson Problem, 119

complex numbers, 527–529

computational basis, 10, 534

measuring, 11

computational complexity, 543, 544

decision problems, 550

problem, 549

computational model, 308

Index 629

computational problems

completeness, 556–558

hardness, 555

reduction, 555, 556

computational time

measuring, 546, 547

confusion matrix, 340

conjugate transpose, 11, 538

conjunctive normal form (CNF), 185

constrained problems

running, on quantum annealers,

141–145

constrained quadratic models, Ocean,

136–138

solving, with dimod package,

138–140

ConstrainedQuadraticModel object, 136

controlled gates, 33, 34

controlled-NOT (controlled-X) gate, 28

coordinate matrix, 536

coordinates, 533

counterfeit money, 484, 485

coupling strengths

significance, 160, 162–164

couplings, 149

creation operator, 269

cross validation, 316

D-Wave company, 47

D-Wave quantum annealers

accessing, 572

data reuploading technique, 404

decider, 550

dimod package, 138

constrained quadratic models,

solving with, 138–140

Dirac notation, 9–12

inner product, calculating, 12

discrete Fourier transform, 225

DiscreteQuadraticModel class, 168

discretization, 173

dissociation profile, 282

Dürr-Høyer algorithm, 234

Dürr-Høyer method, 212

early stopping, 338

eigenvalue, 93, 536

eigenvector, 93, 536

embedding, 152–154

empirical error, 311

empirical risk, 312

encoder network, 435

endomorphism, 536

entangled states

creating, 35

entanglement, 7, 30, 31

epochs, 335

excited state, 127

finding, with VQE, 263–266

expectation value, 96, 252, 253

630 Index

expectation values, observables

estimating, 253–260

exponential linear unit(ELU) activation

function, 325

false positive rate, 343

feasible, 110

feature map, 41, 365

amplitude encoding, 369, 370

angle encoding, 368, 369

constructing, 368

implementing, 367

ZZ feature map, 370, 371

feature space, 365

fermionic Hamiltonian, 267

finite-dimensional vector spaces, 533

forward annealing, 157

GAS in Qiskit

implementing, 236–242

gauge symbol, 8

generalization error, 310

Generative Adversarial Networks

(GANs), 318, 483, 486

discriminator neural network, 486

generative neural network, 486

technicalities, 491, 492

training process, 487, 489

generative model

training, 318

global phase, 19

Google, 46

Google Colab, 566, 567

GPU simulations, 573, 574

gradient computation, PennyLane

adjoint differentiation, 421

backpropagation, 421

device gradient computation, 422

finite differences, 421

parameter shift rule, 422

gradient computation, QNNs

automatic differentiation, 401

numerical approximation, 401

parameter shift rule, 402

gradient descent, 328, 329

minibatch gradient descent, 331

gradient descent algorithms, 176,

329–331

gradient descent method, 329

gradient vector, 330

graph, 84

edges, 85

non-optimal cut, 86

optimal cut, 86

vertices, 85

graph coloring problem, 116–119

Graphviz, 578

Graphviz Visual Editor

URL, 578

ground state, 96

Index 631

Grover Adaptive Search (GAS), 83, 211

Grover’s algorithm, 212, 213

circuits, 216–218

minima, finding with, 223

probability, of finding marked

element, 219–223

Grover’s diffusion operator, 218

H gate, 8, 16

halting problem, 545

Hamiltonian, 97

Hamiltonian function, 89

Hamiltonians, 246–248

QAOA, using with, 188–193

Hartree-Fock state, 281

Hermitian adjoint, 538

Hermitian matrix, 96

Hermitian operator, 249, 539

Hermitian transpose, 11

Higher Order Binary Optimization

(HOBO), 184

Hilbert space, 10

hinge loss, 363

HOBO problems

dealing with, 186

hybrid algorithm, 176

hybrid architectures, 432

hybrid architectures in PennyLane, 436

binary classification problem,

solving, 438–442

classification problems, solving, 436,

437

model training, 442–449

multi-class classification problem,

solving, 449

hybrid architectures in Qiskit, 458

future, 481, 482

hybrid binary classifier, building,

472–476

PyTorch, using, 459

Qiskit QNNs, training with Runtime,

477–480

hybrid models, 432

hybrid networks, 349

hybrid quantum neural networks, 432

example, 433, 434

hybrid solvers, 165, 167

LeapHybridCQMSampler, 168

LeapHybridDQMSampler, 168

LeapHybridSampler, 168

hyperparameters, 315

IBM Quantum

PennyLane, connecting to, 79, 80

using, 64–68

IBM Quantum provider, 50

IBM’s quantum computers

accessing, 571

inner product

conjugate symmetry, 537

632 Index

defining, 537

linearity, 537

positive-definiteness, 537

inner product space, 537

integer linear programming, 113

interference, 7

inverse quantum Fourier transform, 226

inversion about the mean operation, 219

Ising model, 89

example, 89, 90

Ising problem

transforming to QUBO, 105–109

Jordan-Wigner transformation, 269

Jupyter notebook, 53

k-colorable, 116

k-fold cross-validation, 316

Keras, 47

Keras sequential model, 333

kernel functions, 366

kernel trick, 364

kets, 9

Knapsack problem, 114, 115

Kullback–Leibler divergence, 516

labeled dataset, 318

Lagrangian dual, 363

Leap

for solving optimization problems,

146

Leap annealers, 146–149

LeapHybridDQMSampler, 168

LeapHybridSampler

properties, 168

learning rate, 330

libraries

installing, 568–570

Lie-Trotter formula, 174

linear algebra

adjoint operators, 538

bases, 534, 535

coordinates, 533, 534

inner products, 537

linear maps, 535, 536

overview, 531

vector spaces, 531, 533

linear maps, 535

loss function, 311

defining, 327, 328

machine learning

basics, 306

components, 307

computational model, 308

reinforcement learning, 319

supervised learning, 317

trained model, assessing, 312–317

training procedure, 309–311

types, 317

unsupervised learning, 318

Index 633

Machine Learning (ML) frameworks, 49

macro average, 342

many-one reducible, 556

margin, 358

matplotlib, 53

matrix exponentiation, 539

Max-Cut problem, 84

cut, 85

formulation, 86–88

graph example, 85

maximum cut, 85

size of cut, 85

mean squared error (MSE), 327

measurement-based quantum computing,

7

Microsoft’s Quantum Development Kit

(QDK), 45, 46

mini-batch gradient descent

fixed batch size, 331

minibatch gradient descent, 331

minus state, 16

mixer Hamiltonian, 205

mode collapse, 490

model

picking, 322–326

training, 320–322, 335–339

modular arithmetic, 540, 541

molecular problem

defining, in Qiskit, 267–270

multi-class classification problem, 449

general perspective, 450–452

multi-qubit gates, 39, 40

multi-qubit systems, 36–39

multi-tape Turing machines, 545

neural networks, 308, 322–324

common activation functions, 326

graphical representation, 323

working, 323

neurons, 323

set of biases, 323

NISQ devices, 5, 50

no-cloning theorem, 32, 33

non-deterministic Turing machines, 545

non-parametric models, 309

normalization condition, 10

NOT gate, 8, 15

NP class, 552–554

NP-complete problem, 105, 557

NP-completeness, 556

NP-hard problems, 88, 555, 556

observables, 248, 250–252

expectation values, estimating,

253–260

Ocean, 47, 49

constrained quadratic models,

135–138

optimization problem, formulating ,

135

634 Index

optimization problem, transforming,

135

one-hot encoding, 168

one-hot form, 451

one-qubit quantum gates, 13–17

one-versus-all method, 450

one-versus-one method, 450

one-way quantum computing, 7

optimization problem formulation

classical variables, to qubits, 91,

93–97

expectation value computation, with

Qiskit, 97–105

optimization problems

formulating, with Ocean, 135

solving with Leap, 146

transforming, with Ocean, 135

OR gate, 8

oracle Turing machines, 555

orthonormal, 538

overfitting, 313, 314

example, 314

parameter shift rule, 402

parity observable, 400

Pauli matrices, 17

Pegasus, 152

penalty terms, 112

PennyLane, 47, 48

circuit engineering 101, 70–77

circuit, simulating with Aer , 78

connecting to IBM, 80

connecting to IBMQ, 79

Device object, 70

interoperability, 77

QAOA, using with, 203–209

working with, 69

perceptron, 308

phase encoding, 229

phase gate, 226

phase kickback technique, 218

physical observable, 248

pip, 568

plus state, 16

polynomial time class (P), 550, 551

Polynomial Unconstrained Binary

Optimization (PUBO),

184

polynomial-time many-one reduction,

556

polynomial-time reducible, 555

polynomial-time verifier, 552

positive predictive value, 341

precision, 341

primitive gates, 40

principal component analysis, 377

principal directions, 378

product state, 30

PyQuest, 69

Index 635

Python, 566

Python-based simulator (BasicAer), 50

PyTorch, 47, 51, 459

model training, 463, 465–467,

469–471

model, setting up, 460–463

using, 459

PyTorch interface, 47

Q#, 45, 46, 49

QGANs in PennyLane, 495, 496

model training, 502–509

QGAN model, preparing, 497–501

QGANs in Qiskit, 510, 514–517

Qiskit, 46, 48

for expectation value computation,

97–105

future, 291–294

overview, 50, 52

working with, 50

Qiskit Aer, 50

for simulating quantum circuits,

58–64

Qiskit Dynamics, 52

Qiskit Experiments, 51

Qiskit Finance, 51

Qiskit Machine Learning, 50

Qiskit Metal, 52

Qiskit Nature, 51

Qiskit Optimization, 51

Qiskit Terra, 50

for building quantum circuits, 52

QNNs in PennyLane, 405, 406

data preparation, 406–409

gradient computation, 420–425

network building, 410–413

TensorFlow, using, 413–415, 417–420

QNNs in Qiskit, 426–429

QSVMs in PennyLane, 372

custom feature maps, implementing,

380, 381

dimensionality of dataset, reducing,

377–379

kernel, implementing, 375, 376

model training, 372–374

QSVMs in Qiskit, 382

Quadratic Unconstrained Binary

Optimization (QUBO),

84

combinatorial optimization

problems, 109

quantum annealers, 47, 49, 83

constrained problems, running on,

141–145

using, 125

quantum annealing, 129–135

annealing schedule, 130

annealing time, 130

636 Index

Quantum Approximate Optimization

Algorithm (QAOA), 6,

83, 172, 175, 176, 178

circuits, 178–180

using, with Hamiltonians, 188–192,

194

using, with PennyLane, 203–209

using, with Qiskit , 188

quantum circuit

creating, 22

example, 8

overview, 7

simulating, with Qiskit Aer, 58–64

quantum circuit model, 7

implementation, 83

measurements, 7

qubits, 7

quantum circuits, with Qiskit Terra, 52

initializing, 53, 54

measurements, 57, 58

quantum gates, 54–56

quantum classical models, 347–349

quantum computational complexity,

558–562

quantum computing

defining, 5, 6

overview, 4

universal gates, 40

Quantum Exact Simulation Toolkit

(QuEST), 46, 49

quantum Fourier transform (QFT), 225,

226

circuit, 226

quantum GANs (QGANs), 483, 484, 493

categories, 493, 494

quantum generative adversarial

networks, 349

Quantum Neural Networks (QNNs), 6, 41,

349, 389

building, 390

gradient computation, 401

implementing, for ternary

classification problem,

452–457

measurements, 398–400

usage, 403, 404

variational forms, 393–397

Quantum Node (QNode), 72

quantum oracles, 214, 216

quantum oracles, for combinatorial

optimization, 224

constructing, 234, 235

integer numbers, adding, 230–232

integer numbers, encoding, 227, 228

polynomial, computing, 232, 233

Quantum Phase Estimation (QPE), 261

quantum processing units, 149

Index 637

Quantum Support Vector Machines

(QSVMs), 6, 349, 351

on IBM quantum computer, 385, 386

on Qiskit Aer, 382–385

working, 366

quantum Turing machines, 7

qubit, 9

collapsed state, 8, 11

normalized state, 10

qubit Hamiltonians, 267

QUBO problems, 106, 184

solving, with QAOA in Qiskit,

195–198, 200–203

transformations, from Ising problem,

107–109

Quirk, 44

Grover search algorithm demo, 45

quota conversion rate, 168

Random-Access Machines model, 545

readout error mitigation methods, 285

Receiver Operating Characteristic (ROC)

curve, 343

rectified linear unit (ReLU) function, 325

reduction, 555

registers, 53

regression problem

tackling, 317

regularization, 314

reinforcement learning, 319

agent, 319

environment, 319

environment state, 319

policy, 319

relative entropy, 516

reverse annealing, 158, 159

Runtime, 192

S gate, 18

SAT, 183

Schrödinger equation, 13

scikit-learn, 47

scikit-learn package (sklearn), 320

second quantization, 268

self-adjoint, 539

self-adjoint matrix, 96

sigmoid activation function, 325

simulated annealing, 167

SimulatedAnnealingSampler, 167

slack variables, 110

soft-margin training, 361, 362

softmax activation function, 455

solvers, 146, 148

sparse categorical cross entropy loss, 452

spectral gap, 128

spherical coordinates, 19

statevector method, 61

SteepestDescentSolver, 165

step function, 324

stochastic gradient descent, 332

638 Index

stratification, 333

strongly entangling layers variational

form, 396, 397

Subset Sum problem, 105

superposition, 7

supervised learning, 317

Support Vector Machines (SVMs), 352

hard-margin case, 356–360

kernel trick, 364, 365

simple classifier, 352–355

soft-margin training, 361–363

training, 356–360

support vectors, 364

T gate, 18

TabuSolver, 166

tensor product, 24

TensorFlow, 47, 319, 332

model, defining, 333

ternary classification problem

QNN, implementing, 452–454, 456,

457

test dataset, 310

TikZ, 578

time-independent Schrödinger equation,

126

Toffoli gate, 40

decomposition, 41

tool installation, 565

Anaconda, 566

Google Colab, 566, 567

Python, 565

tools

for quantum computing, 44

non-exhaustive survey, 44

topology, 149

total ground state energy, 280

training dataset, 310

training procedure, 307

transpilation, 68

Traveling Salesperson Problem, 119–121

tree tensor variational form, 395, 396

Trotterization, 173

true error, 310

true positive rate, 343

true risk, 311

Tseitin transformation, 185

Turing machines, 544, 545

cells, 544

head, 544

state, 544

tape, 544

two-local variational form, 394

two-qubit states, 24, 25

inner products, computing, 26

tensor products, 27, 28

TwoLayerQNN class, 426

U-gate (universal one-qubit gate), 21

UCSSD ansatz, 280

Index 639

for solving problem, 281

uncomputation technique, 235

underfitting, 315

unitary, 539

unitary matrices, 14

universal function approximators, 308

universal gates, 41

unlabeled datasets, 318

unsupervised learning, 318

validation dataset, 316

validation loss, 317

variational circuits, 392

variational forms, 41, 261, 393

strongly entangling layers, 396, 397

tree tensor variational form, 395, 396

two-local variational form, 394, 395

variational principle, 96

Variational Quantum Deflation (VQD),

276

Variational Quantum Eigensolver (VQE),

6, 83, 245, 260

excited states, finding, 263–266

pseudocode, 262, 263

running, on quantum computers,

288–291

structure, 261

vector spaces, 532, 533

norm, defining, 537

VQE with Hamiltonians

using, 270–272, 274, 275

VQE with PennyLane

implementing, 296, 297

molecular problem, defining in

PennyLane, 294–296

running, 297, 298

running, on real quantum devices,

298–300

using, 294

VQE with Qiskit

excited states, finding with Qiskit,

276, 278

molecular problem, defining in

Qiskit, 267–270

simulations, with noise, 282–288

using, 267

using, with molecular problems,

278–282

Wasserstein GANs (WGANs), 490

while-Programs, 546

wires, 7

X gate, 8, 15

Xanadu, 47

XOR function, 40

Y gate, 8, 17

Z gate, 8

zero-one linear programming, 110

ZZ feature map, 370, 371

www.packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well

as industry leading tools to help you plan your personal development and advance your

career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and

ePub files available? You can upgrade to the eBook version at www.packtpub.com and as a

print book customer, you are entitled to a discount on the eBook copy. Get in touch with

us at customercare@packtpub.com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for

a range of free

www.packtpub.com
www.packtpub.com
mailto:customercare@packtpub.com
www.packtpub.com

642

Other Books You Might Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Quantum Computing Experimentation with Amazon Braket

Alex Khan

ISBN: 9781800565265

• Explore the features and uses of the Amazon Braket console and components

• Discover the benefits of quantum computing devices available on Amazon Braket, in-

cluding gate quantum computers, the annealer, and simulators

• Recognize which type of quantum device is the best fit for specific use cases and scaling

• Develop your own code from a basic set of use cases dealing with real-world optimization

problems

• Understand the capabilities and limitations of current quantum computing technologies

• Explore the advanced features and API functions in Amazon Braket

https://packt.link/9781800565265

643

Essential Mathematics for Quantum Computing

Leonard Spencer Woody III

ISBN: 9781801073141

• Operate on vectors (qubits) with matrices (gates)

• Define linear combinations and linear independence

• Understand vector spaces and their basis sets

• Rotate, reflect, and project vectors with matrices

• Realize the connection between complex numbers and the Bloch sphere

• Determine whether a matrix is invertible and find its eigenvalues

• Probabilistically determine the measurement of a qubit

• Tie it all together with bra-ket notation

https://packt.link/9781801073141

644

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com

and apply today. We have worked with thousands of developers and tech professionals,

just like you, to help them share their insight with the global tech community. You can

make a general application, apply for a specific hot topic that we are recruiting an author

for, or submit your own idea.

Share your thoughts
Now you’ve finished A Practical Guide to Quantum Machine Learning and Quantum Opti-

mization, we’d love to hear your thoughts! If you purchased the book from Amazon, please

click here to go straight to the Amazon review page for this book and share your feedback

or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re

delivering excellent quality content.

authors.packtpub.com
https://packt.link/r/1-804-61383-5

645

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere? Is your

eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at

no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite

technical books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and

great free content in your inbox daily.

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below:

https://packt.link/free-ebook/9781804613832

2. Submit your proof of purchase.

3. That’s it! We’ll send your free PDF and other benefits to your email directly.

https://packt.link/free-ebook/9781804613832

	Cover
	Title Page
	Copyright and Credits
	Foreword
	Acknowledgements
	Table of Contents
	Preface
	Part 1: I, for One, Welcome our New Quantum Overlords
	Chapter 1: Foundations of Quantum Computing
	Quantum computing: the big picture
	The basics of the quantum circuit model
	Working with one qubit and the Bloch sphere
	What is a qubit?
	Dirac notation and inner products
	One-qubit quantum gates
	The Bloch sphere and rotations
	Hello, quantum world!

	Working with two qubits and entanglement
	Two-qubit states
	Two-qubit gates: tensor products
	The CNOT gate
	Entanglement
	The no-cloning theorem
	Controlled gates
	Hello, entangled world!

	Working with multiple qubits and universality
	Multi-qubit systems
	Multi-qubit gates
	Universal gates in quantum computing

	Summary

	Chapter 2: The Tools of the Trade in Quantum Computing
	Tools for quantum computing: a non-exhaustive overview
	A non-exhaustive survey of frameworks and platforms
	Qiskit, PennyLane, and Ocean

	Working with Qiskit
	An overview of the Qiskit framework
	Using Qiskit Terra to build quantum circuits
	Initializing circuits
	Quantum gates
	Measurements

	Using Qiskit Aer to simulate quantum circuits
	Let's get real: using IBM Quantum

	Working with PennyLane
	Circuit engineering 101
	PennyLane's interoperability
	Love is in the Aer
	Connecting to IBMQ

	Summary

	Part 2: When Time is Gold: Tools for Quantum Optimization
	Chapter 3: Working with Quadratic Unconstrained Binary Optimization Problems
	The Max-Cut problem and the Ising model
	Graphs and cuts
	Formulating the problem
	The Ising model

	Enter quantum: formulating optimization problems the quantum way
	From classical variables to qubits
	Computing expectation values with Qiskit

	Moving from Ising to QUBO and back
	Combinatorial optimization problems with the QUBO model
	Binary linear programming
	The Knapsack problem
	Graph coloring
	The Traveling Salesperson Problem
	Other problems and other formulations

	Summary

	Chapter 4: Adiabatic Quantum Computing and Quantum Annealing
	Adiabatic quantum computing
	Quantum annealing
	Using Ocean to formulate and transform optimization problems
	Constrained quadratic models in Ocean
	Solving constrained quadratic models with dimod
	Running constrained problems on quantum annealers

	Solving optimization problems on quantum annealers with Leap
	The Leap annealers
	Embeddings and annealer topologies
	Controlling annealing parameters
	The importance of coupling strengths
	Classical and hybrid samplers
	Classical solvers
	Hybrid solvers

	Summary

	Chapter 5: QAOA: Quantum Approximate Optimization Algorithm
	From adiabatic computing to QAOA
	Discretizing adiabatic quantum computing
	QAOA: The algorithm
	Circuits for QAOA
	Estimating the energy
	QUBO and HOBO

	Using QAOA with Qiskit
	Using QAOA with Hamiltonians
	Solving QUBO problems with QAOA in Qiskit

	Using QAOA with PennyLane
	Summary

	Chapter 6: GAS: Grover Adaptive Search
	Grover's algorithm
	Quantum oracles
	Grover's circuits
	Probability of finding a marked element
	Finding minima with Grover's algorithm

	Quantum oracles for combinatorial optimization
	The quantum Fourier transform
	Encoding and adding integer numbers
	Computing the whole polynomial
	Constructing the oracle

	Using GAS with Qiskit
	Summary

	Chapter 7: VQE: Variational Quantum Eigensolver
	Hamiltonians, observables, and their expectation values
	Observables
	Estimating the expectation values of observables

	Introducing VQE
	Getting excited with VQE

	Using VQE with Qiskit
	Defining a molecular problem in Qiskit
	Using VQE with Hamiltonians
	Finding excited states with Qiskit
	Using VQE with molecular problems
	Simulations with noise
	Running VQE on quantum computers
	The shape of things to come: the future of Qiskit

	Using VQE with PennyLane
	Defining a molecular problem in PennyLane
	Implementing and running VQE
	Running VQE on real quantum devices

	Summary

	Part 3: A Match Made in Heaven: Quantum Machine Learning
	Chapter 8: What Is Quantum Machine Learning?
	The basics of machine learning
	The ingredients for machine learning
	Types of machine learning

	Do you wanna train a model?
	Picking a model
	Understanding loss functions
	Gradient descent
	Getting in the (Tensor)Flow
	Training the model
	Binary classifier performance

	Quantum-classical models
	Summary

	Chapter 9: Quantum Support Vector Machines
	Support vector machines
	The simplest classifier you could think of
	How to train support vector machines: the hard-margin case
	Soft-margin training
	The kernel trick

	Going quantum
	The general idea behind quantum support vector machines
	Feature maps

	Quantum support vector machines in PennyLane
	Setting the scene for training a QSVM
	PennyLane and scikit-learn go on their first date
	Reducing the dimensionality of a dataset
	Implementing and using custom feature maps

	Quantum support vector machines in Qiskit
	QSVMs on Qiskit Aer
	QSVMs on IBM quantum computers

	Summary

	Chapter 10: Quantum Neural Networks
	Building and training a quantum neural network
	A journey from classical neural networks to quantum neural networks
	Variational forms
	A word about measurements
	Gradient computation and the parameter shift rule
	Practical usage of quantum neural networks

	Quantum neural networks in PennyLane
	Preparing data for a QNN
	Building the network
	Using TensorFlow with PennyLane
	Gradient computation in PennyLane

	Quantum neural networks in Qiskit: a commentary
	Summary

	Chapter 11: The Best of Both Worlds: Hybrid Architectures
	The what and why of hybrid architectures
	Hybrid architectures in PennyLane
	Setting things up
	A binary classification problem
	Training models in the real world
	A multi-class classification problem
	A general perspective on multi-class classification tasks
	Implementing a QNN for a ternary classification problem

	Hybrid architectures in Qiskit
	Nice to meet you, PyTorch!
	Setting up a model in PyTorch
	Training a model in PyTorch

	Building a hybrid binary classifier with Qiskit
	Training Qiskit QNNs with Runtime
	A glimpse into the future

	Summary

	Chapter 12: Quantum Generative Adversarial Networks
	GANs and their quantum counterparts
	A seemingly unrelated story about money
	What actually is a GAN?
	Some technicalities about GANs
	Quantum GANs

	Quantum GANs in PennyLane
	Preparing a QGAN model
	The training process

	Quantum GANs in Qiskit
	Summary

	Afterword and Appendices
	Chapter 13: Afterword: The Future of Quantum Computing
	Appendix A: Complex Numbers
	Appendix B: Basic Linear Algebra
	Vector spaces
	Bases and coordinates
	Linear maps and eigenstuff
	Inner products and adjoint operators
	Matrix exponentiation
	A crash course in modular arithmetic

	Appendix C: Computational Complexity
	A few words on Turing machines
	Measuring computational time
	Asymptotic complexity
	P and NP
	Hardness, completeness, and reductions
	A very brief introduction to quantum computational complexity

	Appendix D: Installing the Tools
	Getting Python
	Installing the libraries
	Accessing IBM's quantum computers
	Accessing D-Wave quantum annealers
	Using GPUs to accelerate simulations in Google Colab

	Appendix E: Production Notes
	Assessments
	Chapter 1, Foundations of Quantum Computing
	Chapter 2, The Tools of the Trade in Quantum Computing
	Chapter 3, Working with Quadratic Unconstrained Binary Optimization Problems
	Chapter 4, Adiabatic Quantum Computing and Quantum Annealing
	Chapter 5, QAOA: Quantum Approximate Optimization Algorithm
	Chapter 6, GAS: Grover Adaptative Search
	Chapter 7, VQE: Variational Quantum Eigensolver
	Chapter 8, What is Quantum machine Learning?
	Chapter 9, Quantum Support Vector Machines
	Chapter 10, Quantum Neural Networks
	Chapter 11, The Best of Both Worlds: Hybrid Architectures
	Chapter 12, Quantum Generative Adversarial Networks

	Bibliography
	Index
	Other Books You Might Enjoy

