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Preface

Quantum mechanics is one of the fundamental theories of physics and has been
tremendously successful at predicting and explaining the atomic and subatomic
phenomena. Without quantum mechanics, there would be no modern world as we
know it—most of the artifacts of what we consider to be a technologically advanced
civilization only exist thanks to the fact that we managed to master quantum physics.
Without it, therewould be no electronic devices, no transistors, no lasers, no semicon-
ductors, noMRI scanners, noGPS, nomodernmaterial science, nomodern chemistry,
and the list could go on for quite a while. John Preskill called the development of
quantum theory “the crowning intellectual achievement of the last century”.

Today, we are at the dawn of the quantum computing age, a multidisciplinary
field that sits at the intersection of quantum physics, quantum information theory,
computer science, and mathematics and may revolutionize the world of computing
and software engineering.

In this book, we will introduce the basics of the theory of quantum computing,
illustrated with runnable examples written in Q#, a quantum-specific programming
language developed by Microsoft.

While quantum computing, compared to other areas of physics or computer
science, is still a rather niche field, there is already a rich abundance of excellent
books available on the market, approaching the subject matter from a wide array of
interesting angles and written by some of the greatest minds in this field. Given this,
one might ask a very valid question—what is the value proposition of this particular
book then?

The short version of the answer would be, that in many aspects, this is the book
I would have liked to read myself—though that is hardly a selling point. A longer
answer to this question is not that straightforward, though hopefully one that will
resonatewith the reader. Themajor goalwas to equip readers of various backgrounds,
who are not yet familiar with quantum theory, with an approachable introductory
quantum computing book that would offer a healthy mix of academic rigour, typi-
cally characterizing texts on topics related to quantum computing, with pragmatism
that is so central to agile software development world. In particular, the hands-on,
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example-driven culture of learning new software engineering patterns or program-
ming languages is often in strong juxtaposition to the strict abstract mathematical
formalism one needs to go through when beginning to learn quantum computing. As
such, in this book, all of the discussed theoretical aspects of quantum computing are
always, as customary in software engineering publications, annotated with runnable
code examples, providing the reader with two different angles—mathematical and
programmatic—of looking at the same problem space.

It is my great hope that the bookwill be equally relevant to undergraduate students
of physics and other related scientific disciplines, as well as to technically versed
enthusiasts, such as software developers or self-learners, with background in other
technologies.

Werner Heisenberg once wrote1

The resolution of paradoxes of atomic physics can be accomplished only by further
renunciation of old and cherished ideas.

From that perspective, quantum mechanics and, in the broader sense, quantum
theory are quite possibly themost fascinating and intellectually gratifying areas of all
science. The ability to understand and predict theworld of the very small has been one
of the greatest achievements of humanity and has not only given us an unprecedented
technological growth but also propelled us on a quest to find out the true nature of
reality more than any scientific theory before. In that sense, I sincerely hope that this
book may also become an impulse sparking interest in quantum physics in a gentle
and non-invasive fashion. The amazing attribute of quantum computing, after all,
is that it provides anyone interested in the subject with an accessible, ready-made
laboratory, where quantum phenomena can be experienced within a few keystrokes,
using only a structured programming language. This, in turn, encourages experimen-
tation and fosters our natural human curiosity and hopefully can translate into further
exploration of the quantum domain, beyond quantum computing.

This book is structured into three major logical parts. The first one deals with
foundational concepts, establishing the theoretical basis for the later parts of the study.
It covers both the historical aspects of the quantum theory and quantum computing
as well as offers a gentle introduction to quantum mechanics. This by no means
is intended to be an exhaustive account, in fact quite the opposite, it specifically
takes a strong focus on ideas relevant for quantum computing only, and solely using
algebra. This contributes toward building up the foundational knowledge and helps
establish a simple quantum mechanical context, without clouding the picture with
complicated mathematical ideas—both of which, in turn, should help to smoothly
navigate further chapters dedicated specifically to quantum computing. Finally, Part
I also aims to familiarize the reader with the basic features of the Q# language and
its related Quantum Development Kit.

1 Werner Heisenberg, “The Physical Principles of the Quantum Theory”, Scientific Review Papers,
Talks, and Books Wissenschaftliche Übersichtsartikel, Vorträge und Bücher, Springer Berlin
Heidelberg 1984.
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Part II covers the core ideas of quantum computing, introducing the concepts of
a qubit, quantum gates and quantum circuits. In addition to that, a series of impor-
tant concepts from quantum information theory, in particular, entanglement, take
center stage and are covered in-depth, followed by discussion about quantum key
distribution and its various protocols.

Finally, Part III rounds the book off by covering the canon of most impactful
quantum computational algorithms discovered thus far. This is of course a culmina-
tion point, one made possible by, and we can say that with a somewhat triumphal
tone to it, taking advantage of everything covered in Parts I and II.

Such structure means that, in general, the book follows a certain progression
path, intended to provide the most effective learning and reading experience. At the
same time, the individual chapters, while building upon each other, are only loosely
connected content-wise. Because of that, readers already familiar with quantum
mechanics may skip Chap. 2, readers familiar with Q# and the QDK may omit
Chap. 3 and readers familiar with basics of quantum computing can opt to jump past
Chap. 4—the rest of the book will hopefully still provide value nonetheless.

All the code samples from this book are available on GitHub.2 The quantum
circuits have all been generated with the excellent quantikz3 LaTeX package from
Alastair Kay.

I hope that through the pages of this book, the reader will enjoy their first steps into
the quantum computing world and will share the author’s enthusiasm and admiration
for this fascinating and incredibly diverse field of science.

Zürich, Switzerland
February 2022

Filip Wojcieszyn

2 https://github.com/filipw/intro-to-qc-with-qsharp-book.
3 https://ctan.org/pkg/quantikz.

https://github.com/filipw/intro-to-qc-with-qsharp-book
https://ctan.org/pkg/quantikz
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Part I



Chapter 1
Historical Background

We shall begin by covering the birth of quantummechanics and the historical aspects
of the development of quantum theory. In this initial chapterwewill also contextualize
the role of the famous EPR thought-experiment, the Einstein-Born intellectual debate
that it triggered and the subsequent dramatic discovery of Bell’s inequalities. A brief
history of quantum computing follows, whichwill give us a first chance to familiarize
ourselves with the key names and concepts in the field.

Overall, this chapter provides the historical frame of reference for the rest of the
book, throughout which the topics and ideas mentioned in this introductory part are
often revisited, refined and reflected upon—both algebraically and programmatically.

1.1 Historical Development of Quantum Theory

By the end of 19th century, most physicists considered the scientific description and
understanding of the world to be complete. Light, with all of its wave properties
was understood to be a form of electromagnetic radiation, while matter was known
to be made of small indivisible units, called particles. Albert Michelson, a future
Nobel Prize winner, best known for accurately measuring the speed of light, even
proclaimed in a 1894 speech during the dedication of Ryerson Physical Laboratory
that “it seems probable that most of the grand underlying principles have been firmly
established” [50]. The next five decades showed that he could not have been more
wrong.

In 1900, Max Planck, working on a blackbody radiation problem, introduced
a postulate that energy is radiated in discrete packets, rather than in a continual
spectrum. This radical idea, called quantization of energy, was initially a mere math-
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ematical trick that made the calculations finally work out.1 In fact, Planck tried so
hard to not depart from the classical ideas in physics, that his goal was to develop a
theory in which the concept of quanta only appeared in the emission of energy, while
absorption happened continually. His guess was right though, and for this discovery,
Planck was nominated for Nobel Prize in physics in 1908, and ultimately went on to
win it in 1918.

Albert Einstein adopted Planck’s idea to explain the so-called photoelectric effect
in 1905 [20]. It was the first one of the four papers that became known as “Annus
Mirabilis”2 papers, a creative rush of substantive scientificwork that had never before
been, and likely will never again be, contributed by a single individual in such a short
period of time. Even more stunning is the fact that at that time Einstein was still not
a full-time academic researcher but a patent clerk at the Swiss Patent Office in Bern.
Einstein showed that metals emit electrons when light shines on them due to the
interaction between the electrons that made up those metals and the quanta of light
which ultimately became known as photons. This of course created another puzzle,
and later became one of the key characteristics of the quantum theory—namely the
wave-particle duality, as light suddenly could be reasoned about in two completely
different, seemingly incompatible ways. For his work on the photoelectric effect
Einstein received the Nobel Prize in physics in 1921.3

Not long after the successful quantization of light, Planck’s quantum led to yet
another scientific breakthrough—in 1913 Niels Bohr used the idea to provide the
first successful description of the hydrogen atom. Bohr, using a mixture of classical
and quantum physics, proposed that electrons can only occupy certain orbits around
the nucleus, which he called stationary states, each one corresponding to a specific
energy level. Electrons could only jump between these states by emitting or absorb-
ing quantized energy. Despite the fact that this model managed to finally successfully
describe the discrete frequencies that hydrogen atom emitted, the so-called spectral
lines of the atom, the initial reception of Bohr’s theory was reserved, if not cold. The
main concern was that it was in violation of Maxwell’s equations—under classical
rules such model would simply not be stable. But there were physicists that imme-
diately saw the brilliance behind the quantized atom and the need to depart from
classical thinking. Ernst Rutherford, Bohr’s mentor when his three part paper was
published, was one of his most vocal supporters, while Albert Einstein was reported
to have said “this is one of the greatest discoveries” [22] when he heard about Bohr’s
theory. Bohr’s hydrogen atom description was a massive step forward in the under-
standing of atomic structure and ultimately led to him receiving a Nobel Prize in
physics in 1922.4

1 Helge Kragh tells an excellent background story of the Planck’s discovery and calls him the
“reluctant revolutionary” in [44].
2 lat. miracle year.
3 Remarkably, Einstein’s crowning and most spectacular scientific achievement, the general theory
of relativity, did not earn him a Nobel Prize.
4 Bohr was nominated, among others, by Max Planck.
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Another stunning discovery came in 1924, when Louis de Broglie showed in his
doctoral thesis that it was not only light that exhibited wave-particle duality, but also
matter. His doctoral examiners at the Sorbonne, in particular the external examiner
Paul Langevin, were not convinced by his arguments and considered the conclusions
of de Broglie to be too far fetching, so they sent the paper to Albert Einstein to obtain
his second opinion. Einstein quickly recognized the significance of de Broglie’s
discovery and the brilliance in his line of thinking, which utilized Planck’s quantum
to link the particle’s momentum to its wavelength and created a beautiful symmetry
between light and matter. Einstein responded to Langevin that “he [de Broglie] has
lifted a corner of the great veil” [1]. De Broglie’s went on to win the 1929 Nobel
Prize in physics for his work on the wave nature of electrons.

Despite these significant steps in developing the quantum theory by quantizing
further areas of physics, there still remained fundamental problems—in particular,
the orbital motion of electrons, a major flaw of Bohr’s atom remained unanswered,
as any attempt to describe the mechanics of particles failed.

Themajor breakthrough came in 1925 when an associate of Bohr at his institute in
Copenhagen, Werner Heisenberg, published what effectively become the foundation
of quantummechanics. He started with classical equations of motion and mathemat-
ically reinterpreted them in a bold and counter-intuitive way. Heisenberg realized
that in order to provide a predictive quantum theory he does not need a realist phys-
ical description of the quantum phenomena, and instead introduced a completely
abstract mathematical formalism, which focused on “quantities that are in principle
observable” [33]. In practice, it meant that we could speak of interactions between
quantum objects and the measurement apparatus but not about the motion of those
objects. It was a radical move, which led him to resolve the problem of the unsta-
ble electron orbits in Bohr’s hydrogen atom—they could no longer be observed and
thus there existed no classical ontology for them. To represent his quantum mechan-
ics, Heisenberg used custom mathematical constructs of infinite-dimensional sets
of complex variables, which was quickly reformulated into proper matrices5 [14],
resulting in this particular formulation of quantum mechanics becoming known as
matrix mechanics.

On top of that, Heisenberg introduced noncommutativity6 between observables,
which was a completely novel idea in theoretical physics at the time. He realized
that at quantum level, observable properties such as momentum and position should
not commute, namely, we cannot measure both of them with arbitrary accuracy at
the same time. This notion, which lies at the heart of quantum mechanics, became
known as the Heisenberg uncertainty principle.

The departure from the idealized, Laplacian approach of classical physics was
a profound, brilliant step. Arkady Plotnitsky reflected on these developments [55],

5 Matrix theory was not particularly well known area of mathematics among physicists at the time.
Heisenberg was not aware of the concept of matrices, but in what is undoubtedly a testament to his
brilliance, guided by his intuition, he effectively ended up reinventing matrix mathematics as part
of his work on quantum mechanics.
6 Given two quantities P and Q, we can express noncommutativity as P × Q �= Q × P .
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by pointing out that Heisenberg, through his usage of matrix-like formalism, non-
commutativity, and by bringing new type of variables into established theoretical
physics, created foundations for bringing physics, mathematics and philosophy into
a completely new relationship equilibrium, which “constitutes a truly extraordinary
accomplishment, rivalling (...) those of Newton and Einstein”.

Soon afterHeisenberg’sworkwas published, PaulDirac restructuredHeisenberg’s
mechanics further, into amuchmoremathematically coherent noncommutative alge-
bra [19] and developed his unique braket notation which until today is the ubiquitous
mathematical notation used in quantum physics.

Independently of Heisenberg, in 1926, Erwin Schrödinger formulated his own
quantum theory based on a modified version of the classical wave equation, which
became known as the Schrödinger equation, the foundation of the so-called wave
mechanics. Contrary to Heisenberg, who embraced the fact that not all physical
attributes of the quantum system, can, in principle, be observed at the same time,
Schrödinger was guided by much different physical principles. He set off to restore
classical, Newtonian motion description into quantum realm. His program was very
quickly shown to be not a viable proposition as it could not work in a three dimen-
sional classical reality—it required a high amount of dimensions, just like Heisen-
berg’s matrix mechanics. Max Born, who worked together with Heisenberg on the
formulation of quantum mechanics at the University of Göttingen, showed the same
year [11] that Schrödinger’s troubles of painting a classical picture with his wave
equation stems from the fact that the function itself is not a real entity. Instead, he
formulated the so-called Born rule, which can be used to convert an abstract wave
function state into classical probability distributions. This allowed him to resolve
the paradox of the highly dimensional aspect of Schrödinger’s wave mechanics
and reinterpret it back into a construct that fits into three-dimensional world. Born
wrote [12]

Either we use waves in spaces of more than three dimensions (...) or we remain in the
three-dimensional space, but give up the single picture of the wave amplitude, and replace
it by a purely mathematical concept (...) confined to the quantity | |ψ〉 |2 (the square of the
amplitude).

In the end it was John von Neumann who in 1932 showed beyond any doubt,
that matrix and wave mechanics are mathematically equivalent as they are both
“formulations of one and the same conceptual substratum” [42]. By that point the
mathematical foundations were firmly established, and have not changed much since
then—von Neumann’s mathematical formalism is now the standard mathematical
language of quantum mechanics.

The Born rule is now one of the postulates of quantum mechanics and has never
been derived, nor violated empirically. It also provides a probabilistic framework
for predicting quantum phenomena. According to Plotnitsky [55], from the philo-
sophical standpoint, the Born rule “gave Schrödinger’s mechanics the Heisenbergian
epistemology”, and effectively “sounded the death knell for Schrödinger’s program
of wave mechanics” in terms of the ontological character of the wave function itself
that Schrödinger advocated for.
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In 1927, in another breakthrough step in the development of quantum mechanics,
Wolfgang Pauli formalized the mathematics behind non-relativistic theory of spin,
and discovered the Pauli matrices as representations of the spin operators. Pauli, just
like Heisenberg was at one point Born’s assistant at the University of Göttingen, and
just like Heisenberg went on to become a giant of quantum theory. His contributions
to modern quantum theory were immense,7 spearheaded by the formulation of the
Pauli exclusion principle [53], published when he was only 25 years old.8 In 1928,
Pauli was appointed a Professor of Theoretical Physics at ETH Zürich, where, after
a brief time in the USA during the 2nd World War, he went on to build the physics
institute, have an illustrious scientific career and become a towering figure in the
history of this prestigious university that has produced 21 Nobel prize winners—one
of them being Albert Einstein himself.9

In 1939, Pauli’s assistant at ETH, Markus Fierz, in his habilitation degree [26],
formulated the spin-statistics theorem, which was later refined further by Pauli him-
self [52]. Spin, which is a property of each elementary particle, represents one of
two types of angular momentums that can be found in quantummechanics—intrinsic
angularmomentum. The value of the spin is a discrete number and, in general, all par-
ticles can be divided into two families—those with half-integer spin, called fermions,
and those with full integer spin, called bosons. Their role in nature is fundamentally
different, with fermions making up what we consider ordinary matter (quarks or
electrons), and bosons (photons, gluons or for example Higgs boson) acting as force
carriers. Regardless whether it is half- or full-integer spin, it can take one of only two
possible in a specific spatial dimension. From that perspective particle spin makes
up the simplest possible quantum system, and is very useful in describing the basics
of quantum information theory, as well as introducing quantum computers. We shall
return to those concepts in Chap.2.

Werner Heisenberg received the Nobel Prize in physics in 1932 for “the discovery
of quantummechanics”, upon nomination from both Albert Einstein and Niels Bohr,
while Dirac and Schrödinger shared the 1933 prize for the further advancements of
the quantum theory, or as it was formulated in the award “for the discovery of new
productive forms of atomic theory.” Pauli received the Nobel prize in physics in 1945
for the Pauli exclusion principle—also after the nomination from Albert Einstein.
Max Born received Nobel prize in 1954 for “for his statistical interpretation of the
wave function”.

While the abstract mathematical formalism proved to provide excellent reflection
of experimental data and be an incredibly accurate predictor of new phenomena,

7 Pauli was famously difficult to work with, but his scientific contributions are spectacular. Max
Born once remarked that Pauli “was a genius, comparable only to Einstein himself” and that as a
scientist he was “perhaps even greater than Einstein” [13].
8 Since quantum mechanics was dominated by young scientists, mostly in their 20s—Heisenberg,
Pauli, Dirac, de Broglie and others—it quickly became known in the scientific circles as Knaben-
physik, German for “boy physics”.
9 It is therefore of no surprise that today, the ETH Institute for Theoretical Physics, which was
established upon Pauli’s arrival at the university, is located at the Wolfgang-Pauli-Strasse 27 in
Zürich.
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the counter-intuitive probabilistic nature, bizarre rules, confusing epistemology and
complete lack of ontology of quantum mechanics have troubled some of the greatest
physicists of the 20th century. Most famously, quantum mechanics has deeply upset
Albert Einstein, who could not accept the probabilistic core of quantum mechanics
related to the Born rule and Heisenberg’s uncertainty principle, and was convinced
the ultimate nature of reality is fundamentally deterministic. Einstein, in a 1926 letter
to Max Born [13], remarked

The theory produces a good deal but hardly brings us closer to the secret of the Old One. I
am at all events convinced that He does not play dice.

Apparently, as recalled by Werner Heisenberg [35], during a 1927 Solvay confer-
ence Niels Bohr replied to Einstein

(...) it cannot be for us to tell God, how He is to run the world.

1.2 Entanglement and the Debate About True Nature
of Reality

The probabilistic nature of quantum mechanics was in stark contrast to classical
physics, which, since Newtonian ideas about the “clockwork universe”, was consid-
ered to be fundamentally deterministic. This led to considerable difficulties in trying
to capture the nature of reality within the quantum theory. The response from the
founding fathers of quantummechanicswas a philosophical interpretative framework
known as theCopenhagen interpretation, championed primarily by Niels Bohr10 and
several other physicists that were close to him, such as Heisenberg, Pauli or Born.
In line with the Born rule, in the view adopted by them, the wave function of a
quantum object does not describe the nature or reality in any direct way—it merely
exists as a mathematical tool. Moreover, we are not even allowed to reason about
the existence of that quantum object until it’s actually measured. In other words, it is
impossible disassociate the reality responsible for the quantum phenomena from the
measurement itself, as we can only observe trace effects of quantum objects on the
measurement apparatus and only infer their existence that way. This is fundamentally
different from classical macro-scale physics, where systems, their state and behavior
can be objectively described and observed.

As one might imagine, ontological problems started to pile up quickly. Erwin
Schrödinger proposed [59] a thought experiment that highlighted a paradox when
considering an interaction between a quantum object and a macroscopic object. He
imagined a cat, locked in a steel chamber which was linked to a poison. Additionally,
a radioactive substance was placed next to the chamber, with a Geiger counter. As
soon as one of the radioactive atoms decayed, the Geiger counter would trigger

10 It needs to be emphasized that there never existed one single coherent “Copenhagen interpreta-
tion”, not even from Bohr himself, whose point of view continuously evolved over time. However,
we can speak about a general “spirit of Copenhagen” of related ideas.
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the mechanism that released the poison and killed the cat. Schrödinger pointed out
that the fate of the cat is tied to the atomic process of radioactive decay, described
by quantum theory and that according to the mathematical formalism of quantum
mechanism, and the interpretative framework of Copenhagen, the cat is both dead
and alive at the same time, until it is observed.

Schrödinger’s cat has since gone to establish itself as one of the symbols of quan-
tum theory and has gained a firm position in popular culture. The main difficulty it
highlighted, called the measurement problem, has remained unsolved (at least in a
universally accepted way) to this day, giving rise to a wide range of competing inter-
pretational frameworks of quantum mechanics, rivaling the original philosophical
groundwork from Bohr.11

Quantum mechanics is the only fundamental theory of nature in which probabil-
ities are postulated “ab initio” [9], a state of affairs that many physicists objected
to and opposed Bohr’s point of view. Most famously, Albert Einstein claimed that
while quantum theory advanced our understanding of atomic-level phenomena, its
“statistical nature will turn out to be transitory” [57].

In 1935 Einstein, along with Boris Podolsky and Nathan Rosen [21] described
an apparent problem in the predictions provided by the mathematics of quantum
mechanics. Through a thought experiment around the so-called “EPR pair”—two
particles that interact with each other—they realized that quantum mechanics allows
those particles to enter an entangled state.12 They pointed out that in such entangled
state, through measuring a certain physical property of the first member of the pair,
such as position x1, the measurement result of the same physical property of the sec-
ond particle, x2, can be predicted with certainty. Repeating this process again, now
measuring a different property such asmomentum p1, we can predictwith probability
equal to one the value of p2. Those became know as the so-called EPR correlations.
What follows, according to the EPR argument, is that we can simultaneously ascribe
two incompatible conjugate properties to a quantum object, thus violating the uncer-
tainty principle around which the new quantum theory was built. In this way, they
argued, quantum mechanics was an incomplete as a description of physical reality.

Einstein followed the EPR paper with a famous lengthy exchange with Bohr,
who provided an initial response to the paper. In the resulting intellectual scuffle,
Bohr pointed out that the EPR reasoning is generally incorrect due to the irreducible
role of the measuring instruments in quantum theory. According to Bohr, the logic
followed by the EPR paper required two separate experimental arrangements—each
one only allowing to predict one set of property values for a different particle pair—
and is impossible to realize within one experiment for a single particle pair. He then
objected to inference needed between those two separate experimental setups. In

11 These topics, while formidably interesting, are not relevant to the content of this book. A curious
reader is referred to many fine publications covering the so-called quantum foundations in depth,
the conversations of Schlosshauer with eminent physicists [58], the recent work of Laloë [46] and
Plotnitsky [55, 56] being excellent places to begin with.
12 The EPR paper, while conceptually describing the phenomenon of entanglement, did not use that
term—it was introduced later in the same year by Erwin Schrödinger, in his “cat-paradox” paper.
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other words—we never learn the exact conjugate property values of a specific EPR
pair, which, according to Bohr, was rendering the argument as fundamentally invalid.

As a consequence, Einstein shifted the focus of the argument to the apparent non-
locality of quantum mechanics—violation of special relativity theory, since the EPR
correlations appeared to be some sort of force or communication between the two
particles that was instant, and thus, seemingly, faster than the speed of light. Locality
was the fundamental property of reality that Einstein was not prepared to give up.
Any possible violation of local realism was unacceptable to him, and he famously
proceeded to calling the EPR correlations spooky action at a distance [21].

Since violation of determinism and local realism were out of question, his pre-
ferred alternative to quantum mechanics was a local realist theory based on the
ontological concept of local hidden variables. In such scheme, there would exist
real properties of quantum objects which the mathematical formalism of quantum
mechanics does not take into account, and which, in Einstein’s view, pre-determined
the quantum correlations between the particles making up an EPR pair, and to which
the perceived probabilistic nature of quantum theory would be attributable. This
would have not only restored locality into quantum theory but also reintroduced
the Newtonian determinism into the quantum processes—after all, what appeared
random to us, would have been predetermined by those hidden variables.

A simplified variant of the EPR thought experiment, highlighting the non-local
aspects of quantum mechanics was proposed by David Bohm in 1951 [10].13 Bohm
defined a source emitting an entangled positron-electron pair, which could be repre-
sented e.g. by a decaying neutral pion. Each particle making up the emitted pair flies
off towards separate observers—Alice and Bob.WhenAlicemeasures the spin of her
particle along the specific spatial direction, she will randomly get a result of 1

2 or− 1
2 ,

but as soon as that happens, due to the fact that the decayed pion had spin zero and
that conservation of angular moment applies, it is immediately known that Bob will
be guaranteed to produce opposite measurement result upon his measurement along
the same direction. Additionally, quantum mechanics predicts that the entangled
particles could become spatially separated by enormous distances, even light years,
before getting measured by the observers—and the correlations would still apply.

Einstein never found a locality-obeying hidden variables model that could serve
as an alternative to quantum mechanics, and the program ultimately failed. It was
ruled out completely by John S. Bell, who, using Bohm’s ideas, disproved the “local
hidden variables” approach to quantum mechanics using a brilliant method of com-
paring classical correlations and correlations between entangled quantum objects
[5] in what became known as Bell’s inequality, or more broadly, the Bell’s theorem.
Because of the reliance on classical correlations, this inequality will always be sat-
isfied if one takes the local realist stance suggested by Einstein. On the other hand,
Bell’s inequality will get violated for certain quantum mechanical entangled states.
In other words, Bell managed to set a mathematical upper bound on the predictions
made by hidden variable theories, and then showed that there are quantum mechan-

13 Bohm’s variant has been widely used, refined further and restated in various forms in quantum
literature over the years, including a very digestible and approachable explanation by Griffiths [30].
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ical phenomena whose occurrence cannot be explained using a local realist hidden
variable approach.

A few years after Bell’s work was published, Clauser, Horne, Shimony, and Holt
introduced the so-called CHSH inequality [16], which was a generalization of Bell’s
ideas based on treating the correlation functions as averages over hidden variables.

It took almost two decades to experimentally confirm Bell’s theorem, which was
first done by a group led by Alain Aspect at the École supérieure d’optique in Orsay
[3].Many other experimental variants of verifyingBell’s inequality followed, closing
subsequent loopholes that were still possible in the earlier experimental configura-
tions [32, 36]. At this stage we are confident to claim that entangled particles exhibit
correlations that are beyond explanation of any local hidden variables theory.

Bell’s theorem is one of the most puzzling aspects of the nature of reality—Henry
Stapp even pronounced it to be the most profound discovery in science [62]. While
there is no consensus among physicists and philosophers about what are the ontolog-
ical and epistemological consequences of Bell’s theorem, by proving Einstein’s local
realist position wrong, it has nevertheless profoundly impacted the field of quantum
foundations, forcing physicists to effectively choose to give up either the notion of
locality or abandon local realism [30].

It is clear that quantum entanglement occupies space right at the very heart of
the confusing landscape of quantum theory. The problem is amplified by the usage
of the term entanglement itself—the quantum behavior is named after a known,
relatable, visualizable and inherently local classical concept. Unfortunately, quantum
entanglement with its non-local correlations is nothing like the classical, macro-scale
term, leading to a sudden and violent breakdown of our intuition. These deceptive
linguistic traps are characteristic for quantum theory and have often been studied in
quantum theoretical literature over the years. MacKinnon [47] refers to this as “using
language beyond the limits of normal usage.”

This makes any attempts of building a philosophical model of reality based on
quantum theory a rather grim activity. On one hand, the sophisticated mathemat-
ical scheme used to perform quantum calculations does not lend itself well to be
used as description or representation of the underlying reality. On the other, the
natural language used to theorize about quantum phenomena is troubled by invalid
or counter-intuitive analogies and burdened by language constructs that are tainted
with classical connotations. The result of that is that the cognitive barriers around
quantum mechanics are high, if not insurmountable. The entire situation is some-
what unfortunate, but also, for the most part, inescapable. It is also not entirely
new, as it was already apparent to the founders of quantum mechanics. Heisenberg
noted [34]

(...) it is very difficult to modify our language so that it will be able to describe atomic
processes, for words can only describe things of which we can form mental pictures.

The phenomenon of entanglement contributes to the massive divide between quan-
tum and classical theoretical thinking, up to a point where, as it was the case with
Einstein, it drifts so far away from our acceptable rational boundaries that it becomes
difficult, or even impossible to accept it as being the true nature of reality. We will
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explore the algebra behind entanglement and Bell’s theorem further in Chaps. 2 and
5, and rely on entanglement in almost every quantum computing algorithm covered
in this book.

1.3 History of Quantum Computing

Computer science owes a great deal of debt to Alan Turing, who in the 1930s,
through his work on topics such as problem universality and general computability,
laid out the mathematical foundations for the entire field of computation theory.
Most famously, he defined a generalized mathematical model of computation that
later became known as a Turing machine [63].

Turing described this imaginary machine as a computing device capable of repli-
cating mathematical states and being operated by a human. Even more critically,
Turning defined the so called computable numbers, which would be calculable on
the universal machine. A Turing machine can be thought of as a first general example
of a central processing unit—a critical theoretical milestone that ultimately led to
the creation of the first computers.

Around the same time, independently of Turing, an American mathematician
Alonzo Church was working on the similar problem space—effective computability
problems and, more generally, on the mathematical field of recursion. In fact, it
was actually Church who coined the term Turing machine after reading Turing’s
paper. Together, they contributed towards establishing a concept of the nature of
problems (functions) whose output is effectively calculable, which became known
as the Church–Turing thesis:

Every function which would naturally be regarded as computable can be computed by the
universal Turing machine.

Historically, the theory of quantum computing dates back to early 1980s, when
Paul Benioff theorized about building a classical Turing machine that was a micro-
scopic quantum mechanical model [6]. Roughly at the same time, in the Soviet
Union, completely independently of Benioff and unbeknownst to the western scien-
tific world, the brilliant Russian physicist Yuri Manin proposed a concept of building
a quantum computer [48].

Soon after, in 1981, Richard Feynman delivered a famous lecture [24] at the 1st
MIT Physics and Computation conference, in which he argued that in order to be
able to simulate Nature accurately, we should not use classical computing, but a
completely new computation model based on quantum mechanics. He said

I’m not happy with all the analyses that go with just classical theory, because Nature isn’t
classical, dammit, and if you want to make a simulation of Nature, you’d better make it
quantum mechanical.

This lecture is widely regarded as the moment that jump started the area of quan-
tum computing. Feynman further refined these ideas further in [25].



1.3 History of Quantum Computing 13

As it turned out, quantum computing found itself at odds with the Church–Turing
thesis very quickly. The thesis is a conjecture—it is not directly refutable, but for
half a century it underpinned our understanding of what computational models are
and has been treated as an axiom. However, in 1985, David Deutsch published a
groundbreaking paper [18] in which he redefined the Church–Turing thesis into the
following stronger principle:

Every finitely realizable physical system can be perfectly simulated by a universal model
computing machine operating by finite means.

Deutsch’s reasoning was that the term naturally, used by Turing, created mathe-
matical ambiguity, while his reformulation referred to objective concepts of physical
system, and was therefore compatible with measurement theory. He then proceeded
to argue that his reformulated principle carried a statement much stronger than the
original version—in fact, it was so strongly formulated that at this point not even the
Turing machine was compatible with it. Deutsch pointed out that perfect simulations
of continuous problems, for example those in classical dynamics, are not possible on
a Turing machine, because those effectively rely on a finite ways of preparing input.
In addition, along the lines of thinking of Richard Feynman, classical computational
models rely on states which are perfectly known and fully described at any com-
putation stage—which in principle is incompatible with quantum mechanics. What
follows, naturally, is that accurate and reliable simulation of quantum systems is de
facto impossible on classical computers.

Deutsch addressed all of these concerns by defining, for the first time, what he
called a universal quantum computer and described its computational model—using
qubits,14 quantum bits, instead of bits as the indivisible unit of information. It was
much different from classical computing and because it was based on the laws of
quantum mechanics, the only one satisfying his strong formulation of the Church–
Turing principle [18]. We shall return to that paper in Chap.7, as it also contained
the first problem statement and an algorithm in which quantum computer required
less logical steps than classical device to reach the solution.

In 1982, Nick Herbert [37] suggested a paradox based on copying unknown quan-
tum states. He imagined Alice and Bob, being physically separated from each other,
holding large amount of EPR pairs in their possessions. By cloning his part of the
EPR pair a large amount of times, Bob could abuse the apparent non-local effects of
quantum correlations—obtaining the information in an instant, faster than it would
take for light to travel between Alice and Bob [8]. This scheme could then be used
by them to exchange information at superluminal velocity, without being bound by
classical restrictions. In other words, if cloning of unknown quantum states was per-
mitted, one could, in principle, use entanglement for superluminal or backwards in
time communication.

14 The term was not used by Deutsch, it was introduced later by Schumacher [60] in his study
on interpreting quantum states as information. It took a while for it to fully catch on and become
universally accepted, with some physicists preferring a simpler version qbit. With his usual light-
heartedness, David Mermin even referred to the usage of qubit over qbit as “preposterous” [49].
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Many physicists intuitively knew this was wrong [54], because it would of course
be in conflict with the special theory of relativity, as it could lead us to valid arrange-
ments where effect would precede cause. And indeed, it was in response to Herbert’s
paper that the so calledno-cloning theoremwas conceived. In 1982,WilliamWootters
and Wojciech Zurek derived the theorem in a letter sent to Nature [66].15 They used
linearity of quantum mechanics as a mechanism to prove that replicating quantum
states in a generic way is forbidden. We will go through this proof in Chap. 2.

In [43] Richard Jozsa expanded the original proof with a stronger version of no-
cloning theorem by analyzing what supplementary information is needed in order
to successfully clone a quantum state. He then concluded that the state must be
supplemented with so much information, that the clone would be possible to be
generated from the additional information alone, independently of the initial state.
In other words, the original state offers no contribution to cloning.

From a larger perspective no-cloning theorem carries certain ontological weight
as well. The question about the ability to copy an arbitrary quantum state becomes
rather a question about the true nature of quantum state, and whether we can even
speak about its existence in a classical sense prior to the act of measurement—a
question, which Wootters and Zurek answered with a “no” [67].

The no-cloning theorem not only precluded the possibility of faster-than-light
communication, but it also helped kick start a fascinating area of research, namely
quantum cryptography and quantumkey distribution. Naturally, if unknown quantum
states cannot be cloned, we can already speak about a foundational basis for a secure
communication protocol. And indeed, quantum cryptography as a separate field was
born in 1984, when Charles Bennett and Gilles Brassard used no-cloning theorem as
the basis for their work on the theoretical model for the first quantum key distribution
protocol [7]. We will discuss it in detail in Chap.6.

In the first part of the 1990s, two of the most important algorithms for quantum
computers were developed. First, in a bombshell publication that shook not only the
physics community, but also the computer science world, Peter Shor of IBM showed
that quantum computers can offer exponential speed up when factoring large inte-
gers [61]. The idea that factoring large numbers is a computationally unsolvable
task underpins most of the modern cryptography, and the possibility that quantum
computers might be able to solve that problem efficiently was a dramatic develop-
ment, that attracted a lot of attention to the field. In 1996, Lov Grover of Bell Labs
developed a quantum search algorithm through an unsorted data set that provided a
quadratic speedup over the classical counterparts [31]. We are going to dedicate a
lot of room to both of these algorithms in Chap.7.

Despite very promising early results on the algorithmic front, during its first two
decades quantum computing remained mostly a theoretical field, as the hardware
development proved to be very challenging. The first physical realizations of quan-
tum computers were presented at the end of 1990s, independently of each other, by
two separate research groups [17, 27], using a technology called nuclear magnetic

15 The title “A single quantum cannot be cloned”, was contributed by John Wheeler [54].
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resonance, with a computational volume of two qubits. This type of quantum com-
puter architecture was also used for a first physical realization of Grover’s search
algorithm [15], and to the first implementation of Shor’s factorization algorithm,
when number 15 was successfully factored [64]. The experimental progress some-
what stagnated afterwards, particularly due to the fact the nuclearmagnetic resonance
turned out to be rather difficult to scale. It was not until the last several years, that
the hardware development pace in quantum computing industry picked up rapidly
again, and there are a few reasons for that.

First of all, there are now multiple different physical realizations of quantum
hardware, most promising of which are arguably superconducting tunnel junctions
and trapped ions [28]. In 2021 a group around the University of Science and Tech-
nology of China demonstrated their impressive 62-qubit programmable quantum
computer called “Zu Chongzhi” based on a superconducting processor [29]. The
same machine, in an improved configuration was later used to achieve quantum
supremacy16—solve a task which is computationally impossible to solve on even the
fastest supercomputer currently available [68]. Another interesting novel approach to
building quantum computing devices are silicon qubits, whichmay end up benefitting
from the existing semiconductor microchip solutions [65].

These technologies attract a lot of funding from both state actors [45] and venture
capital [23], which in turn further fuels innovation and entrepreneurship spirit. As a
result, quantum hardware is no longer a unique domain of academia, and through the
involvement and funding from both public and private sectors the devices are getting
more powerful, stable and accessible.

Secondly, the rise of cloud computing changed the perspective on what it means
to operate quantum hardware. It is now possible to get access to quantum hardware
via the cloud, which dramatically lowers the barriers of entry for companies and
individuals interested in building quantum software. It also incentives hardwareman-
ufacturing, which, by becoming part of cloud platforms, can be serviced more easily
and benefit from much larger demand resulting in tighter feedback loop between
quantum software authors, quantum researchers and hardware producers. A land-
mark moment happened in 2016, when IBM launched their, partly freely available,
“IBMQExperience” cloud platform for quantum computing [38]. Initially equipped
with a single 5-qubit machine, it contains, at the time of writing, 20+ machines and
has played an important role in the growth and popularization of the quantum com-
puting field. IBM has been very aggressive in the their quantum investments, and
unveiled IBM Quantum System One, the world’s first integrated quantum comput-
ing system, in 2019, to underpin their cloud offering. As of early 2022, the largest
quantummachine available in the IBM cloud was their 65-qubit machine codenamed
“Hummingbird”, while a 127-qubit quantum processor unit codenamed “Eagle” was
unveiled at the end of 2021 [41] and will soon become a feature of the cloud plat-
form too. IBM’s quantum computing roadmap [40] aims for a spectacular increase

16 The original quantum supremacy barrier was broken by Google’s Sycamore processor in 2019
[2], though the task computed by Zu Chongzhi is about 6 orders of magnitude more difficult. There
have also been questions raised around the complexity of the task Sycamore solved [39].
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in the quantum volume of the IBMQ platform’s quantum hardware capabilities each
year, with a massive 1121-qubit quantum processor units, codenamed “Condor”, to
become available as part of IBM Quantum System Two in 2023.

Other software giants are not staying put too. Amazon and Microsoft are both
offering their own cloud computing quantum services on their cloud platforms, AWS
and Azure. As of 2022, Microsoft Azure Quantum integrates two third-party trapped
ion hardware startups Quantinuum and IonQ, and simultaneously heavily invests in
research [51] and their own first-party hardware development.

Finally, there has been a lot of promising developments in the quantum software
space, bridging the gap between theorists, hardware engineers and software engi-
neers. Historically quantum software development required direct manipulation of
the lowest level primitives responsible for controlling and transforming the quantum
state of the system. On top of that, it was necessary for algorithm authors to actively
engage in quantum error correction activities, which was hardly productive. This is,
of course, in stark contrast to classical software engineering, where typically many
levels of abstraction—firmwares, SDKs, libraries, operating systems and such—exist
between the raw CPU instructions and the software developers building a program,
stabilizing the overall experience and providing a very convenient, high-level envi-
ronment for building software. This is now changing, as quantum computing is
maturing; several convenient quantum-specific programming languages and frame-
works have come to existence in recent years. Additionally,mature software concepts
such as the emergence of the idea of quantumfirmware [4] help tremendously aswell,
because even though the fidelity of quantum hardware is improving, there are still
decoherence problems and computation errors that need to be dealt with, and having
a robust abstraction layer sitting between the software and the hardware makes the
life of algorithm and program authors considerably easier.

In fact, the theme of this book will be to look at the quantum theory through the
lenses of the Q# programming language, a high level programming language specif-
ically tailored for quantum programming, and its corresponding Quantum Devel-
opment Kit from Microsoft. We will go through their features in Chap.3 and rely
on them for all code examples in this book. IBM has also developed a very vibrant
open source community around Qiskit,17 its Python framework for quantum com-
puting, while Google AI Quantum Team started Cirq,18 another Python framework
for quantum development.
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Chapter 2
Basics of Quantum Mechanics

Throughout this book, we shall be focusing on quantum mechanics exclusively from
the perspective of quantum computation theory, thus specifically avoiding a whole
range of challenging topics, such as the Schrödinger equation or the Hamiltonian
operator. We will instead operate entirely on—one would hope!—more familiar
algebraic concepts of vector-based states and matrices, and approach them solely
from the angle of their usefulness with regards to programming quantum computers.

Over the next few dozen pages we will cover the basics of quantum mechanics,
with the formidable goal of equipping ourselves with theoretical foundations needed
before proceeding into the field of quantum computing from Chap.4 onwards.

2.1 Quantum State

Hilbert space is a complex vector space, which, as a mathematical concept, was
developed in the early 20th century by David Hilbert. Hilbert space can accommo-
date any number of dimensions, making it an invaluable tool in many branches of
mathematics and physics. The usage of Hilbert spaces in quantum mechanics was
introduced by John von Neumann and is the formalism that we still use today. We
denote the vector space as C

n , where n indicates the number of dimensions. For
example C

2 indicates that all elements of this vector space are two dimensional.
In quantum mechanics, the preferred notation when dealing with vectors is the

Dirac notation, introduced by Paul Dirac [8], also known as the braket notation. A ket
is simply a column vector written with a certain label—for example |ψ〉 is a vector
denoting a state labeled ψ , without indicating anything about the dimensions of this
vector. We are generally free to assign any labels to the kets, for example |photon〉
or |electron〉 are perfectly valid names, though greek letters are most prevalent for
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unknown states. In quantum computing, as we will see in Chap.4, the labels |0〉 and
|1〉, due to correspondence with classical bit values, are most commonly used.

The simplest possible quantum state |ψ〉 is described by a two-dimensional vector
in the complex Hilbert space C

2 and can be written as

|ψ〉 =
[
a
b

]
(2.1)

where a and b are complex numbers. Complex numbers are made up of a real an
imaginary components using the format

a + xi (2.2)

where a and x are real numbers, and i = √−1. The set of complex numbers is a
superset of real numbers—every real number is a complex numberwith the imaginary
component equal to 0.

A bra, on the other hand, is the conjugate transpose of the ket and in the braket
notation looks like a mirror of a ket.

〈ψ | = |ψ〉† = [
a� b�

]
(2.3)

In linear algebra, conjugate transpose is denoted by the † symbol and takes the
column vector to a row vector, while additionally changing the sign of the imaginary
component of the complex numbers. For example:

[
a + xi
b + yi

]†

= [
a − xi b − yi

]
(2.4)

Vectors in Hilbert space are equipped with the inner product, which allows length
and vector angles to be defined.The inner product (also known as the scalar product)
in the Dirac notation is called a braket, and can be expressed as follows:

〈ϕ|ψ〉 = [
c� d�

] [
a
b

]
= c�a + d�b (2.5)

In order for a vector to be a valid state vector in quantum mechanics, it needs to
be normalized, which means it must be a unit vector—have a length of 1. The term
comes from the fact that in linear algebra we refer to the length of the vector as norm.
The norm is the square root of the inner product.

‖a‖ = √〈a|a〉 (2.6)

Since the length is always a real positive number, this means that the inner product
of the quantum state vector with its conjugate transpose must also be equal to 1.
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〈ψ |ψ〉 = 1 (2.7)

Any vector could be converted into a unit vector if it is divided by its norm. At
that point it becomes a valid description of a quantum state.

|ψ̃〉 = |a〉
‖a‖ = |a〉√〈a|a〉 (2.8)

2.2 Two-Level Quantum System

Now that we know how the express a quantum state, let us see how we can use it
to describe the state of a simple two-level quantum system. By a two-level quantum
system we understand a system that has two distinct states, which we can be denoted
using arbitrary ket labels. For example, when measuring an electron spin along the
z-axis, we could speak of spin direction up or down, and therefore use the states |↑〉
and |↓〉. Similarly, a photon going through a polarizer might end up in one of two
possible polarization states such as |↘〉 or |↗〉.

In order to have a tangible real world reference, we will assume working with
spins for the time being, but all the mathematics here is equally applicable to any
other two-level quantum systems. Electrons have spin value which, when measured
along the z-axis, is equal to +�

2 for spin up and −�

2 for spin down, where � is the
reduced Planck constant.

It means that spin values are non-continuous, but discrete—spin can only assume
one of two possible values, which also gives it a very useful designation of being the
simplest possible quantum system. Spin can be measured in any spatial direction,
such as along the z-axis, the x-axis or the y-axis.

Since the two states of the two-level quantum system must always be distinguish-
able from each other, in linear algebra the vectors corresponding to them must be
linearly independent (orthogonal), otherwise the vectors might overlap with each
other in some situations. Orthogonality of two vectors can be expressed as their
inner product being equal to zero.

〈↑ | ↓〉 = 0 (2.9)

Since we already established that quantum states are represented by unit vectors,
so vectors whose norm is equal to 1, these two orthogonal vectors can be called
orthonormal, and together they make up a so called orthonormal basis. We indicate
that the vector pair forms a basis by writing them together in curly braces: {|↑〉 , |↓〉}.
We shall refer to it as the Z-basis.

There are infinitely many possible orthogonal unit vector pairs and we are free
to choose any such pair to represent two distinct quantum states. However there is a
pair of them that are particularly useful because they make the related mathematical
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calculations easier.1 Those are the vectors for which a and b are equal to 0 and 1, and
are shown in Eq.2.10. We shall use them to represent spin up and spin down along
the z-axis.

|↑〉 =
[
1
0

]
|↓〉 =

[
0
1

]
(2.10)

2.2.1 Superposition

The basis vectors can be used to decompose any vector in two-dimensional space
into a linear combination of them. Therefore, in our case, where the basis we chose
is denoted by {|↑〉 , |↓〉}, any general quantum state |ψ〉 can be written as:

|ψ〉 =
[
a
b

]
= a

[
1
0

]
+ b

[
0
1

]
= a |↑〉 + b |↓〉 (2.11)

It is easy to see from Eq.2.11, that when a = 1, then b = 0, |ψ〉 is in the state
|↑〉. Conversely, when a = 0, then b = 1 and the state |↑〉 is aligned with |↓〉.

|ψ〉 =
[
1
0

]
= 1

[
1
0

]
+ 0

[
0
1

]
= |↑〉

|ψ〉 =
[
0
1

]
= 0

[
1
0

]
+ 1

[
0
1

]
= |↓〉 (2.12)

Since the vector length is restricted to be equal to 1, the values of a and b are
restricted by the normalization condition:

|a|2 + |b|2 = 1 (2.13)

Notice that if we restricted ourselves to real numbers only, so used the vector space
R

2 instead of C
2, then the condition could be written without taking the absolute

values prior to squaring them.

a2 + b2 = 1 (2.14)

However, in quantum mechanics, the vectors are complex and for complex num-
bers, it is possible to still have a negative number after squaring it, because of the
imaginary number i .

i2 = −1 (2.15)

1 There is another reason too, that will become apparent very soon once we start exploring the
concept of observables.
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In all the cases when a and b are non-zero, we have a state that is called a
superposition of the two basis states. While a and b are permitted to assume any
values as long the normalization condition from Eq.2.13 is fulfilled, when a = b we
speak about uniform superposition. Such example is shown in Eq.2.16.

|ψ〉 =
[

1√
2
1√
2

]
= 1√

2

[
1
0

]
+ 1√

2

[
0
1

]
= 1√

2

(
|↑〉 + |↓〉

)
(2.16)

So far we were only working with the {|↑〉 , |↓〉} basis. However, as we have
already mentioned, we have full freedom in choosing the bases we would like to
use when reasoning about a given quantum state. For example, the following two
vectors form a perfectly valid orthonormal basis {|←〉 , |→〉} and logically would
correspond to spin measurements along the x-axis in the three dimensional space.
Hence, we can refer to it as the X-basis.

|←〉 = 1√
2

[
1
1

]
|→〉 = 1√

2

[
1

−1

]
(2.17)

Let us now consider the superposition state |ψ〉 from Eq.2.16. As it turns out, that
state, a superposition in {|↑〉 , |↓〉} basis is actually equal to |←〉 when expressing
this state as decomposed in the basis {|←〉 , |→〉}

|ψ〉 = 1√
2

(
|↑〉 + |↓〉

)
=

[
1√
2
1√
2

]
= |←〉 (2.18)

Conversely, both of the basis states |↑〉 and |↓〉 are in a uniform superposition
with respect to {|←〉 , |→〉} basis. For example

|↑〉 =
[
1
0

]
= 1√

2

[
1√
2
1√
2

]
+ 1√

2

[
1√
2

− 1√
2

]
= 1√

2

(
|←〉 + |→〉

)
(2.19)

This tells us something very profound. Superposition is basis dependent. Such
conclusion should not be surprising though, as it is a direct consequence of the vector-
based mathematical formalism of quantum mechanics. The same vector state can be
represented as linear combination of infinitely many other vector pairs forming other
orthonormal bases.

In other words, a state is always in superposition with respect to certain bases and
not in superposition to some other basis. If a system is in a definite basis state with
respect to one basis, and simultaneously in a uniform superposition with respect to
another basis, we would call such two bases mutually unbiased bases.
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2.2.2 Bloch Sphere

We already mentioned that the quantum mechanical mathematical formalism relies
on complex numbers. Let us revisit that briefly by examining the spin states |↑〉 and
|←〉 again. The spin state |↑〉 is a+�

2 vertical spin, which implies direction along the
three dimensional z-axis. On the other hand, the spin state |←〉 is a +�

2 horizontal
one, along the x-axis.

Looking at their vector representations, since they are only described with real
numbers and canbe plotted on a two-dimensional plane, there appears to be a 45◦ = π

4
angle between them, which is seemingly incompatible with the fact that in three-
dimensional space we have a 90◦ = π

2 angle between z- and x-axes.
This tells us that the rotation by an angle θ in real space, needs to be equivalent

to a rotation by θ
2 angle in the quantum state space. We can use that2 to rewrite

the general state of a two-level quantum system, for now in the x-z plane, using an
arbitrary value of the θ angle, instead of the usual coefficients a and b

|ψxz〉 = cos

(
θ

2

)
|↑〉 + sin

(
θ

2

)
|↓〉 (2.20)

If we now substitute θ with 0◦ = 0π , 90◦ = π
2 and 180◦ = π , we obtain

|ψ(0)〉 = cos(0) |↑〉 + sin(0) |↓〉 = |↑〉∣∣∣ψ (π

2

)〉
= cos

(π

4

)
|↑〉 + sin

(π

4

)
|↓〉 = 1√

2

(
|↑〉 + |↓〉

)

|ψ(π)〉 = cos
(π

2

)
|↑〉 + sin

(π

2

)
|↓〉 = |↓〉 (2.21)

which is exactly what we were expecting.
This still only covers two of the spatial dimensions though, but it is also possible

to have the spin measured along the y-axis. Consequently, we need to introduce an
extra angle φ to cover the missing coordinate plane. We will need a new orthonormal
basis for the y-axis, which will be made up of the orthogonal “in” and “out” states
{|�〉 , |�〉} and this is where we need to finally introduce complex numbers. We will
refer to it as the Y-basis.

|�〉 = 1√
2

[
1
i

]
|�〉 = 1√

2

[
1
−i

]
(2.22)

Similarly to Eq.2.20, we can express a two-level quantum system for any arbitrary
value of the φ angle with regards to the x-y plane as

∣∣ψxy
〉 = 1√

2
|↑〉 + eiφ√

2
|↓〉 (2.23)

2 The reasoning in this section is inspired by the excellent presentation of Kok [13].
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The reason why we use the exponent e instead of the angle directly would be that
quantum state vectors must be normalized to a fixed length of 1, and this is the way
to guarantee this.

Geometrically speaking, and taking into account Eqs. 2.20 and 2.23 to produce

|ψ〉 = cos

(
θ

2

)
|↑〉 + eiφ sin

(
θ

2

)
|↓〉 (2.24)

we arrive at the conclusion that because of the complex number formalism, any two
level quantum state can be plotted on a three-dimensional sphere with a fixed radius
of 1, where every surface point represents one of the infinitely many unique quan-
tum states for the system. Orthogonal states are then defined by two points on the
surface of the sphere that are exactly opposite from each other. This sphere is called
the Bloch sphere, and only works for two-level quantum states—for larger systems,
as we will learn later, we reach more dimensions and our visualization capabilities
break down. We will use the methodology introduced here later on when discussing
Bell’s theorem in Sect. 2.9.

The final thing we need to do is that we need to set the possible limits for values of
both θ and φ. They cannot both range the entire 360◦ = 2π , as that would cover the
entire three-dimensional sphere twice, so one of them must be limited to 180◦ = π .
While this is completely arbitrary, the conventional approach in quantum mechanics
is to do it for θ , giving us the allowed ranges (in radians)

0 ≤ θ ≤ π 0 ≤ φ < 2π (2.25)

Suchmathematical formalismand theBloch sphere visualizationmodel leads us to
one final observation. All the bases for two-level quantum states are simply made up
of twoantipodal points on the surface of theBloch sphere.Wecan always change from
one basis to another by performing a rotation around the Bloch sphere—for example,
the X-basis is actually the Z-basis rotated around the y-axis by ±π

4 . This knowledge
will come in very useful once we start working with quantum computations.

For a long time the necessity for using complex numbers in quantum mechanics
has not been formally proven, instead it has merely been postulated and has simply
always provided accurate predictions of the experimental outcomes. Nevertheless,
it has been suggested that it might be possible to give standard quantum theory
mathematical description using real numbers only. However, in 2022, two Chinese
research groups [5, 15] performed ingenious experiments that refuted the conjec-
ture that complex numbers are not required in the standard formulation of quantum
mechanics [16].

2.3 Born Rule

While a two-level quantum state can be described by a continuous range of values for
both a and b complex numbers, we can only observe one of the two basis states of our
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chosen orthonormal basis. This concept lies at the heart of quantum mechanics—in
order to learn something about the quantum system, we need to perform a measure-
ment, and contrary to classical physics, observations do influence the quantum state
itself.

If the quantum state aligns with one of the two basis states, then the measurement
result is deterministic. However, if the state is in the superposition with respect to
the measurement basis, then the measurement is probabilistic—and the rules for this
probabilistic result are governed by the so-called Born rule. The rule, named after
MaxBornwho introduced a probabilistic interpretation of thewave function [2], is an
axiom in quantummechanics; it has never been derived yet it has always managed to
perfectly align with experimental results. The Born rule can be concisely expressed
in linear algebra.

First, the inner product between the unknown state |ψ〉 and the basis state |↑〉 is:

〈↑ |ψ〉 = a〈↑ | ↑〉 + b〈↑ | ↓〉 = a · 1 + b · 0 = a (2.26)

The Born rule in this case tells us that the classical probability of finding |ψ〉 in
the state |↑〉 is the absolute square of the inner product between the current quantum
system state and the tested measurement state, which also is one of the basis states:

Pr(↑) = |〈↑ |ψ〉|2 = |a|2 (2.27)

Based on this, we can calculate that the probability of finding the measured state
in the basis state |↓〉 is:

〈↓ |ψ〉 = a〈↑ | ↑〉 + b〈↑ | ↓〉 = a · 0 + b · 1 = b

Pr(↓) = |〈↓ |ψ〉|2 = |b|2 (2.28)

This also explains the normalization condition from Eq.2.13. Because |a|2 and
|b|2 represent classical probabilities of twomutually exclusive possiblemeasurement
outcomes, their summust be equal to one. Due to the fact that a and b could so easily
be converted into classical probabilities, we refer to them as probability amplitudes.

The Born rule can be experimentally confirmed using a wide range of quantum
experiments, one of themost famous of which is the Stern-Gerlach experiment. In the
experiment, the electrons are prepared with a spin along the z- or x-axis, fired from a
source, travel through a magnetic field created by two magnets and hit a fluorescent
screen, which becomes a de-facto act of measurement, subject to the Born rule.
Spin is a form of an angular momentum, so the magnetic field deflects the electrons
traveling towards the screen in one of two possible directions away from the original
path along which they were fired. It is the positioning of magnets that determines
whether the measurement is performed along the z-axis (electrons are deflected up
or down) or along the y-axis (electrons are deflected left or right). Algebraically this
corresponds to a Z-basis {|↑〉 , |↓〉} or X-basis {|←〉 , |→〉} measurement.

If the initial spin is prepared along the z-axis, for example in the state |↑〉, and the
magnets are also set up for the z-axis measurement, then all of the electrons will only
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be deflected up. This is consistent with the description initially covered in Eq.2.27:

Pr(↑) = |〈↑ | ↑〉|2 = 1

Pr(↓) = |〈↓ | ↑〉|2 = 0 (2.29)

Conversely, if the initial spin is prepared along the x-axis, for example in the state
|←〉, and the magnets are still set up for the z-axis measurement, we have, according
to the Born rule maximum uncertainty for receiving a result |↑〉 or |↓〉—after all,
we are measuring along the z-axis, so those are the only two measurement outcomes
possible. We can describe this algebraically by expressing the state |←〉 as the linear
combination of both |↑〉 or |↓〉

|←〉 = 1√
2

(
|↑〉 + |↓〉

)
(2.30)

which happens to be the exact same state as introduced in Eq.2.16. Since both a and
b are equal to 1√

2
, the probabilities according to the Born rule are

Pr(↑) =
∣∣∣∣ 1√

2

∣∣∣∣
2

= 1

2

Pr(↓) =
∣∣∣∣ 1√

2

∣∣∣∣
2

= 1

2
(2.31)

This leads us to conclude that a state in a uniform superposition with respect to
the Z-basis {|↑〉 , |↓〉} is equally likely to produce any of the two orthogonal Z-basis
states upon measurement. Consequently, in the Stern-Gerlach apparatus, this will
manifest itself by having half of the electrons deflected up, and half of them down.

Similar effect can be achieved by rotating the magnets in the apparatus to deflect
the electrons left or right only, thus performing anX-basis {|←〉 , |→〉}measurement,
while preparing the initial electron spin along the z-axis in a state |↑〉 or |↓〉.

We already referred to the Z-basis and X-basis as mutually unbiased basis pair.
We are now in a position to more formally state that if wemeasure a system, prepared
in a basis state of one of the mutually unbiased bases, using the other of the two
mutually unbiased bases, the observation will yield any possible measure outcome
with equal probability. More colloquially one can refer to such measurement result
as a perfect coin toss underwritten by the laws of Nature.

2.4 State Evolution

2.4.1 Unitary Transformations

In quantum mechanics, arbitrary transformations of the quantum state are not pos-
sible. Instead, the time evolution of a quantum system happens through a series
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of unitary transformations. Quite remarkably, unitarity is the only requirement for
state evolution in quantummechanics. Any unitary matrixU is a valid quantum state
transformation, and is referred to as an operator.

U |ψ1〉 = |ψ2〉 (2.32)

A linear transformationU is said to be unitarywhen it produces an identitymatrix I

I =
[
1 0
0 1

]
(2.33)

when multiplied by its Hermitian adjoint—a generalized version of conjugate trans-
pose U∗ from linear algebra—U†.

U†U = UU† = I (2.34)

We could also say that differently—amatrix is unitarywhen its complex conjugate
is also its own inverse.

U† = U−1 (2.35)

This also means that every operation is by definition reversible, since applying
the adjoint after the transformation will return the vector back to its original state.

U |ψ1〉 = |ψ2〉
U† |ψ2〉 = |ψ1〉 (2.36)

Amatrix can also be equal to its own complex conjugate. It is then its own unitary
inverses such that

U = U† (2.37)

Such matrices are called Hermitian or self-adjoint operators, and applying the
same operator twice in a row would recover the original quantum state.

U |ψ1〉 = |ψ2〉
U |ψ2〉 = |ψ1〉 (2.38)

After applying unitary transformations, the transformed state remains normalized,
since unitary transformations do preserve the inner products between vectors. From
the geometrical perspective, we can picture such transformations as conserving par-
allelity and only performing vector rotations. In quantum mechanics, as we already
stated earlier, the length of the state vector must be equal to one.
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〈ψ |ψ〉 = 〈ψ |U†U|ψ〉 = 1 (2.39)

Naturally, if we apply the same transformation to two different state vectors, the
inner product between them is also preserved. This is very important because it guar-
antees that twoorthogonal vectors remain orthogonal after the unitary transformation.
For example, if the vectors |u〉 and |v〉 are orthogonal:

〈u|v〉 = 0 (2.40)

then they remain orthogonal after applying U:

〈u|U†U|v〉 = 0 (2.41)

Overall, quantum state evolution is completely deterministic as we are able to cal-
culate the system state at any point. Because each unitary transformation is reversible,
no information is ever lost.

2.4.2 Beam Splitter

Cleve et al. [7] proposed using the basic algebra of a beam splitter and its interference
effects as a gentle way to introduce quantum computational concepts. We shall take
a similar approach here and introduce such simplified way of modelling a light beam
travelling through a beam splitter to illustrate quantum state evolution. This theory
will help us a lot when discussing quantum gates in Chap. 4.

Let us consider an optical experiment where light can travel from the light source
along a specifically angled path towards a beam splitter. In the first variant, light will
arrive from the top-left of the beam splitter, as shown in Fig. 2.1.

The beam splitter will allow 50% of light to go through and continue along the
line it was taking, while the other 50% will be reflected at a 90◦ degree from its
original path, so that the beam approaching from top-left would be heading in a
top-right direction. Since light is an electromagnetic wave, there is nothing particu-
larly surprising about it being split into two light waves heading off in two separate
directions.

In the second variant, the light sourcewill emit light approaching from the bottom-
left of the beam splitter, as depicted in Fig. 2.2. In this case the beamof light is coming
from bottom-left of the beam splitter, which will still allow half of the light to pass
through, while the other half will be reflected towards the bottom-right direction,
again at a 90◦ degree from its original path.

Now, let us imagine that the intensity of light is turned down so much that instead
of a constant beam, the light source is emitting individual photons, one by one. In
order to model these photons algebraically, we will need to define the orthonormal
basis which will allow us to describe their quantum states as they approach the beam
splitter. Because we are free to choose our ket labels however we want, we will
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Fig. 2.1 Beam splitter with light approaching from the top-left
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Detector
one
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Fig. 2.2 Beam splitter with light approaching from the bottom-left

denote the state of the photon approaching along the top-left beam path as |u〉, while
the state of the photon approaching the beam splitter from the bottom-left path will
be represented by |v〉. Since we are still dealing with a two-level quantum state, the
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system can only be measured to be in one of these two states. Because of that, we
can ascribe these labels to the detectors as well, so in our setup detector one will
correspond to measuring |u〉, while detector two to measuring |v〉.

The basis states written in a standard vector format are still going to be equal to
the Z-basis vectors from Eq.2.10.

|u〉 =
[
1
0

]
|v〉 =

[
0
1

]
(2.42)

We can model a simplified [4] balanced beam splitter using a unitary operator UB

shown in Eq.2.43. It would take an input basis state |u〉 or |v〉 and create a uniform
superposition of them, where one of the output beams, depending on the approach
path, would be phase shifted by π .

UB = 1√
2

[
1 1
1 eiπ

]
(2.43)

We could obviously calculate that

eiπ = −1 (2.44)

which leads us to the so called Hadamard matrix

UB = 1√
2

[
1 1
1 −1

]
(2.45)

As a result, when the photon approaches from the top-left, we can express the
process of going through the beam splitter as

UB |u〉 = 1√
2

[
1 1
1 −1

] [
1
0

]
= 1√

2

[
1
1

]
= 1√

2

(
|u〉 + |v〉

)
(2.46)

Conversely, the photon approaching along the bottom-left path can be expressed as

UB |v〉 = 1√
2

[
1 1
1 −1

] [
0
1

]
= 1√

2

[
1

−1

]
= 1√

2

(
|u〉 − |v〉

)
(2.47)

We can easily see that the shift of the phase by π manifested itself with a change
in sign of the superposition terms—from (−) to (+). This however does not impact
the classical probabilities. Upon observation, such as placing detectors along both
possible paths, as shown in both of Figs. 2.1 and 2.2, the system state will collapse to
ameasurement readout of either |u〉 or |v〉, according to the Born probability rule—in
this case with 50% probability for both reflected and not reflected cases—and we
will physically discover the photon at one of the detectors only. As a result, in both
of these experimental setups the detectors flash randomly.
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The remarkable thing about such approach to quantum state evolution is that in
this formalism we could say that the beam splitterUB both reflected and not reflected
the photon at the same time—since it created a superposition of both reflected and
pass-through states.

2.4.3 Mach-Zehnder Interferometer

So far both of the outgoing beam paths leaving the beam splitter were pointing in
different directions, but we can force them to cross again by adding two mirrors,
which would reflect them towards each other. We can then add another beam splitter
at the location where they would cross. Such set up is called the Mach-Zehnder
interferometer, and is shown inFig. 2.3. Ifweuse the superposition state fromEq.2.46
as the input state into the second beam splitter, we will arrive at

UB

(
1√
2
(|u〉 + |v〉)

)
=

[
1
0

]
= |u〉 (2.48)

This tells us that the application of the second beam splitter reverses the transfor-
mation done by the first one. In general, this should not be surprising—in quantum
mechanics all unitary transformations are reversible after all.What is interesting here
is that it is the same transformation, applied twice in a row, ended up undoing itself—
the reason for such behavior is that the operatorUB used to describe the beam splitter
is not only unitary, but alsoHermitian—it is its own inverse, aswe defined in Eq.2.37.

If we now place detectors along the two paths leaving the second beam splitter,
as done in Fig. 2.3, there will be no probabilistic outcome anymore. Because the
quantum state is now a definite |u〉 state, with probability amplitude equal to one,

Beam
splitter one

Light
source

Detector
one

Detector
two

Beam
splitter two

Mirror one

Mirror two

Fig. 2.3 Mach-Zehnder interferometer with light approaching from the top-left
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Fig. 2.4 Mach-Zehnder interferometer with light approaching from the bottom-left

only one of the final detectors will ever light up. In other words, since we ascribe
states |u〉 or |v〉 to the detectors as well, based on the initial state of the system, which
is determined by the initial angle of the light approaching the first beam splitter, we
can deterministically say which specific detector would fire all the time. In this case,
only detector one flashes.

The situation would be analogous if the input state into the second beam splitter
is the one from Eq.2.47, namely the initial beam of light entering the Mach-Zehnder
interferometer approached from the bottom-left in state |v〉, as shown in Fig. 2.4

The corresponding quantum state can then be described as

UB

(
1√
2
(|u〉 − |v〉)

)
=

[
0
1

]
= |v〉 (2.49)

where the final state is |v〉 and only detector two, corresponding to |v〉, will fire.
Yet again, this effect is not particularly surprising when the light is emitted as

a continuous beam, because the observed effect, called interference, in this case
destructive interference caused by the difference in relative phase, is an integral
aspect of wave mechanics and can be observed in any waves, including those visible
on thewater surface. However, at the quantum level, the same phenomenon still arises
when the light source emits individual photons. This of course is a highly counter-
intuitive situation, because the waywe can interpret it, is that the photon, even though
it is indivisible, after the first beam splitter ends up taking both paths at the same
time. Then, upon encountering the second beam splitter it ends up interfering with
itself and through wave interference cancels out the effects of the first beam splitter
and returns back to the original state.

This is a textbook example of the so-called wave-particle duality, underpinning
quantummechanics. If this does not make sense, then the best we can do at this point
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Fig. 2.5 Mach-Zehnder interferometer with light approaching from the bottom-left and a phase
shifter

is to abandon our macroscopic, classical intuition and just trust the mathematics of
quantum mechanics.

We can take this experiment further, and adjust the relative phase of the reflected
light beams after the light goes through the first, but before the second beam splitter.
This is illustrated by a phase shifter, placed in the path between beam splitter one
and mirror two, as shown in Fig. 2.5.

The phase shifter allows changing the wavelength of the travelling light. Similarly
to the basic modelling of the beam splitter we did earlier, we can also express the
phase shifter as a unitary state transformation. Therefore, let us consider the matrix
UP, which performs the phase shift by φ.

UP =
[
1 0
0 eiφ

]
(2.50)

We can now calculate the algebraic effect of this change. Since on Fig. 2.5 the
input beam of light is approaching from the bottom-left, the state after the first beam
splitter is the one from Eq.2.47. This gives us the state after the phase shifter, but
prior to beam splitter two that is equal to

UP

(
1√
2
(|u〉 − |v〉)

)
= 1√

2
(|u〉 − eiφ |v〉) (2.51)

If we now imagine that the phase shifter in the Mach-Zehnder interferometer was
set to π , we again get

eiπ = −1 (2.52)
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which, after substituting into Eq.2.51 gives us

1√
2
(|u〉 − eiφ |v〉) = 1√

2
(|u〉 + |v〉) (2.53)

Similarly as before, the extra phase shift by π manifested itself with a change
in sign of the superposition terms—from (−) to (+). This has an interesting conse-
quence that the state entering the second beam splitter corresponds no longer to the
one from Eq.2.47 but instead is the same as in Eq.2.46. This, in turn means that the
second beam splitter enacts the same transformation as in Eq.2.48, namely

UB

(
1√
2
(|u〉 + |v〉)

)
=

[
1
0

]
= |u〉 (2.54)

which in our case is the opposite state from the one we started with—|u〉 instead of
|v〉. The net effect is that the outcome is still deterministic, but adding a phase shifter
allowed us to influence the character of the interference behavior, changing it from
destructive to constructive interference. This changed the behavior of the detectors—
as it forced detector one, associated with |u〉 to now fire in 100% of experimental
runs. What is still troubling here, at least from the macroscopic standpoint, is that
the effect manifests itself for both continuous light beam and individual photons,
suggesting that manipulating a classical wave property such as wavelength, has an
effect on the behavior on individual indivisible photons.

The exact same reasoning and calculation procedure could be applied to the initial
light approaching from the top-left instead, in state |u〉. The conclusions would be
identical to the onewemanaged to drawhere, namely that the final state ends up being
|v〉, which means the opposite detector than before is now detecting all the light.

All of the phenomena encountered in this section—the behavior of the beam split-
ter, the probabilities determining which of the detectors would fire, the interference
exhibited via the addition of the second beam splitter, and finally the phase shifting
allowing us to impact the character of interference will be critical components in our
work with quantum computing from Chap.4 onwards.

2.5 Observables

We have discussed the Born rule and how it embodies the probabilistic nature of
quantummechanics.We did not paymuch attention to the theory of themeasurement
process itself, and, as it turns out, it is governed by its own set of rules that are much
different to the acts of physical observation in classical physics.

Classically, a measurement of a system state, at least using idealized models, does
not exert any significant influence on the system itself—any such external disturbance
effects are negligible and normally do not need to be accounted for. Additionally,
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in classical physics the only limit to the measurement accuracy is the quality of the
measurement technique and, in principle, a perfect measurement apparatus could
deliver perfect results. Finally, there are no restrictions other than the complexity
of the possible experimental setup in measuring different physical quantities at the
same time.

The situation is dramatically different in quantum physics. Here, themeasurement
activities are destructive to the quantum state and simultaneousmeasurements of non-
commuting properties are precluded. This process is governed by the concepts of
projectors and observable-operators.

In Sect. 2.3 we defined the probabilities of measuring two possible states of the
two level quantum system as

Pr(↑) = |〈↑ |ψ〉|2 = |a|2
Pr(↓) = |〈↓ |ψ〉|2 = |b|2 (2.55)

We will now generalize this further, by observing that

|a|2 = |〈↑ |ψ〉|2 = 〈↑ |ψ〉〈↑ |ψ〉 = 〈ψ |(|↑〉 〈↑|)|ψ〉 (2.56)

Because |↑〉 〈↑| is an outer product of two vectors, it forms amatrix. Suchmatrix in
quantum mechanical formalism is called a projection operator, or shorter projector.
We can give such projector, which we shall refer to as P↑, a more familiar matrix
form by substituting the kets with vectors forming the Z-basis from Eq.2.10

P↑ = |↑〉 〈↑| =
[
1 0
0 0

]
(2.57)

Similarly, we can use

|b|2 = |〈↓ |ψ〉|2 = 〈↓ |ψ〉〈↓ |ψ〉 = 〈ψ |(|↓〉 〈↓|)|ψ〉 (2.58)

to calculate the projector for P↓ as

P↓ = |↓〉 〈↓| =
[
0 0
0 1

]
(2.59)

This gives us generalized form of Eq.2.55 for the probabilities of obtaining the
state |↑〉 or |↓〉 upon measurement

Pr(↑) = 〈ψ |P↑|ψ〉
Pr(↓) = 〈ψ |P↓|ψ〉 (2.60)

Our projectors act on a quantum state, a two level quantum state in this case, and
retrieve the component of the arbitrary state |ψ〉 associated with either |↑〉 or |↓〉.
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In linear algebra, an eigenvector3 |u〉 of a matrixM is a vector that changes only
by a scalar λ when the linear transformation represented by M is applied to it. That
scalar value is then called the eigenvalue. In other words, a linear transformationM
sends its eigenvector to multiples λ of itself.

M |u〉 = λ |u〉 (2.61)

In quantum mechanics all quantum state measurements are described by Hermi-
tian observable-operators of size n × n such that

O =
n∑

i=1

λiPi (2.62)

There are two particular characteristics of Hermitian operators that make them
suitable for usage in quantum measurements. First of all, all eigenvalues of such
an operator are guaranteed to be real numbers. Secondly, the eigenvectors associ-
ated with the distinct eigenvalues are orthogonal—which means they are always
distinguishable and correspond to the notion of a basis.

We can now substitute Eqs. 2.57 and 2.59 into 2.62 to obtain the definition of an
observable used for performing a quantum measurement using the Z-basis:

Oz = λ1P↑ + λ2P↓ = λ1 |↑〉 〈↑| + λ2 |↓〉 〈↓| (2.63)

The values of λi can be arbitrarily set to anything, as long as they are distinct
from each other. Let us continue with the example of electron spin, which, as we
remarked earlier, can take values +�

2 for spin up, which we will use as λ1 and −�

2
for spin down, which we will set as λ2. This gives us an observable Sz for measuring
the spin component along the z-axis

Sz = �

2
|↑〉 〈↑| − �

2
|↓〉 〈↓| = �

2

[
1 0
0 −1

]
(2.64)

It is worth noting that observable-operators in quantummechanics do not directly
act on the quantum state vector. Instead it is the relevant projector Pi associated
with that observable, which transforms the quantum state vector into an eigenstate
of the observable. This eigenstate has a distinct eigenvalue λi associated with it,
representing the experimental outcome, which can be used i.e. to calculate statistical
average of a repeated set of experiments.

All of this has a profound consequence, because it also means that in quantum
mechanics a measurement is a destructive, non-reversible process—after measure-

3 In generic linear algebra it is common to use the term eigenvector, while when referring to physical
states such as quantum states, a more common term is eigenstate.
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ment, regardless of the earlier state of the quantum object, it will always find itself
in the same eigenstate of the observable associated with one specific λi eigenvalue.

Observables are responsible for a very unusual aspect of quantum mechanics,
namely, the fact that observable quantities of the quantum system are not individual
variables but rather operators. This is true for all physicalmeasurable properties of any
quantum system. A somewhat helpful way to think about such state of affairs might
be to remind oneself that the quantum state is an abstract n-dimensionalmathematical
entity only, and in order to extract a specific physical measurable quantity out of it,
we need to perform a “conversion”—and that is what we have observables for.

Even though a quantum system, in our example a simple two-level electron spin
along the z-axis |ψ〉, can be described by and evolve along a continuous range of
complex probability amplitudes a and b, only two possible discrete real numerical
values can be extracted out of it—corresponding to the eigenvalues of the observable-
operator. This, of course, also aligns with the physical reality we experience—as
experimentally the spin indeed can take only ever yield one of two possible values
+�

2 or −�

2 .
In the earlier part of this chapterwe discussed that quantum state is described using

an orthonormal basis, and that any that we can always find infinitelymany orthogonal
unit vectors sets to form those. We can now elaborate on this further, by saying that
it is the choice of the observable-operator that determines the measurement basis
(eigenstates) and the range of possible measurement results (eigenvalues).

If we omit4 the �

2 from the matrix definition (2.64), we arrive at:

σz =
[
1 0
0 −1

]
(2.65)

This is one of the so-called Pauli matrices, or Pauli operators, which are of fun-
damental importance in quantum physics and represent observables in three spatial
directions—along the z-axis, x-axis and y-axis.We calculated the σz matrix using the
projectors constructed around the quantum states from Eq.2.10. In a similar fashion,
using the vectors fromEqs. 2.17 (X-basis) and 2.22 (Y-basis), we could arrive at Pauli
matrices σx and σy . The fourth Pauli matrix is referred to as an identity operator and
is really the identity matrix from Eq.2.33.

σx =
[
0 1
1 0

]
σy =

[
0 −i
i 0

]
σz =

[
1 0
0 −1

]
σi =

[
1 0
0 1

]
(2.66)

Another consequence of having observable-operators representing the process of
measurement, is something that Heisenberg realized when he discovered quantum
mechanics—different measurements do not generally commute. This means that the
process of extraction of real values out of the abstract quantum state depends on the
order of measurements.

4 Technically we use ±1 instead of ± �

2 to set the values of λ1 and λ2.
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In mathematics, we speak of an operation on two properties as being commu-
tative when changing the order of operands produces the same result. Most obvi-
ously, addition and multiplication of real numbers is commutative, while division
and subtraction of real numbers does not commute. In linear algebra, we define the
commutator for two operators A and B as

[A,B] = AB − BA (2.67)

The operators commute when

[A,B] = 0 (2.68)

and do not commute when

[A,B] �= 0 (2.69)

We could calculate this for the Pauli matrices, for example for σx and σz :

σxσz =
[
0 1
1 0

] [
1 0
0 −1

]
=

[
0 −1
1 0

]
= −iσy (2.70)

σzσx =
[
1 0
0 −1

] [
0 1
1 0

]
=

[
0 1

−1 0

]
= iσy (2.71)

The first thing that jumps out here, is that there is a relation between Pauli
matrices—a product of σx and σz , produced σy multiplied by i or −i . Secondly,
we notice that the multiplication result of the matrices is different depending on the
order in which we multiply them. As a result:

[σx , σz] = −iσy − iσy = −2iσy (2.72)

We can say with certainty here, that Pauli X and Z operators do not commute,
and hence we cannot measure a property of a quantum object, for example the spin
of an electron, along the x-axis (using σx ) and then along the z-axis (using σz), and
expect to obtain the same results as measuring in a reverse order.

A different way of looking at it, is to consider the eigenvectors of the Pauli
matrices. Two operators commute only if they have the same eigenvectors—and this
is clearly not the case here.

σx : |←〉 = 1√
2

[
1
1

]
|→〉 = 1√

2

[
1

−1

]
(2.73)

σy : |�〉 = 1√
2

[
1
i

]
|�〉 = 1√

2

[
1
−i

]
(2.74)
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σz : |↑〉 =
[
1
0

]
|↓〉 =

[
0
1

]
(2.75)

Since after the measurement using a given observable-operator the quantum state
collapses to the eigenstate corresponding to that observable, it is clear that if the
eigenvectors are different between the two operators, then those measurements are
not compatible with each other. For example, a measurement using σz would leave
the quantum state in one of the eigenstates |↑〉 or |↓〉. A subsequent σx measure-
ment would then put that system into the eigenstate |←〉 or |→〉. Finally, a follow
up measurement using σz again, is now not guaranteed to yield the same result as
initially—because the incompatible measurement σx disturbed the system in a way
that created maximum uncertainty of the measurement outcome.

This is the core idea behind the famous Heisenberg uncertainty principle, which
tells us that we cannot simultaneously know values of two physical properties of
a quantum system represented by incompatible observables with maximum confi-
dence.

2.6 Larger Systems

2.6.1 Tensor Product

So far we only considered simple two-level systems, such as a spin of a single elec-
tron. The situation gets even more interesting once we start moving to more complex
composite systems, starting already with trying to describe two particles. Quantum
mechanics uses the algebraic concept of tensor product of the vector spaces to provide
abstract description of such systems. Such description is a consequence of the for-
malism based on Hilbert spaces, because the Hilbert space of a compound quantum
system is the tensor product of the Hilbert spaces of the component subsystems [12].

H(N ) = C
2 ⊗ C

2 ⊗ ... ⊗ C
2 (2.76)

Let us have two simple two-level quantum systems, |ψ〉 and |ϕ〉. As we already
know, the quantum state of each one can be independently described by a two dimen-
sional complex vector:

|ψ〉 =
[
a1
b1

]
|ϕ〉 =

[
a2
b2

]
(2.77)

This can of course be rewritten into a more digestible linear combination—
superposition—of two basis states, taking a Z-basis {|↑〉 , |↓〉} basis from Eq.2.10
as a reference point.

|ψ〉 = a1 |↑〉 + b1 |↓〉 |ϕ〉 = a2 |↑〉 + b2 |↓〉 (2.78)
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A tensor product between two vectors belonging to C
2, a two-dimensional space,

creates a single vector in C
4, a four-dimensional space

[
a1
b1

]
⊗

[
a2
b2

]
=

⎡
⎢⎢⎣
a1a2
a1b2
b1a2
b1b2

⎤
⎥⎥⎦ (2.79)

Just like a two-dimensional state vector can be represented using a two state
orthonormal basis, a four state orthonormal basis is relevant for the composite system
consisting of two two-level systems. Therefore, in our example, the orthonormal basis
for the tensor product |ψ〉 ⊗ |ϕ〉 is

{|↑〉 |↑〉 , |↑〉 |↓〉 , |↓〉 |↑〉 , |↓〉 |↓〉} (2.80)

In the Dirac braket notation, in order to make things more succinct and readable,
it is customary to merge the neighboring kets into a single ket. As such, we can also
express the four dimensional basis as:

{|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉} (2.81)

We can denote the composite state as |φ〉

|φ〉 = |ψ〉 ⊗ |ϕ〉 = a1a2 |↑↑〉 + a1b2 |↑↓〉 + b1a2 |↓↑〉 + b1b2 |↓↓〉 (2.82)

The probability of obtaining any of the four possible outcomes is still governed
by the Born rule

Pr(↑↑) = |〈↑↑ |φ〉|2 = |a1a2|2
Pr(↑↓) = |〈↑↓ |φ〉|2 = |a1b2|2
Pr(↓↑) = |〈↓↑ |φ〉|2 = |b1a2|2
Pr(↓↓) = |〈↓↓ |φ〉|2 = |b1b2|2 (2.83)

One final thing worth noting, is that in order to provide more concise way of
expressing abstract quantum states, especially those that are large, it is customary in
the Dirac notation to omit the ⊗ symbol between the kets that are subject to the the
tensor product and collapse them into a single ket.

|ψ〉 ⊗ |ϕ〉 = |ψϕ〉 = |φ〉 (2.84)

We could extend all of this reasoning to a composite system consisting of three
quantum subsystems, at which point an obvious pattern should start to emerge. A
tensor product between three vectors belonging to C

2 creates a single vector in C
8—

an eight-dimensional vector space.
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[
a1
b1

]
⊗

[
a2
b2

]
⊗

[
a3
b3

]
=

⎡
⎢⎢⎢⎢⎢⎣

a1a2a3
a1a2b3
a1b2a3

...

b1b2b3

⎤
⎥⎥⎥⎥⎥⎦

(2.85)

The orthonormal basis consists of eight state vectors as well, representing all
the possible basis state arrangements between the subsystems. The tensor product
qualification is an important one, because that is what gives rise to this large number
of dimensions. We can generalize it by saying that the composite quantum system
is described by a single 2n dimensional abstract state vector, in a C

n vector space,
where n is the number of constituent two-level subsystems.

|ψ〉 = |ψ1〉 ⊗ |ψ2〉 ... ⊗ |ψn〉 (2.86)

This growth of complexity of the system is exponential, and therefore by the time
we reach n = 260—which by all means is still a rather simple quantum system—
the composite quantum state is described by 2260 ≈ 1080 complex numbers—each
contributing an extra dimension. 1080 happens to be roughly the estimated amount
of atoms in the observable universe.5 To echo Carlton M. Caves [3]—Hilbert space
is a big place indeed.

2.6.2 Entanglement

In quantum mechanics, it is also possible to have composite states that are non-
factorizable to the tensor product of the individual subsystems components. An
example of such state is

|ψ〉 = 1√
2

(
|↑↓〉 + |↓↑〉

)
(2.87)

In what is rather surprising state of affairs, |ψ〉 above, is a perfectly valid descrip-
tion of a two particle system, even though it is incompatible with Eq.2.82. That is of
course because we could write it as

|ψ〉 = 0 |↑↑〉 + 1√
2

|↑↓〉 + 1√
2

|↓↑〉 + 0 |↓↓〉 (2.88)

5 This is the so-called “Eddington Number”, derived initially by Arthur Eddington [11]. At the same
time, in these examples we are still in a finite-dimensional context—but in quantum mechanics
in general, in case of continuous variables, the mathematical structure can actually be infinite-
dimensional too.
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This gives us

a1a2 = 0 a1b2 = 1√
2

b1a2 = 1√
2

b1b2 = 0 (2.89)

From that we can easily see that we cannot find a1, a2, b1 and b2 that would satisfy
the decomposition into component states.

The quantum state (2.87) is an example of an EPR pair. It resembles a uniform
superposition state from Eq.2.16, however instead of one two-level quantum system,
it encompasses two of them—for example two photons. The individual particles can
still be measured independently from each other. During measurement, the Born rule
applies and tells us that the particles are perfectly correlated.

When one of the constituents of the system is measured, it will collapse to a state
|↑〉 or |↓〉 with equal probability and the other one will then be guaranteed to be
measured to the opposite state. Such particles could even be measured at the exact
same moment in time, precluding any chance of them “communicating”—they still
exhibit this perfect correlation between each other as predicted by quantummechan-
ics. This phenomenon is called entanglement and is a distinctly quantum feature,
with no counterpart effect in classical physics. The primary thing the formalism of
quantum mechanics tells us about such entangled quantum objects, is that they are
impossible to be treated independently anymore, instead, despite the fact they can
be spatially separated, they can only be reasoned about as a single state.

Contrary to superposition, entanglement is not basis dependent—it is not possible
for quantum objects to be entangled in one basis, and not be entangled in another.
However the recorded correlations ofmeasurement results depend on the basis choice
of each of the two observers.

The state (2.87) is one of the four so-called Bell states, which represent four
different ways of having maximal entanglement between pairs of two-level quantum
objects. Together, they form an orthonormal basis for such system:

∣∣
+〉 = 1√
2

(
|↑↑〉 + |↓↓〉

)

∣∣
−〉 = 1√
2

(
|↑↑〉 − |↓↓〉

)

∣∣�+〉 = 1√
2

(
|↑↓〉 + |↓↑〉

)

∣∣�−〉 = 1√
2

(
|↑↓〉 − |↓↑〉

)
(2.90)

The states
∣∣
+〉

and
∣∣
−〉

are positively correlated—measurement of a given result
on one of the particles making up the pair, guarantees that the second one will have
the produce the same result as well. On the other hand, the states

∣∣�+〉
and

∣∣�−〉
are

negatively correlated—once one part of the pair is measured and produces a certain
result, the other is certain to produce an opposite measurement outcome.
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2.7 No-Cloning Theorem

The mathematical foundations of quantum mechanics, or more specifically the uni-
tary character of all quantum state transformations, preclude the possibility of being
able to copy an unknown quantum state in what is known as no-cloning theorem.

The theorem can be proven using negative proof (proof of impossibility). Consider
a hypothetical universal two-state copying unitary transformation C. If it existed,
being universal, it would be reasonable to expect that an arbitrary unknown state |ϕ〉
and another arbitrary unknown state |ψ〉 can be copied onto a a blank state |�〉, such
that:

C(|ϕ〉 ⊗ |�〉) = |ϕ〉 ⊗ |ϕ〉
C(|ψ〉 ⊗ |�〉) = |ψ〉 ⊗ |ψ〉 (2.91)

Let us now consider a third state, |φ〉, which is a linear combination both |ϕ〉 and
|ψ〉. A general definition of |φ〉 would then be as defined in Eq.2.92.

|φ〉 = 1√
2

(
a |ϕ〉 + b |ψ〉

)
(2.92)

We could now combine (2.91) and (2.92) in order to, still reasonably, expect that
our copyingC transformation is equally capable of copying |φ〉 onto the scratch pure
state |�〉 as well. The expected result would then be

|φ〉 ⊗ |φ〉 = 1

2

(
a2 |ϕϕ〉 + ab |ϕψ〉 + ab |ψϕ〉 + b2 |ψψ〉

)
(2.93)

At this point things seem to be going logically well, but we are about to hit a dead
end. Because of linearity of the transformations, we could actually write the copying
effect of C on the |φ〉 state from Eq.2.92 as:

C(|φ〉 ⊗ |�〉) = 1√
2

(
C(|ϕ〉 ⊗ |�〉) + C(|ψ〉 ⊗ |�〉)

)
= 1√

2

(
|ϕϕ〉 + |ψψ〉

)

(2.94)

Of course the two states (2.93) and (2.94) contradict themselves, which in turn
means that C with its universal copying properties cannot exist.

There is also a different angle we take here, namely to inspect the inner products of
the inputs and the outputs ofC. Recall that all unitary transformations preserve inner
products. This means that our copying transformation C would have to be bound by
these rules as well. Consider again the copying expectations defined in Eq.2.91 for
two unknown states |ϕ〉 and |ψ〉. The inner product of the inputs into C is:

〈�ψ |ϕ �〉 = 〈�|�〉〈ψ |ϕ〉 = 〈ψ |ϕ〉 (2.95)
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The product of the outputs of C is:

〈ψψ |ϕϕ〉 = 〈ψ |ϕ〉〈ψ |ϕ〉 = 〈ψ |ϕ〉2 (2.96)

Because quantum mechanics requires C to preserve the inner product, and that
we deal with unit vectors, whose length must normalize to 1, it follows that for a
copying transformation C:

〈ψ |ϕ〉 = 〈ψ |ϕ〉2 (2.97)

This creates an interesting constraint on copying. Equation2.97 can only be sat-
isfied when the product 〈ψ |ϕ〉 is either ±1 or 0. In the first case, it would mean
that the states |ϕ〉 and |ψ〉 are actually equivalent with each other |ϕ〉 = |ψ〉, while
the latter would indicate that the two states are linearly independent (orthogonal).
This leads us to the conclusion that the only states a copying transformation C can
copy are mutually orthogonal states. Moreover, we would still need a transformation
specifically built for those states, as a universal copier cannot be constructed [9].

2.8 Postulates of Quantum Mechanics

Quantum mechanics is underpinned by a set of axioms—postulates that are taken to
be true, and for whichwe do not have a deeper explanationwhy they are correct, other
that they fit perfectly with all the empirical evidence. They have not been canonically
codified, therefore various authors present them formulated differently, though the
overall set of ideas they cover is consistent.

At this point we are equipped with enough foundational algebra-based quantum
theory to be ready to state them—they should help organize the topics covered
so far and establish a baseline for our understanding of quantum mechanics. In
particular, Chuang and Nielsen [17] provide a formulation of the postulates that is
geared towards application scenarios in quantum computing, which aligns very well
with the theme of this book. The postulates of quantum mechanics presented here
are therefore adapted from those.

1. Quantum system is completely described by a complex vector |ψ〉 of length 1
known as the quantum state vector, which exists in a complex vector space specific
to this system, called the Hilbert space. Contrary to classical physics, the state
does not describe the physical properties of the system but is an abstract entity that
can be used to extract classical information from the system via the observables.
Unknown quantum states cannot be copied.

2. Evolution of a closed system |ψ〉 happens by the application of unitary operator
U, described by the matrix whose size corresponds to the dimensions of the
state vector. This condition also means that in a closed quantum system every
transformation is reversible.
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3. Observables are described by Hermitian matrices and used to mathematically
express a measurement operation. The eigenvalues of these observables are real
numbers and represent the possible values that can be observed, and therefore real
physical properties of the system. Themeasurement outcome is probabilistic—for
an observableO the system collapses to one of its eigenstates |a〉with probability
calculated according to the Born rule. The physical result of the measurement is
the eigenvalue λ associated with the eigenstate |a〉. Measurement is non-unitary
and irreversible.

4. A composite quantum system is described by a tensor product of the n component
subsystems. The resulting state space isC

n , and the state vector has 2n dimensions.

When reading the postulates carefully, it quickly becomes apparent that the postu-
lates contain amajor consistency issue. The quantum state evolution happens accord-
ing to unitary, reversible state transformations, which in essencemeans that the entire
evolution is completely deterministic. That state, is however in principle unobserv-
able, because the observations of quantum phenomena are governed by the rules
related to observable-operators and the probabilistic state collapse according to the
Born rule. This dichotomy between a deterministic and reversible system evolution
and the probabilistic and irreversible measurement theory governed by observables,
has become known as themeasurement problem. It has baffled physicists and philoso-
phers since the early days of quantum theory, leading to various interpretational
frameworks, none of which has managed to solve the issue at hand with satisfiable
and universally accepted way.

2.9 Bell’s Theorem

2.9.1 Bell’s Inequality

John S. Bell [1] imagined an experimental set up, based on David Bohm’s EPR vari-
ant, in which two entangled particles in a singlet state

∣∣�−〉
fly off in the opposite

directions, where they hit detectors, such as independent Stern-Gerlach spin mea-
suring apparatuses, configured to be measuring the spin at angles θ1 and θ2. So far
we only discussed measurement along the x-, y- or z-axis, but in principle a mea-
surement along any spatial direction is possible, and those can be described using
angles.

If θ1 = θ2, then both particles are measured in the same basis, so the original
conditions from Bohm’s EPR experiment are recovered and the recorded values are
alwaysopposite to eachother.However,Bell realized that once the angles are different
from each other, quantummechanical correlations are not always reproducible using
local realism.

Bell’s inequality can be derived using minimal assumptions. Let us imagine three
non-orthogonal vectors a, b and c in a three-dimensional space, which provide direc-
tions for spin measurements. In each case, an observable Oa, Ob and Oc associated
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with a given measurement direction can produce eigenvalues +1 or −1 as the result.
Given thatwe dealwith three directions, each one yielding two possiblemeasurement
outcomes, all possible permutations for the system measurements can be described
using 23 = 8 configuration sets.

We now consider Alice and Bob sharing EPR pairs in a singlet state
∣∣�−〉

.

∣∣�−〉 = 1√
2

(
|↑↓〉 − |↓↑〉

)
(2.98)

We know that if theymeasure their parts of the pair along the same direction, say a,
the entanglement guarantees that they will receive the opposite measurement results.
When they measure along different directions, for example Alice along a and Bob
alongb or c theirmeasurementsmay end up being the same or come outwith opposite
values. The latter set of cases is what is interesting in deriving Bell’s inequality.

Table2.1 summarizes all possiblemeasurement outcomes formeasurements using
observables Oa, Ob and Oc, into what we will refer to here as groups. It may look a
little overwhelming at first, but is actually very easy to read. For example, group N4

describes a case where:

• if Alice measures along the a direction, she would receive +1. Bob would then
receive −1 for the a direction, +1 for the b direction and +1 for the c direction
measurement.

• if Alice measures along the b direction, she would receive −1. Bob would still
receive −1 for the a direction, +1 for the b direction and +1 for the c direction
measurement.

• if Alice measures along the c direction, she would receive −1. Yet again, Bob
would still receive −1 for the a direction, +1 for the b direction and +1 for the c
direction measurement.

Notice that we can clearly see here that, as mentioned before, whenever Alice and
Bob measure in the same direction, their results are always correlated in the opposite
way, while for the situations where the measurement directions do not agree, the

Table 2.1 Possible EPR pair measurement results for Alice and Bob in directions a, b and c

Alice particle Alice measurement Bob particle Bob measurement

a b c a b c

N1 (a+,b+, c+) +1 +1 +1 (a−,b−, c−) −1 −1 −1

N2 (a+,b+, c−) +1 +1 −1 (a−,b−, c+) −1 −1 +1

N3 (a+,b−, c+) +1 −1 +1 (a−,b+, c−) −1 +1 −1

N4 (a+,b−, c−) +1 −1 −1 (a−,b+, c+) −1 +1 +1

N5 (a−,b+, c+) −1 +1 +1 (a+,b−, c−) +1 −1 −1

N6 (a−,b+, c−) −1 +1 −1 (a+,b−, c+) +1 −1 +1

N7 (a−,b−, c+) −1 −1 +1 (a+,b+, c−) +1 +1 −1

N8 (a−,b−, c−) −1 −1 −1 (a+,b+, c+) +1 +1 +1
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results appear random. We can use the methodology described here to study all the
other cases that could possibly occur.

Oneparticular aspectworth paying attention to is howmanypossiblemeasurement
configurations are there in each group if we require that Alice and Bob would use
different measurement direction. The answer to this is six: Alice measures along a
and Bob measures along b or c, Alice measures along b and Bob measures along a
or c and finally, Alice measures along c and Bob measures along a or b.

A different way of reading the table is to ask a question such as “if Alice mea-
sures +1 along the a direction, how many times Bob can measure +1 along the b
direction”? Careful study of the possibilities leads us to the conclusion that this can
only happen twice out of the eight variants, and is described in groups N3 and N4.
We can of course assign a probability for Alice’s and Bob’s measurements to end up
in those groups N3 and N4, and that is:

Pr(a+,b+) = N3 + N4

N
(2.99)

where

N = N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 (2.100)

Using similar reasoning, we could also calculate Pr(b+, c+). These are cases
where Alice measures along +1 in direction b, while Bob measures +1 in direction
b, and they only occur for groups N2 and N6

Pr(b+, c+) = N2 + N6

N
(2.101)

Finally, Pr(a+, c+) can be obtained by looking at groups N2 and N6

Pr(a+, c+) = N2 + N4

N
(2.102)

Given that these are probabilities, we know that they are real numbers, and that
they are all larger than or equal to 0. We could therefore confidently say that their
sum will also be larger than 0.

Pr(a+,b+) + Pr(b+, c+) + Pr(a+, c+) ≥ 0

N3 + N4 + N2 + N6 + N2 + N4

N
≥ 0 (2.103)

If we examine Eqs. 2.99, 2.101 and 2.102 slowly, we can observe that both N2 and
N4 appear twice in them.We could therefore reduce them by subtracting Pr(a+, c+)

instead of adding it
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Pr(a+,b+) + Pr(b+, c+) − Pr(a+, c+) ≥ 0 (2.104)

The changed variant will still hold because we can expand it to

N3 + N4 + N2 + N6 − N2 − N4

N
≥ 0

N3 + N6

N
≥ 0 (2.105)

sowhat we are doing are still just adding real positive numbers to each other, and their
sum will always be greater than or equal to 0. This leads us to the final formulation
of Bell’s inequality

Pr(a+,b+) + Pr(b+, c+) ≥ Pr(a+, c+) (2.106)

Bell’s inequality from Eq.2.106 can be used to test local realistic (hidden vari-
ables) theories—they will obey it, while quantum mechanics will not. That is the
core idea behind Bell’s theorem, which states that:

No physical theory of local hidden variables can ever reproduce all of the predictions of
quantum mechanics.

Given that superposition is basis independent, and by relying on the rotational
symmetry, we can express the singlet state

∣∣�−〉
with reference to any arbitrary axis,

such as our three directional vectors a, b or c. Let us assume that |u〉 and |v〉 are the
eigenvectors6 of the observable σ in each of the directions—we will designate the
eigenstate |u〉 as corresponding to the result +1 and |v〉 to −1. Based on the singlet
state

∣∣�−〉
we can then write

|ψ〉 = 1√
2

(
|ua〉 |va〉 − |va〉 |ua〉

)
=

1√
2

(
|ub〉 |vb〉 − |vb〉 |ub〉

)
=

1√
2

(
|uc〉 |vc〉 − |vc〉 |uc〉

)
= (2.107)

With such singlet state representations, we can relate all three of them together and
calculate probabilities for any of the two axis pairs, with the relevant θ angle between
them. For example for Pr(a+,b+) we would take the inner product 〈uaub|ψ〉. This
gives us

6 We could have used any labels here, but it is better to avoid using arrows as so far they implied
for us specific spatial directions: z-axis was noted with {|↑〉 , |↓〉}, x-axis with {|←〉 , |→〉}, while
y-axis with {|�〉 , |�〉}. In this case we deal with parameterized directions so generic labels are
more appropriate.
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〈uaub|ψ〉 = 1√
2

(
〈ua|ua〉〈ub|va〉 − 〈ua|va〉〈ub|ua〉

)
= 1√

2
〈ub|va〉 (2.108)

In Eq.2.24we defined a general approach for reasoning about a two-level quantum
state using a real-space three-dimensional spherical representation. Using thatwe can
express 〈ub|va〉 as:

1√
2
〈ub|va〉 = 1√

2
sin

(
θab

2

)
(2.109)

This is of course still the probability amplitude, and the actual probability
Pr(a+,b+) will be

Pr(a+,b+) =
∣∣∣∣ 1√

2
sin

(
θab

2

)∣∣∣∣
2

= 1

2
sin2

(
θab

2

)
(2.110)

Based on this exact procedure, Pr(a+, c+) and Pr(b+, c+) would be

Pr(a+, c+) = 1

2
sin2

(
θac

2

)

Pr(b+, c+) = 1

2
sin2

(
θbc

2

)
(2.111)

By substituting those into Eq.2.106 they together give us the Bell’s inequality

1

2
sin2

(
θab

2

)
+ 1

2
sin2

(
θbc

2

)
≥ 1

2
sin2

(
θac

2

)
(2.112)

Furthermore, if we select a, b or c such that they are anti-clockwise about the
z-axis, we can set up the angles such that

θab = θbc (2.113)

θac = θab + θbc

With that, we can now combine Eqs. 2.112 and 2.113 to reduce the inequality to
just a single angle θ . In the end, this gives us the final simplified Bell’s inequality

sin2
(

θ

2

)
≥ 1

2
sin2 (θ) (2.114)

Let us now imagine that we set θ as shown in Fig. 2.6

θ = π

3
= 60◦ (2.115)
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Fig. 2.6 Bell inequality
violation vectors with π

3
angle between each
neighboring pair of vectors
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Indeed, the inequality (2.114) evaluates then to a result that is a clear violation

1

4
�

3

8
(2.116)

2.9.2 CHSH Inequality

The CHSH inequality [6] uses similar principles that Bell relied on and is based on
two orthogonal vector pairs a, a′, b and b′.

To understand the CHSH angle of approaching the problem, we need to imagine
the following setup. Alice and Bob share EPR pairs and can measure their parts inde-
pendently. Alice uses measurement apparatus configured with two possible observ-
ablesOa andOa′ , in order to measure spin along a and a′ directions respectively. We
will refer to her possible measurement results as A and A′. Bob uses measurement
setupsOb andOb′ , corresponding to directions b and b′, and his possible results are
B and B ′. The possible measurement outcomes, so eigenvalues of the observables
used and values of A, A′, B and B ′ are of course in all cases still equal to ±1.

Here is where the locality hypothesis comes into play. We assume, based on
locality, that values of measurement outcomes are predetermined by some hidden
variables set γ shared between the EPR pair. Consequently, we assume that Alice’s
and Bob’s measurement processes do not influence each other—for example, B does
not depend on the outcome of A or A′ and is instead entirely conditioned on the local
apparatus setup and hidden variables γ only. With that in mind, we can write the
products of the measurement outcomes after [10] as:

S = AB + AB ′ + A′B − A′B ′ = A(B + B ′) + A′(B − B ′) (2.117)

Because all values canonly takevalues of either+1or−1, oneof the expressions—
A(B + B ′) or A′(B − B ′)will always evaluate to zero, leaving us with S = 2 or S =
−2. From this, we can say that a statistical average of 〈S〉must bewithin this range too

−2 ≤ 〈S〉 ≤ 2 (2.118)
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This is the CHSH inequality, which is satisfied by any average values data set
produced by independent measurement processes of correlated data, as long as their
results are in ±1 form, and—of course!—in which locality is obeyed [14]. In other
words, processes in which the respective measurement outcomes, performed by sep-
arate observers, do not influence themselves.

The quantummechanical variant of CHSH inequality can be obtained by re-using
our measurement outcome probabilities for the singlet state, defined as functions of
angle θ between the two vectors, defined in Eqs. 2.110 and 2.111. From that, we can
construct the quantum mechanical correlation function, which is a de facto expecta-
tion value of the product of possible measurement outcomes. More specifically, the
probabilities associated with specific eigenvalue outcomes for the EPR pair, can be
multiplied by the product of those eigenvalues, to help us construct the expectation
value.

For example, for measurement directions a and b, the eigenvalue products are:

• (+1)(+1) = 1 for (a+,b+)

• (+1)(−1) = −1 for (a+,b−)

• (−1)(+1) = −1 for (a−,b+)

• (−1)(−1) = 1 for (a−,b−)

which then produces the specific expectation value for E(a,b):

E(a,b) = Pr(a+,b+) + Pr(a−,b−) − Pr(a+,b−) − Pr(a−,b+) =
sin2

(
θ

2

)
− cos2

(
θ

2

)
= −cos(θ) (2.119)

Repeating the same procedure for the other vector pairs, we can obtain expectation
values E(a,b′), E(a′,b) and E(a′,b′), which are

E(a,b′) = −cos(θ) E(a′,b) = −cos(θ) E(a′,b′) = −cos(3θ) (2.120)

By combining them together, we form quantum mechanical equivalent of
Eq.2.117, which we can now substitute into CHSH inequality defined in (2.118)
as the average value 〈SQM 〉.

〈SQM 〉 = E(a,b) + E(a,b′) + E(a′,b) − E(a′,b′) (2.121)

This gives us a testable variant of Bell’s inequalities. If we now set the angle
according to figure Fig. 2.7

θab = θa′b = θab′ = π

4
= 45◦ θa′b′ = 3π

4
= 135◦ (2.122)

we arrive at the result

〈SQM 〉 = − cos
(π

4

)
− cos

(π

4

)
− cos

(π

4

)
+ cos

(
3π

4

)
= −2

√
2 (2.123)
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Fig. 2.7 CHSH inequality
violation vectors with π

4
angle between each
neighboring pair of vectors

which is an obvious violation of CHSH inequality. This obtained value—a violation
of the inequality by a factor of

√
2—is called a Tsirelson bound and represents the

maximal violation of the CHSH inequality.
The conclusion to be drawn here is, yet again, that the statistical properties exhib-

ited by independent measurements of entangled quantum states are stronger than
what could be pre-encoded in the particles upfront by any kind of hidden variable
parameter set. It is not possible to define a hidden variables scheme that will be able
to account for quantum correlations.
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Chapter 3
Getting Started with QDK and Q#

The content of this book up to this point provided the necessary quantum mechani-
cal theoretical background. In particular, we covered historical development of the
quantum theory, as well as provided an overview of its formulation andmathematics,
thus establishing solid foundations upon which we can proceed further.

The final prerequisite needed before immersing ourselves in the theoretical and
practical aspects of quantum computing is to go through the basics of Microsoft
Quantum Development Kit, with the goal of establishing familiarity with the syntax
and semantics of the Q# programming language. We shall focus mostly on the clas-
sical aspects of Q# and QDK at this point, and explicitly avoid diving too deeply into
any quantum concepts in this chapter—we will have the rest of the book for that.
The major objectives are ensuring successful setup of the development environment,
as well as learning the core concepts of the Q# language. Readers who are already
proficient with QDK and Q# may consider skipping this chapter—in any case, it can
always be returned to and used as a reference.

We will reap the benefits of this chapter in the subsequent sections of this book, as
it will enable us to freely switch between mathematical formalism and quantum
program code written in Q#, equipping us with two complementary vectors for
reasoning about quantum computing concepts and algorithms.

3.1 Quantum Development Kit

Quantum Development Kit from Microsoft, commonly referred to as the QDK, is
a development toolchain around the Q# programming language, aimed at provid-
ing a holistic developer experience and state of the art environment for building
applications that can be executed on quantum hardware. QDK consists of the Q#
compiler, Q# language server and the Q# tooling in code editors, Q# standard library

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F.Wojcieszyn, Introduction to Quantum Computing with Q# and QDK, Quantum Science
and Technology, https://doi.org/10.1007/978-3-030-99379-5_3
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defining core features of the language, additional Q# libraries which can be used for
extra research fields such as chemistry and machine learning, as well as quantum
simulators, which can be used to test the programs on classical hardware.

The heart of theQDK is theQ# programming language, which is a statically typed,
type safe high-level programming language from Microsoft Quantum. It abstracts
away all of the complexities of interacting with the quantum hardware, surfacing
only the familiar language constructs to the programmer.

Similarly to how cross-platform compilation can be done in other programming
ecosystems, a programwritten inQ# is compiled against reference assemblies which,
mostly, provide no implementation logic. Instead those intrinsic operations are later
linked by the compiler to the target specific implementations. Thisway, aQ# program
can be executed on a wide variety of quantum hardware platforms, and, conversely,
not every operation exposed by standard Q# libraries may be implemented by every
target platform.

At development time, QDK can be used to build quantum programs with Q# in
three primary ways:

• as standalone applications
• using Jupyter Notebooks
• integrated into Python and .NET programs, using the interop between those lan-
guages and Q#

Each of these three approaches has its advantages and use cases, though for the
purposes of this book, we will focus on standalone Q# applications, which are
programs written entirely in Q# and executed from the command line interface with
QDK tooling built around the .NETCLI. Regardless of that, all theQ# code discussed
in this book is portable to any of the three methods mentioned above.

Execution from the command line is the natural, familiar path for many program-
mers, because it is consistent with the established patterns of working with many
other programming languages. It can cater for programs of any size and complexity,
and can be easily facilitated by the powerful Q# language editor extensions, which
provide advanced code authoring experience.

Jupyter Notebooks is not suitable for complicated, large scale programs, but pro-
vide interactive environment which helps exploring the available APIs and play
around with ideas, as well as interpolate Q# code with notes and other documenta-
tion. From that perspective, JupyterNotebooks are very popular in academia, however
due to the limitations in terms of IDE-like features, we will not be relying on them
throughout this book.

Finally, language interop with Python and .NET allows building classical host
programs, which focus on classical logic and can orchestrate various quantum algo-
rithms. This tends to be the most rewarding path in real life scenarios, as it allows
harnessing the full power of a mature high-level classical programming language,
and supplement it with quantum logic written in Q#, but is also most complicated in
terms of set up.
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Table 3.1 Overview of the Q# project templates

Template name Short name Purpose

Console application console Generic Q# standalone app

Quantum application Honeywell azq-honeywell Standalone app for Honeywell QPU

Quantum application IonQ azq-ionq Standalone app for IonQ QPU

Class library classlib Reusable Q# library

xUnit Test Project xunit Q# unit test project, based on xUnit

3.1.1 Setting up the QDK

The prerequisite for getting started with the QDK is to install .NET SDK.1 It is cross
platform, free and open source package consisting of the .NET runtime and the .NET
CLI published by Microsoft. The version required by the QDK at the time of writing
is .NET SDK 6.0+, though this might change in the future. QDK is currently not
compatible with ARM processor architecture, so even though .NET SDK for such
platforms is available, an emulated x64 installation must be used.

Once the .NET SDK is installed, the quantum development templates need to be
installed as well. This is done by executing the command shown in Listing 3.1. It
will install the Q# project templates, which are summarized in Table3.1.

dotnet new -i Microsoft.Quantum.ProjectTemplates

Listing 3.1 Installing the QDK templates into the .NET SDK

At this point a new Q# project, based on any of the templates, can be created in
the current directory using the standard .NET CLI functionality to bootstrap new
application as shown in Listing 3.2. A project can also be generated directly into
a different directory using the -o command line option, and passing in the relative
folder path.

dotnet new {template short name} -lang Q#

// example for a standalone Console Application
dotnet new console -lang Q#

Listing 3.2 Create a first Q# application using the .NET CLI

For the standalone console application the command generates a single Q# file
Program.qs and a Q# project file whose name is inferred from the current folder.
The code file is shown in Listing 3.3. We will cover the structure of Q# programs
and semantics of the language in Sect. 3.2.

namespace first_quantum {

open Microsoft.Quantum.Canon;
open Microsoft.Quantum.Intrinsic;

1 https://docs.microsoft.com/en-us/dotnet/core/sdk.

https://docs.microsoft.com/en-us/dotnet/core/sdk
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@EntryPoint()
operation HelloQ() : Unit {

Message("Hello quantum world!");
}

}

Listing 3.3 Simplest possible Q# program as generated from the standalone console application
template

Because Q# is so tightly integrated with the .NET development environment,
Q# project files are effectively the standard .NET MSBuild files, and from that
perspective look very much like C# project files (and even have csproj extensions).
The reference to the specific QDK version is declared at the top of the generated
project file, as seen in Listing 3.4.

<Project Sdk="Microsoft.Quantum.Sdk/0.21.2112180703">
<PropertyGroup>

<OutputType>Exe</OutputType>
<TargetFramework>netcoreapp3.1</TargetFramework>

</PropertyGroup>
</Project>

Listing 3.4 A basic Q# project file generated from the standalone console application template

The project file is used to manage and configure a magnitude of options, in par-
ticular declaring the dependencies of the Q# program. Those could be both first- and
third-party libraries published to the official .NET package manager at nuget.org, or
other Q# projects available locally on the development machine.

Both of them are added as two separate ItemGroup collection nodes under the
Projectnode—external packages asPackageReference entrieswith the appropri-
ate version from NuGet, while local projects as ProjectReference using a relative
path. An example is shown in Listing 3.5.

<ItemGroup>
<PackageReference Include="Microsoft.Quantum.MachineLearning"

Version="0.21.2112180703" />
</ItemGroup>

<ItemGroup>
<ProjectReference Include=

"..\first-quantum-library\first-quantum-library.csproj" />
</ItemGroup>

Listing 3.5 Referencing Q# dependencies

The core functionalities provided byQ#are included in theQDKbydefault, as part
of an implicit Microsoft.Quantum.Standard package reference. This reference
is not visible in the generated project file, but is resolved by the QDK itself. From that
perspective, all of the core features of the ecosystem covered in this book are available
in any Q# project out-of-the-box, and no additional dependency declarations are
required.

Aside from the standard Q# library Microsoft publishes three additional
official libraries that can be used for Q# development—Microsoft.Quantum.
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Chemistry for quantum chemistry, Microsoft.Quantum.Machine
Learning for quantum machine learning and Microsoft.Quantum.
Numerics for quantum arithmetic.

Interestingly, theQDK itself never needs to be installed explicitly. Instead, such
newly bootstrapped quantum program can be run locally using the regular dotnet
run command, used to compile and run .NET applications. This command implicitly
restores all the dependencies of the executed program, including installing the QDK.
It then builds the application using the Q# compiler, and finally invokes it on the
default simulator shipping with the QDK. For the default Q# standalone console
application, it should produce:

> dotnet run
Hello quantum world!

Listing 3.6 Running the default Q# project from the command line.

The output to the standard I/O is facilitated by using a core Q# operation Message
(msg : String) from the Microsoft.Quantum.Intrinsic namespace, which
allows logging any string-based output from within the program. Its behavior can
vary from simulator to simulator, as the target to which the message would be written
may be different. We shall use this operation a lot throughout the book, because it
provides the easiest way to output or visualize data from a quantum application.

This should validate the successful set up of theQDK.When running the programs
locally on the development machine this way, the QDK uses one of its simulator
environments as the execution target. Those are covered in Sect. 3.5.

The project file can also be used to instruct the compiler for which target quantum
hardware the program needs to be compiled for. By default, the entire API surface of
the Q# standard library and any valid Q# package reference are allowed to be freely
used. At the same time, current generation of quantum hardware still supports only
a subset of the available instruction set—in fact, at the moment no vendor provides
a quantum computer capable of running a Q# program taking full advantage of all
Q# language constructs and built-in APIs.

While Microsoft does not offer first-party quantum hardware to the public yet,
Q# programs can be specifically compiled for IonQ and Honeywell quantum pro-
cessing units by adding the ExecutionTarget property to the Q# project file,
as shown in Listing 3.7. At the time of writing, the relevant values that can be
set there are ionq.qpu and ionq.simulator, as well as honeywell.qpu and
honeywell.simulator, and are dictated by the platforms available in Azure Quan-
tum. As more hardware vendors embrace Q# (more on that in Sect. 3.3), more exe-
cution targets will become available.

<Project Sdk="Microsoft.Quantum.Sdk/0.21.2112180703">
<PropertyGroup>

<OutputType>Exe</OutputType>
<TargetFramework>netcoreapp3.1</TargetFramework>
<ExecutionTarget>ionq.qpu</ExecutionTarget>

</PropertyGroup>
</Project>

Listing 3.7 Q# project file configured for running on the IonQ hardware.
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If a certain instruction set is unavailable for the given execution target the program
will not compile and the compiler will issue the appropriate error explaining the
problem, such as for example a hint that conditional expressions cannot be executed
on the selected quantum hardware. For practical purposes we shall not dive into the
limitations and restrictions of specific quantum computing platforms in this book,
because it is a very volatile area, with rapid progress and constant changes in the
hardware. It is not unreasonable to expect that in the future most of these restrictions
will disappear or become significantly less constraining.

3.1.2 Setting up the IDE

It is one thing to bootstrap the command line environment for generating, compiling
and running Q# programs, but it is a separate problem to configure the code editor
environment for convenient development activities.

Microsoft Quantum team publishes two official first-party IDE extensions, one
for Microsoft Visual Studio2 and one for Visual Studio Code. In particular Visual
Studio Code,3 which is cross platform, fully open sourced and MIT licensed, has
become extremely popular among software developers over the past several years.
In fact, despite being relatively new, compared to other popular editors with storied
histories like Vim, Emacs or Notepad++, it is already the preferred editor choice
for the majority of programmers [8].

While for the purposes of this book just about any editor would work—after all,
theQ# compiler is accessible from the command line—it is strongly recommended to
proceed forwardwithVisual StudioCode as the editor experience.OnceVisual Studio
Code is installed, the Q# extension can be installed from the extension marketplace,
where it bears the official name Microsoft Quantum Development Kit for Visual
Studio Code.

Interestingly,QDKalso provides a standaloneQ# language server implementation
compatible with the specification of the Language Server Protocol (LSP) [5]. Almost
every modern editor or IDE has the capability of easily interacting with LSP, and
therefore, at least in theory, it should not be that much work to wire in Q# support
as a custom extension or plugin of the reader’s favorite editor of choice.

The Q# language experience in the editor is very rich—it uses the compiler at
design time and is therefore able to understand the semantics of the program being
authored. It provides powerful code completion, code navigation, real-time diag-
nostics and automated code actions. Additionally, a compiler-based code formatter
is part of the extension as well. The quality of tooling may not be surprising to

2 Microsoft Visual Studio is available for Windows only. Confusingly, the Visual Studio available
for MacOS and Linux is marketed as the Unix version of Windows product, but from the technical
perspective is a completely different IDE. It is not supported by the QDK.
3 https://code.visualstudio.com.

https://code.visualstudio.com
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developers with .NET background, because in general the language services and
developer experience for all .NET languages are excellent, but compared to some
other programming languages, Q# editor experience is really exquisite.

3.2 Q#

One of the major advantages of using a high-level programming language like Q# for
quantum programming is that it facilitates hybrid classical-quantum program com-
position. Q# enables quantum software authors to think and structure their programs
much like classical programing is done.

In Listing 3.3, we introduced the most basic possible Q# program, printing a
simple Hello world! message out to the console. In fact, that program does not
take advantage of any quantum programming features and could be easily executed
on a classical machine only, it does however already hint at the general syntactic
flavor of the language. We will now go through the most important features and
design paradigms of the language. For reference, the latest complete Q# language
specification is always available in the official GitHub repository of the language [6].

3.2.1 Core Language Concepts

3.2.1.1 Declarations and Scope

Variables in Q# are declared using the let and mutable keywords. The former
creates an immutable value binding which prevents a variable from being reassigned,
while the latter allows changing the value of the given variable within the lifetime
scope of the variable. Reassigning a variable value is done using a dedicated set
keyword in what is referred to as a copy-and-update expression. The variable type is
always inferred and, generally speaking, no type annotation is required.

An example of declaring immutable andmutable variables is shown in Listing 3.8.

// declare text1 as immutable
let text1 = "hello";

// declare text2 as mutable
mutable text2 = "hello";

// change its value
set text2 = "world";

Listing 3.8 Mutable and immutable local declarations in Q#.

The scope for the declarations is always defined by the surrounding statement
block, delimited by curly braces.
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3.2.1.2 Conditionals

Q# supports only if-based conditional branching. An if-statement evaluates the
supplied boolean logical condition and creates a locally scopedblock inwhichdesired
statements can be placed. Variables declared within this block are not visible outside
of it. An if-statement can be supplemented with alternative execution paths using
the elif blocks, which can evaluate any number of logical conditions, and an else
block, which is the catch-all fallback for all the other cases not matched by the
supplied logical expressions.

In terms of constructing those logical boolean expressions, Q# supports and, or
and not keywords. Equality can be verified using the == and != operators. Compar-
ative expressions are limited to types that support equality—numeric types, strings,
booleans, as well as the quantum-specific data types. In particular, tuples and arrays
do not currently support equality comparison.

Quantitative comparison between various numeric types can be done using the
usual set of greater-than >, greater-than-or-equal >=, less-than < and less-than-or-
equal <= operators.

If-statements do not require the logical conditional to be wrapped in parentheses.
An example of an if-statementwith the alternative path blocks is shown in Listing 3.9.

if number > 10 {
// logic to execute when
// number is bigger than 10

} elif number > 0 {
// logic to execute when
// number is bigger than 0 and smaller or equal to 10

} else {
// logic to execute when
// number is smaller or equal to 0

}

Listing 3.9 A conditional block.

Logical blocks consisting of if-else branches only, can be simplified using the
conditional expression, such as the one shown in Listing 3.10. The operator used
there is often referred to as the ternary operator and consists of the boolean condition,
followed by a question mark ?, which denotes the expression to be evaluated when
the condition is met, and further followed by a pipe symbol |, which indicates the
expression to be evaluated when the condition is not satisfied.

let text = number > 10 ? "number > 10" | "number <= 10";

Listing 3.10 A conditional expression.

3.2.1.3 Loops

The primary way of performing iterations in Q# is by using for loops. They can be
executed against a range of values, which corresponds to the typical behavior in other
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programming languages, or they can be set up to directly iterate through items of an
array. The latter behavior is often expressed as foreach in other languages, though
Q# does not require such explicit keyword distinction.

Q# loops are subject to the same scoping rules we already covered, and similarly
to conditional statements, the syntax does not require extra parentheses. Q# does not
support early for loop termination—they always need to fully complete, and cannot
be broken out of. With regards to that, Q# supports while loops, but they can only
be used inside of functions, and not in quantum operations.

An example of iterating over a range, where the index is used to access array
elements, as well as iterating directly over an array, is shown in Listing 3.11. These
approaches are semantically equivalent and a matter of preference.

let numbers = [1, 2, 3, 4, 5];
for index in 0 .. Length(numbers)-1 {

// can access array item via numbers[index]
}

for item in numbers {
// can access array item via item variable

}

Listing 3.11 Two variants of for loops in Q#.

In addition to the for loops, Q# also has the concept of conditional loops,
expressed via the repeat-until-fixup statements as shown in Listing 3.12. They
allow to repeat a specific instruction sequence until a certain condition, classical or
quantum (measurement-related), is fulfilled. The logic to be repeated is captured in
the repeat block, while the termination condition is evaluated as a single boolean
until statement. The fixup block is optional and executes prior to each subsequent
iteration.

mutable counter = 1;
repeat {

// logic to execute on each iteration
set counter += 1;

} until counter > 5
fixup {

// logic to execute after each run
// except for the final one

}

Listing 3.12 A repeat-until-fixup loop in Q# with five iterations.

Conditional loops are very complicated to be implemented on today’s quantum
hardware, therefore even though they are supported by Q# as part of the language
specification, they currently cannot be usedwhen compiling for IonQ andHoneywell
hardware.
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3.2.1.4 Namespaces

Namespaces are the only block structures allowed at the top level of the program,
and are a prerequisite for defining any functions, operations or types, as all of those
must be contained within a namespace. Therefore a namespace declaration statement
is normally the first thing that is defined in a Q# program and that is encountered in
each Q# file.

Aprogramusually consists ofmultiple namespaces, though a single shared names-
pace is also possible, especially as namespaces are allowed to span multiple files.
They do provide a logical grouping of declarations that they contain, as everything
within a given namespace is automatically visible to all the other code paths found
within that same namespace.

To access a symbol from an external namespace, a fully qualified name must
be used, consisting of the symbol name, preceded by its namespace—for example
Microsoft.Quantum.Convert.{symbol name}. However, this is rather verbose
and hardly practical, so, alternatively, a namespace can contain references to other
namespaces via the open directive. In that case, all symbols contained in the opened
namespace also become visible and are accessible without an explicit need to fully-
qualify them. An example is shown in Listing 3.13.

namespace Filip.Quantum.Sample {

// all symbols from this namespace are available as if
// they were declared in Filip.Quantum.Sample - via
// the unqualified names
open Microsoft.Quantum.Convert;

// declarations of types, operations , functions go here
}

Listing 3.13 A Q# namespace.

When opening a lot of namespaces, it is possible to run into naming conflicts
between different symbols. It may also be overwhelming or confusing to have a
large amount of symbols visible directly that way. To remedy both of these issues, it
is possible to alias a namespace when opening it using the as ... syntax construct.
Once a namespace is openedwith an alias, the alias becomes a simplified qualification
for the symbol, and must prefix any interaction with a symbol from that namespace,
as shown in Listing 3.14.

namespace Filip.Quantum.Sample {

// using Convert.{symbol name} simplified qualification
open Microsoft.Quantum.Convert as Convert;

}

Listing 3.14 Aliasing an opened Q# namespace.
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3.2.1.5 Conjugations

Conjugation support in Q# is a quantum-specific language feature. Given a transfor-
mationVwhich is preceded by a transformationU and succeeded by a transformation
U†, we can use the Q# conjugation statement for our convenience.

U†VU (3.1)

In this case, we perform a specific computation U, to temporarily put a system in
a certain quantum state, on which we would like to execute transformation V. After-
wards, by invoking U† we effectively uncompute the initial unitary transformation.
A common example of this programming pattern is computation in a different basis
than the Z-basis—as conjugation language feature would facilitate temporary basis
switch, application of certain set of unitary transformations in the new basis, and
then basis change back to standard basis.

Syntactically, conjugations take the form shown in Listing 3.15, with the within
block acting as U and U†, and the apply block corresponding to the V. However,
since conjugations are an exclusively quantum feature, we shall not explore them
any further in this chapter, and return to them in Chap. 4.

within {
// prepare state / unprepare state

}
apply {

// compute
}

Listing 3.15 Q# conjugation statement.

3.2.2 Types

Compared to general purpose programming languages, Q# is characterized by a
rather basic type system. It has a strongly functional flavor to it, and therefore feels
much more natural to software engineers with background in that class of languages.
Q# is nominally typed, meaning that types are considered equivalent based on their
name, rather than based on their internal structure. In addition to that, Q# uses
a very powerful type inference mechanism and, wherever possible, automatically
determines the type of a given declaration.

All the types in the language are value types and Q# explicitly does not have the
concept of pointers or references. Because of that, it is not possible to encounter the
dreaded null reference exception in Q#—nulls simply do not exist. It also does not
have a concept of functions returning void, instead, a no-op Unit type is used to
decorate functions that do not return a usable value.
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Table 3.2 Overview of the built-in Q# types

Type Characteristics Default value

String Encoded in UTF-16 ""

Int 64-bit, signed 0

BigInt Any bit length, signed 0L

Double 64-bit floating point numbers 0.

Bool Single bit false

Unit Void type ()

Qubit Quantum bit invalid state

Result Quantum measurement result Zero

Pauli Pauli observable PauliI

Range Sequence of integers []

Array Typed set of values []

Tuples Grouping of values of any type default of each element

3.2.2.1 Basic Types

Q# has only a handful of built-in types. There are three numerical types—Int,
BigInt and Double, allowing developers to express integers of different bit length
and floating point numbers. String values are captured by the String type, while
logical statements are used with expressions evaluating to Bool type.

Table3.2 shows the summary of all of the core built-in types available in Q#.
In addition to that, as we will learn soon, there are several types supplied by the

core library of Q# that fall under the so-called user-defined types category.

3.2.2.2 Quantum Domain

The Q# language has three main built-in types related to the quantum domain. The
first one is the Qubit, which is the most basic unit of information in quantum infor-
mation theory and thus the most fundamental way of interacting with the quantum
state of the program. Q# does not require the program author to understand whether
the underlying qubit at the hardware level is available as logical or physical—this is
abstracted away and is considered to be the explicit responsibility of the runtime.

When authoring a quantum program, the most fundamental operation one might
perform is to allocate a qubit—it is, after all, the prerequisite to performing any
further computations. Q# has two separate concepts when working with qubits—
allocation through the use keyword and the borrow keyword. They can be followed
by an optional statement block, which controls the lifetime of the qubit as part of the
scope associated with that block. If that block is omitted, the qubit is available until
the end of the closest surrounding scope.

Allocating a qubit with the use statement means allocating a fresh qubit from the
logical pool that is available on the quantum hardware. The provisioning mechanism
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is deterministic—such qubit is guaranteed to be in state |0〉 and any quantum algo-
rithm can safely rely on that. On the other hand, a qubit allocated through the borrow
statement does not give the developer any promises about the state of the qubit, it will
be in a dirty state. Allocating qubits through borrowing is less common for begin-
ner exploration, but is very useful in certain algorithms where extra auxillary qubits
might be needed, for example to ensure reversibility of a given operation. Borrowing,
instead of fully allocating qubits can considerably reduce quantummemory footprint
of the program.

As dictated by the laws of quantum mechanics, the qubit state is opaque and not
possible to be introspected in any way at runtime—the only way for the program
to extract classical information out of it is to apply an observable, using the various
measurement operations exposed by the Q# standard library. This limitation applies
to running on quantumhardware—on the other hand, for programs executed on quan-
tum simulators, Q# provides debugging tooling that allows dumping the quantum
state of a program and performing full analysis of the state of the involved qubits.
We shall return to those concepts in Chap.4.

The other two quantum-specific built-in types in Q# are Result and Pauli,
both of which are related to the process of measurement of the qubit. Pauli rep-
resents the four Pauli observables, and can be used via the built-in keyword literals
PauliX, PauliY, PauliZ and PauliI. Result, on the other hand, represents the
measurement result using a given quantum operator, with eigenvalues of +1 or −1.
The possible values are Zero and One, and they correspond to the convention used
in quantum computing. They are also both available as keyword literals and can
therefore be used in a strongly typed fashion.

We mention these quantum-specific concepts only briefly at this point, as we
shall cover all of them in detail in Chap. 4. Naturally, beyond those basic types, Q#
standard library and related QDK packages also come with an abundance of built-in
algorithms, features and operations specifically included to make implementation of
quantum workflows easier. We shall explore and use many of them as we progress
in this book.

3.2.2.3 Collections

Contrary to many other programming languages with a wide spectrum of specialized
collection types, Q# only has two—Range and Array.

Range is a sequence of integer valueswhich is suitable for iteration—it is therefore
often used together with for loops. Ranges can be created using the range expression
which has the format of start..step..end. Step determines the increment size
between subsequent range elements. It is optional and can be omitted—the compiler
defaults it to 1. If the end is larger than start, and empty range is created, unless the
step size is defined as negative, in which case the generated sequence of integers
would be decreasing. Both start and end values are included into the range. Some
simple examples of ranges are shown in Listing 3.16.



70 3 Getting Started with QDK and Q#

let range1 = 1..4; // 1, 2, 3, 4
let range2 = 1..2..5; // 1, 3, 5
let range3 = 3..-1..1; // 3, 2, 1
let range4 = 3..2; // empty

Listing 3.16 Range examples in Q#.

Arrays can be used to store instances of the same type—both classical ones, such
as string or integers, as well as quantum ones, most typically an array of qubits.

Out of the box Q# provides a very rich set of array manipulation functions, under
the Microsoft.Quantum.Arrays namespace. The namespace contains ready-to-
use functions to filter, fold, map, sort, transpose, search, zip an array, andmanymore.
An array is created using the array creation expression which takes the form shown
in Listing 3.17.

let labels = ["green", "red", "blue"];

Listing 3.17 Basic array creation in Q#.

An empty array can be created without any type annotation using initialization
syntax [], where the type will be inferred by the compiler upon first usage of the
array. If such array is not used anywhere in the program the compiler will not be able
to infer its type and the program would not compile. Both arrays and ranges have
default values of an empty set [].

Arrays respect the same immutability rules as the rest of the language and there-
fore, once created using the immutable let binding, an array as a whole, as well as
its individual elements cannot be modified. A mutable binding, on the other hand,
allows changes to the array using copy-and-update expression, creating a de-facto
new array as a result. An example is shown in Listing 3.18.

// ["", "", ""]
mutable labels = ["", size = 3];

// ["", "blue", ""]
set labels w/= 1 <- "blue";

Listing 3.18 Copy and update of an array element in Q#.

Very conveniently, arrays can be easily concatenated together using the addition
+ operator.

let labels1 = ["green", "red"];
let labels2 = ["blue", "yellow"];

// ["green", "red", "blue", "yellow"]
let labels3 = labels1 + labels2;

Listing 3.19 Array concatenation in Q#.

An interesting application scenario for ranges is that they can be used to slice
arrays. Given an array, the range can be used to determine which indices of the array
to copy into a new array.

let labels = ["green", "red", "blue", "yellow"];
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// ["red", "blue"]
let slicedLabels1 = labels[1..2];

// ["green", "blue"]
let slicedLabels2 = labels[0..2..4];

// ["blue", "red", "green"]
let slicedLabels3 = labels[2..-1..0];

Listing 3.20 Array slicing using a range.

While Q# does not allow open-ended ranges, and start and end of a range must
normally be specified in the range expression, this requirement is relaxed when
slicing an array using a range. In such situations, if the range does not have a start
or end, those get inferred automatically from the size of the array being sliced. For
open-ended ranges the start or end values are replaced with a placeholder dot .
symbol.

let labels = ["green", "red", "blue", "yellow"];

// ["green", "red", "blue"]
let slicedLabels1 = labels[...2];

// ["red", "yellow"]
let slicedLabels2 = labels[1..2...];

// ["yellow", "blue", "red", "green"]
let slicedLabels3 = labels[...-1...];

Listing 3.21 Array slicing using an open-ended range.

3.2.2.4 Tuples

Because the entire Q# type system is quite basic, an important role in it is played
by tuples, as they allow grouping items of various types into composite structures.
Tuples can be used as locals and are permitted in callable signature definitions—
as both arguments and return values. Tuples can be fully or partially deconstructed
into local variables using a local declaration statement. It is possible to omit certain
values upon deconstruction using the discard _ symbol. An example of a function
returning a tuple of two elements is shown in Listing 3.22. The function relies on the
built-in conversion methods from the Microsoft.Quantum.Convert namespace
to perform type casting.

function Tuples() : Unit {
let result = TupleFunction(100, true);
let (num1, txt) = TupleFunction(200, true);

// with discard - deconstruct only part of the result
let (num2, _) = TupleFunction(300, false);

}
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function TupleFunction(number : Int, flag : Bool) : (Double,
String) {
let result = (IntAsDouble(number), BoolAsString(flag));
return result;

}

Listing 3.22 Tuples in Q#.

In Q#, a single element tuple is considered to be equivalent to a standalone
item of the same type, a concept referred to as singleton tuple equivalence. This
is a very powerful feature, because it allows developers to either omit or inject the
tuple construct in various situations. For example, a callable with three arguments
is equivalent to a callable with a single tuple argument, consisting of the same three
elements, and can be invoked both ways. Such language characteristic has another
useful consequence—it allows to think of all callables in purely functional fash-
ion. They can all be reasoned about as analogous to mathematical function, always
accepting a single parameter, and always returning a single parameter—it’s just that
parameter can be a tuple of multiple elements.

Listing 3.23 shows how we can call the same function as declared in Listing
3.22 by taking advantage of singleton tuple equivalence, and passing the method
arguments using a tuple instead of individual parameters.

let items = (100, true);
let (num, txt) = TupleFunction(items);

Listing 3.23 Singleton tuple equivalence in Q#.

3.2.2.5 User-Defined Types

In addition to the built-in types, Q# also allows creation of the so-called user-defined
types. The name is somewhat confusing, because it implies that they are only declared
by the program’s author in the application code. While this is often the case indeed,
there are also types, commonly used in various algorithms, that are shipping together
with the core libraries of Q#, such as LittleEndian or DiscreteOracle, which
are also user-defined types.

User-defined types are not fully-fledged types as known from object-oriented pro-
gramming languages, but instead are de-facto pure data types, without any behavior
attached to them. This is similar to the concepts of structs or record types from other
programming languages, which are simply grouping certain values into a set of fixed
fields.

User-defined types are declared without constructors—instead there is always a
single constructor available, one that requires all the type members to be supplied,
and it is auto-generated by the compiler. A user-defined type is declared using a
newtype keyword. An example is shown in Listing 3.24.

newtype LabeledResult = (
Label : String,
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MeasurementResult : Result);

Listing 3.24 Sample Q# user-defined type.

Properties of such a user-defined type can then be accessed using the item access
operator :: or through the deconstruction operator !. Deconstruction allows unwrap-
ping the entire user-defined type into a dedicated tuple. Both of these approaches are
shown in Listing 3.25.

let result = LabeledResult("measurement one", Zero);

// either
let label = result::Label;
let measurementResult = result::MeasurementResult;

// or
let (label, measurementResult) = result!;

Listing 3.25 Accessing members in user-defined type.

User-defined types in Q# are immutable, and behave as value types instead of
pointers. There is no way to update an instance of an already instantiated type—
instead a new instance must be created.

3.2.2.6 Type Casting

While Q# allows conversion between certain types, it does not have an explicit cast
operator, nor does it support implicit casting between different types. Because of
that, it is not possible to use, for example, a double instead of an integer as part of the
range definition. Instead, type conversion is possible via a predefined set of helper
functions defined as part of Microsoft.Quantum.Convert namespace, allowing
the developer to convert between the most common pairs of types, such as integers
and doubles, ranges and arrays or booleans and strings, to name a few. There is no
built-in support for conversion between user-defined types—those need to be coded
manually should the need arise.

A simple example with a conversion of double to an integer is shown in 3.26.

let dblNumber = 1.;
let intNumber = DoubleAsInt(dblNumber);

Listing 3.26 Q# basic type conversion.

A special case for type conversion is the so called string interpolation. Q# allows
using arbitrary expressions inside the specially annotated strings, such as that shown
in Listing 3.27, without an explicit call to any conversion function. These expressions
are evaluated when the string is rendered, and if the resulting type is convertible
into a string directly, that conversion will be executed, otherwise the typical string
representation for a given type is used. Interpolated strings look just like regular
strings, except they are prefixed with $, while the individual embedded expressions
to be evaluated are delimited with curly braces {}—in that sense, the implementation
of string interpolation in Q# is identical to that in C#.
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let index = 1;
let result = One;
let data = [1, 2, 3];

// outputs "Result of trial 1 is One. Data: [1,2,3]."
Message($"Result of trial {index} is {result}. Data: {data}.");

Listing 3.27 Q# string interpolation.

String interpolation is the only situation in which Q# would perform a de facto
implicit conversion.

3.2.3 Callables

As it is the case in functional programming languages, behavioral logic in a Q#
program is entirely contained in the so-called callables, which are analogous to
functions in classical programming. Callables can be defined as Q# functions or Q#
operations. They share most of the syntactic and semantic characteristics, though, as
we shall see in a moment, there are some fundamental differences between the two
as well.

All callables consist of a signature, defining the arguments that can be passed
in, as well as the return type of a callable, and a body determining the local scope
for declarations. Callables are required to have an execution exit point, which can
be implicit or explicit. For callables returning a Unit value, which is equivalent to
void in many other programming languages, the exit point is implicitly compiler-
generated at the end of the callable scope as return (); and can be omitted by
the programmer. All other return types require an explicit return statement. For
complex logical paths, multiple return statements per callable are supported.

Arguments passed into the callables are always bound immutably and therefore
behave exactly the same as local variables declared with the let keyword. Their
values cannot be reassigned and their visibility and lifetime is bound to the scope of
the callable.

3.2.3.1 Functions

Functions are used to express classical deterministic logic and are evaluated as soon
as they are invoked.Because of that characteristic functions are not allowed to interact
with the quantum state of the program. An example of a function verifying if XOR
between a pair of boolean arguments is equal to the OR between them is shown in
Listing 3.28.

function XorEqualsOr(x : Bool, y : Bool) : Bool {
return Xor(x, y) == (x or y);

}

Listing 3.28 Sample Q# function.
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Functions do not have side-effects and always produce the same output for the
same input. As such, no matter how many times we invoke the function, if the same
parameters are passed in, the return value would be unchanged. Functions can also
call other functions, which is what the example does, as it makes use of the built-
in Q# function Xor (a : Bool, b : Bool) from the Microsoft.Quantum.
Logical namespace.

3.2.3.2 Operations

Operations are used to interact with the quantum state of the program, through native
instructions supported by the given targeted quantum processor. As a result they
must have side-effects, since a quantum state transformation causes the change of
the global state of the program which is external to the actual operation.

A useful way of thinking about functions and operations, is that functions cap-
ture deterministic classical logical, while operations represent quantum logic to be
executed against the quantum program state. A more generalized perspective is to
view functions as a way to compute, while consider operations as a mechanism to
do something [4].

A sample Q# operation interacting with a quantum state is shown in Listing 3.29.
We shall not dive into the details of it yet, because we will dedicate much of the rest
of the book to it, but in this case the operation allocates and measures a qubit.

operation AllocateAndMeasure() : Result {
use qubit = Qubit();
return M(qubit);

}

Listing 3.29 Sample Q# operation.

Because of their deterministic nature, functions cannot call any operations, but
the opposite is allowed—operations can always invoke any functions they need to.
Callables can be declared in any order—contrary to some other programming lan-
guages, it is not necessary to explicitly declare a callable before invoking it—as long
as it would still be part of the same compilation unit.

It is not possible to throw exceptions from within a callable—Q# does not have
any exception types nor does it provide any try/catch infrastructure. An alternative,
however, is to use a fail statement to abort the execution of the program completely.
A fail statement is treated by the compiler as a valid replacement for a return state-
ment, namely a callable containing a fail statement would compile successfully even
when it is missing a mandatory return statement.

function Fail() : Unit {
fail "Something bad happened!";
Message("Hello"); // this line won’t be reached

}

Listing 3.30 Q# fail statement.
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3.2.3.3 Attributes

Operations and functions can be annotated with attributes providing extra metadata
for the compiler, the runtime or for design-time tooling. A few of them are built-
into the Q# standard library, and located under the Microsoft.Quantum.Core
namespace. An attribute is placed directly above the callable signature and preceded
by the @ character and followed by () parentheses.

Attributes provide no behavior on their own, but their presence can be freely
interpreted by the Q# ecosystem and tooling. For example, the EntryPoint attribute
is used to instruct the compiler to start theQ#programexecution specifically from this
marked operation. Once discovered, the compiler emits the necessary instructions
to facilitate that. By convention, only one such entry point operation per program is
allowed, and using this attribute more than once will result in a compilation error.

@EntryPoint()
operation Main() : Unit {

// program logic
}

Listing 3.31 Entry point operation Q#.

Attributes can alsobe createdby theuser usinguser-defined types. In fact, anyuser-
defined type becomes an attribute once it is annotated with Microsoft.Quantum.
Core.Attribute attribute.

@Attribute()
newtype MyAttribute = (Text : String);

@MyAttribute("Foo")
@EntryPoint()
operation Main() : Unit {

// program logic
}

Listing 3.32 Declaring a custom attribute.

Multiple attribute annotation on the same callable are allowed.

3.2.3.4 Operation Specializations

Two common unitary transformation patterns used in quantum information theory
are adjoints and controlled transformations. Adjoint of an arbitrary transformation
U is its conjugate transpose U†.
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Since a Q# operation is a quantum state transformation and from the theoretical
perspective, if it does not perform a measurement, can be treated as such arbitrary
U, we can instruct the Q# compiler, by adding an operation characteristic Adj to the
operation signature, that it could automatically generate its adjoint U†. This allows
this operation to be invoked as regular U or as its inverse U†.

The controlled execution, on the other hand, is a concept used in various quantum
algorithms, and relates to conditional application ofU. Similarly, to an adjoint,we can
ask the compiler to support us to automatically generate the controlled specialization.
This, in turn, enables us to invoke it standalone or together with the control condition.

Operation characteristics follow the operation signature and are declared using
the is keyword. Adjoint specialization is represented by the Adj characteristic,
while controlled specialization is declared with Ctl characteristic. The example of
declaring both specialization is shown in Listing 3.33.

operation QuantumTransformation(q : Qubit) : Unit is Adj + Ctl {
// actual transformation logic

}

Listing 3.33 Q# operation with both adjoint and controlled operation characteristics.

Operation characteristics are the most common and convenient way of declaring
specializations, though not the only one. It is also possible to instruct the compiler
to create them from within the operation block. Such inline approach, semantically
equivalent to that from Listing 3.33, is shown in Listing 3.34. Note the extra separate
block needed to host the body of the operation now.

operation QuantumTransformation(q : Qubit) : Unit {
body (...) {

// actual transformation logic
}
adjoint auto;
controlled auto;
controlled adjoint auto;

}

Listing 3.34 Q# operation with inline adjoint and controlled specializations.

Finally, in addition to the compiler-generated adjoint and controlled specializa-
tions, for more advanced used cases they can also be manually declared, using ded-
icated adjoint and controlled blocks. The presence of the three dots ... in
these declaration are needed to tell the compiler that the same arguments that are
passed to the operation, should be passed to the specialization as well. Controlled
specialization receives an extra argument corresponding to the control condition too.

operation QuantumTransformation(q : Qubit) : Unit {
body (...) {

// actual transformation logic
}
adjoint (...) {

// adjoint logic
}
controlled (control, ...) {
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// controlled logic
}

}

Listing 3.35 Q# operation with manually defined adjoint and controlled specializations

We shall rely on these specialization a lot throughout the upcoming parts of this
book.

Once the specializations are declared, they can be accessed using functors. Q#
supports two of them, Adjoint and Controlled, corresponding, naturally, to the
two specialization types. A functor is a functional programming concept, with roots
in the category theory, which performs mapping between two categories. In Q#,
the functor is used to access the operation’s specialization. Both of the Q# functors
commute so the order of their application does not matter.

Listing 3.36 shows execution of both specializations using the respective functors,
based on the operation defined in Listing 3.33. The controlled functor additionally
requires an extra control qubit passed in separately (in the form of an array, since
multiple qubits can act as controls too) as first argument.

Adjoint QuantumTransformation(qubit);
Controlled QuantumTransformation([controlQubit], qubit);

Listing 3.36 Invoking the specializations of an operation.

3.2.3.5 Callables as Arguments

As one would expect from a functional programming language, callables can also
be passed as arguments to other callables. The syntax used for that is <TInput> =>
<TOutput> for an operation reference and <TInput> -> <TOutput> for a function
reference.

An example is shown in 3.37, where a Q# standard library FactorialI (n
: Int) function is wrapped with a custom function allowing the execution of an
arbitrary preparation logic prior to calculating the factorial. This preparation logic is
in this case passed in as a delegate argument.

function FactorialWithPreparation(
input : Int,
preparation : (Int -> Int)) : Int {
let prepared = preparation(input);
return FactorialI(prepared);

}

function Square(number : Int) : Int {
return number * number;

}

Listing 3.37 Passing Q# function as function argument.
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It can then be invoked by calling

let result = FactorialWithPreparation(2, Square);

Listing 3.38 Combining the two functions from 3.7 in a statement.

3.2.3.6 Partial Application

One particularly useful feature of Q# implementation of functions and operations is
that they both support the concept of partial application [2]. Partial functions are
integral aspect of all functional programming languages and allow dynamic trans-
formation of a given method, without its evaluation, into a new reduced one, which
accepts fewer parameters than the original. In other words, given a function or oper-
ation whose signature requires n arguments to be passed, the developer can supply
m < n of them, and obtain a new function definition as a result—one that requires
n − m parameters, and which can be invoked at a later stage.

Consider the built-inQ# function, from theMicrosoft.Quantum.Arraysnames-
pace, which allows padding an array to a desired size with a predetermined default
value. Its signature is shown in 3.39.

function Padded<’T> (nElementsTotal : Int, defaultElement : ’T,
inputArray : ’T[]) : ’T[]

Listing 3.39 The signature of one of the Q# standard library functions which could be used with
partial application.

Because the function defines three parameters, we could partially apply it by
supplying one or two of them upfront, and obtain a new function this way. The new
function is then invoked by passing in only the missing parameters. This process is
shown in Listing 3.40.

let values = [1, 2, 3, 4, 5];
let padWithZero = Padded(_, 0, _);

// [0,0,0,0,0,1,2,3,4,5]
let padded = padWithZero(10, values);

Listing 3.40 Partial application of the function from Listing 3.39.

Singleton tuple equivalence principle applies to partial callable application as
well. Once such a function gets reduced to a single tuple in its signature, it can be
called by omitting the tuple structure. This is shown next.

function Tuples() : Unit {
let reducedFunction = ComplexTupleFunction(5, _);

// works - but tuple can be omitted
reducedFunction(("foo", true));

// cleaner approach thanks to singleton tuple equivalence
reducedFunction("foo", true);

}
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function ComplexTupleFunction(number : Int, (data : String, flag
: Bool)) : Unit {

}

Listing 3.41 Partial application of with singleton tuple equivalence.

Declaring callables as anonymous functions, or the so-called lambdas—inline
variable function literals, is currently not supported but is in active development and
will be added to Q# in 2022.

3.2.4 Generic Programming

Q# has support for generic typing for both operations and functions. From the syn-
tactic point of view, type parameters are supplied in the callable signature and need
to be prefixed with a single-quote character ’. They are allowed both in the input as
well as in the output parameters of the callable.

Many of the built-in core Q# functionalities are using generic typing. Con-
sider the function Tail<’A> (array : ’A[]) from the Microsoft.Quantum.
Arrays namespace, which returns the last element of an array. Because it is defined
with a generic type parameter, the same function can be invoked against an array of
any type. Listing 3.42 shows an example of this against an array of Int and string.

let labels = ["blue", "red", "green"];
let labelTail = Tail(labels); // "green"

let numbers = [1, 2, 3];
let numberTail = Tail(numbers); // 3

Listing 3.42 Invoking a generic function against two different types.

Type parameterization is allowed not only in the first level callable arguments,
but also as part of a delegate being passed into the callable. Consider the built-in
operation allowing to transform an array of one type to another, whose signature is
shown in Listing 3.43.

operation ForEach<’T, ’U> (action : (’T => ’U),
array : ’T[]) : ’U[]

Listing 3.43 A generic function with type parameterization inside the delegate parameter.

Not only does it contain two generic type parameters ’T and ’U, but also allows
specifying a generic conversion operation ’T => ’U that will be applied on each of
the array element.
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3.3 Quantum Intermediate Representation

Q# programs do not compile to native quantum hardware instructions, but instead
are intended to be compiled into Quantum Intermediate Representation. QIR is an
LLVM based intermediate language which defines a hardware-agnostic set of rules
for expressing the entire content of a quantum program. Different quantum hardware
vendors can then choose to implement the entire QIR instruction set, or a subset
of it, and translate this intermediate QIR program format into the hardware specific
machine code. By relying on a single unified representation built on top of standard
LLVMtoolchain, it ismuch easier for various hardware platforms to execute quantum
optimizers, transform the intermediate code and produce runnable machine code for
specific execution targets.

Relying on QIR facilitates a smooth interweaving of classical and quantum com-
putational logic in a single program, and allows the quantum hardware platforms to
evolve easily, by progressively implementing larger sets of QIR instructions.

An example of a QIR representation of the simple Q# program from Listing
3.3 is shown in Listing 3.44. Despite looking a bit overwhelming, it is a fully self-
contained description of the program. It contains definitions for all the types involved
in the program’s flow, the necessary constant declarations related to all hardcoded
primitives and all functions corresponding to the capabilities of the program. All of
those would have to be available on the given hardware platform for our program to
be available with that quantum hardware.

%Range = type { i64, i64, i64 }
%String = type opaque

@PauliI = internal constant i2 0
@PauliX = internal constant i2 1
@PauliY = internal constant i2 -1
@PauliZ = internal constant i2 -2
@EmptyRange = internal constant %Range { i64 0, i64 1, i64 -1 }
@0 = internal constant [13 x i8] c"Hello world!\00"
@1 = internal constant [3 x i8] c"()\00"

define internal void @Basic__Main__body() {
entry:

%0 = call %String* @__quantum__rt__string_create(i8*
getelementptr inbounds ([13 x i8], [13 x i8]* @0, i32 0,
i32 0))

call void @__quantum__rt__message(%String* %0)
call void @__quantum__rt__string_update_reference_count(%String

* %0, i32 -1)
ret void

}

declare %String* @__quantum__rt__string_create(i8*)

declare void @__quantum__rt__message(%String*)
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declare void @__quantum__rt__string_update_reference_count(%
String*, i32)

define void @Basic__Main__Interop() #0 {
entry:

call void @Basic__Main__body()
ret void

}

define void @Basic__Main() #1 {
entry:

call void @Basic__Main__body()
%0 = call %String* @__quantum__rt__string_create(i8*

getelementptr inbounds ([3 x i8], [3 x i8]* @1, i32 0, i32
0))

call void @__quantum__rt__message(%String* %0)
call void @__quantum__rt__string_update_reference_count(%String

* %0, i32 -1)
ret void

}

attributes #0 = { "InteropFriendly" }
attributes #1 = { "EntryPoint" }

Listing 3.44 A simple Q# program compiled into QIR.

Quantum Intermediate Representation itself is not coupled to Q#—in fact, quite
the opposite, QIR is designed specifically in a way that any other programming
language could support compiling its source code to a QIR-based format. QIR was
initially developed by Microsoft as an integral feature of the Q# compiler and has
since grown to become an independent project under the Linux Foundation, called the
QIRAlliance,4 formed at the end of 2021 [3]. At the time of writing the QIRAlliance
steering members consist of representatives of Microsoft, Oak Ridge National Lab-
oratory, Quantinuum, Quantum Circuits Inc., and Rigetti Computing.

3.4 Azure Quantum

The development of the QIR standard makes Q# programs ubiquitous, and poten-
tially compatible with any quantum computing platform, operated by any hardware
provider or cloud vendor.At the same time,AzureQuantum, being built byMicrosoft,
is the natural first choice cloud environment to deploy, execute and analyze quantum
applications built with the QDK.

At the time of writing the Azure Quantum ecosystem offers public access to
small integrated quantum computing devices from third-party vendors IonQ and
Quantinuum, though this landscape is changing rapidly, with other partners such
as Rigetti Quantum Cloud Services and Quantum Circuits, Inc. expected to launch

4 https://qir-alliance.org.

https://qir-alliance.org
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their hardware on the platform soon. The tooling around Azure Quantum is under
active development, and pricing models are still being defined [1]. Because of that
general volatility around it, we specifically avoid discussing concrete integration or
deployment into Azure Quantum on the pages of this study. Instead, the reader is
recommended to follow official documentation for the latest developments in that
space [7].

3.5 Quantum Simulators

3.5.1 Full State Simulator

The default simulator configured to run Q# programs when using the QDK is the
QuantumSimulator, often referred to as full state simulator. It provides an accurate
classical simulation of the quantum state of the program according to the mathemat-
ical formalism of quantum mechanics and the paradigms of quantum information
theory.

It is idealized, and therefore it does not incorporate any randomized environment
noise or fault conditions which would affect computations on physical quantum
hardware. From that perspective, it always produces exact results or probability
distributions as predicted by theoretical model.

Due to the exponential growth of the dimensions of Hilbert space with every
additional qubit, the simulator is limited in the amount of qubits it can support—
it can only handle 30 of them. Another obvious consequence of this is that the
simulator is very resource intensive, and by default tries to use all available threads
on the development machine. It also gets visibly slower with each extra qubit that is
used in the program, especially once the qubit count reaches double digits.

A Q# program is executed from the command line on the full state simulator
by performing the regular program execution using .NET SDK and by passing
QuantumSimulator as the simulator parameter.

dotnet run --simulator QuantumSimulator

Listing 3.45 Invoking the Q# full state simulator from the command line.

In fact, because the full state simulator is the default one, omitting it completely
when executing the program from the command line still makes the QDK fall back
to it. The same behavior can be observed in other Q# environments, such as Jupyter
Notebooks,where the IQ#magic command %simulate also ends upusing the default
full state simulator.
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3.5.2 Toffoli Simulator

The Toffoli simulator is a unique QDK feature, allowing the full simulation a Q#
program, but only provided it is implemented using a small limited set of quantum
transformations—theCNOT and both single andmulti-qubit controlledX.5 Because
of such constraints, Toffoli simulator is able to simulate programs vastly exceeding
the total qubit capabilities of the full state simulator.

The simulator can be used from the command line using the Toffoli
Simulator name and in the Jupyter Notebooks environment it has a dedicated
command %toffoli.

dotnet run --simulator ToffoliSimulator

Listing 3.46 Invoking the Q# Toffoli simulator from the command line.

3.5.3 Resources Estimation

Another useful simulator shipping in the box with Quantum Development Kit is the
resources estimator. It is not a fully-fledged simulator in the strict meaning of the
word, because it does not fully simulate the Q# application. Instead, it analyzes the
program by statically detecting any qubit allocations and their releases, as well as
all quantum transformations enacted on those qubits—without actually attempting
to execute any of them. It then aggregates all this information into the summarized
quantum metric report, which is then returned as the output.

From that perspective, resources estimator can be used to analyze quantum pro-
grams far exceeding the simulation capabilities of the full state simulator, and, for the
time being, exceeding the execution capabilities of even the most advanced quantum
hardware.

In particular, thewidth and depthmetrics of the program, reported by the estimator,
are useful information for the quantumprogrammers and researchers.Width indicates
how many qubits are needed for the program to execute, while depth provides an
estimated program execution time.

The estimator is available in the QDK under the ResourcesEstimator name. In
the Jupyter Notebooks, it can be used using the IQ# magic command %estimate.

dotnet run --simulator ResourcesEstimator

Listing 3.47 Invoking the Q# resources estimator from the command line.

The resources estimator is built on a lower level simulator component called
QCTraceSimulator. It is not accessible from the command line or JupyterNotebook
environments, but can be used programmatically from C# or Python, and pointed at
a Q# program. It provides a superset of functionalities of the resources estimator and

5 We will cover them in Chap.4.
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can produce more accurate information—at the expense of being more complicated
to interact with.
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Chapter 4
Quantum Computing

In this chapter we are going to apply the learnings from Chap. 2 to the field of
quantum computation. Most importantly, we shall cover the model of a qubit and its
transformations, and draw parallels to the quantum mechanical theoretical concepts
we covered earlier.

The reader will undoubtedly be pleasantly surprised to learn that our diligent
study of two-level quantum systems was not in vain, because as it turns out, a qubit
is nothing more than a generic name given to any such simplest quantum system. As
such, we have actually been discussing qubits all along—without explicitly refer-
ring to them—and therefore we already covered all of the basic algebra needed to
work with qubits in a quantum computer. Therefore, at least theoretically, any of the
examples mentioned in Chap. 2, such as electron spin or photon polarization, could
serve as an engine on top of which we could perform quantum computations. We
will also explore the basic ways of constructing a quantum program using logical
gates composed into quantum circuits.

Thanks to the time we spent discussing the QDK in Chap. 3, all of the content
in this book will from now on be illustrated with tangible examples in Q#. By the
end of the chapter we should be comfortable with the basic ideas behind building
quantum programs, forming a solid foundation for the further chapters.

4.1 Qubits

In classical computing, the smallest indivisible unit of information is called a bit,1

and can take two discrete values: 0 or 1. The entire information theory is built upon

1 Some quantum computing literature refers to classical bits as cbits, to emphasize their classical
nature. We shall not do that in this book though—we will assume that a term bit always refers to
the classical concept.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F.Wojcieszyn, Introduction to Quantum Computing with Q# and QDK, Quantum Science
and Technology, https://doi.org/10.1007/978-3-030-99379-5_4

89

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99379-5_4&domain=pdf
https://doi.org/10.1007/978-3-030-99379-5_4


90 4 Quantum Computing

that, and our theoretical and practical models on how to transmit, process, store and
encode information rely on the concept of bits.

On the other hand, in quantum information theory, the basic unit information
is called a qubit, a quantum bit. Consequently, a classical computer performs its
calculations by manipulating bits, while a quantum computer solves its tasks by
operating on qubits.

A qubit, contrary to its less complicated classical cousin, could not only represent
two binary states 0 or 1, but being a two-level quantum state, it can also be found
in linear combination of them—forming a superposition of 0 and 1.2 The fact that
we can then perform computations over data in a superposition of those two states
is one of the primary sources of potential advantages of quantum computing over
the classical computation model. This is a phenomenon commonly referred to as
quantum parallelism.

While we must be careful not to create an inaccurate mental picture, a simplified
way of thinking about quantumparallelism is to consider that quantum computers can
process evaluations of function f (x) for many different values of x simultaneously
[4]. As we will learn throughout this book, this effect is rather subtle, because as
exciting and dramatic as quantum parallelism may sound to be, we are still limited
by the measurement postulate of quantum mechanics. Therefore, we are only able
to extract a single classical bit, 0 and 1, out of every qubit upon state measurement,
so we should be careful when drawing any far reaching conclusions already.

While in the braket notation any labels assigned to the bras and kets are valid, it
is a common convention in quantum information theory to use |0〉 and |1〉 as labels
for the orthonormal basis corresponding to classical 0 and 1. This basis {|0〉 , |1〉}
is referred to as the computational basis or the standard basis, and represents the
reference in which all quantum algorithms are defined. The two linearly independent
vectors making up the computational basis also happen to be the eigenvectors of
Pauli’s σz matrix.

|0〉 =
[
1
0

]
|1〉 =

[
0
1

]
(4.1)

As a result, the computational basis is the same basis as we used in Chap. 2, where
we denoted it as {|↑〉 , |↓〉} (see Eq. 2.10), hence it is also often called by the name
we used already—the Z-basis.

The state of a single qubit, naturally in a two dimensional Hilbert space, would
then be written in the standard basis as:

|ψ〉 = a |0〉 + b |1〉 (4.2)

2 It is sometimes said that a qubit in a superposition “is both 0 and 1 at the same time”. This is
a rather simplistic and inaccurate description, but one that is commonly used in popular science
articles, as it manages to convey the weirdness of conceptualizing quantum states. As we discussed
earlier, it would be more appropriate to say that a qubit is neither 0 and 1, and only acquires a
definite basis state upon measurement using a specific observable.
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The second basis that is often used in quantum information theory is the basis com-
posed out of the two eigenvectors of the Pauli’s σx matrix—we already introduced
it in Eq. 2.17 as the X-basis.3 Its two orthogonal states are, by quantum computing
convention, labeled |+〉 and |−〉.

|+〉 = 1√
2

[
1
1

]
= 1√

2

(
|0〉 + |1〉

)
|−〉 = 1√

2

[
1

−1

]
= 1√

2

(
|0〉 − |1〉

)
(4.3)

In Q#, a use allocation block can be used to allocate a single qubit, several named
qubits in a tuple or an array of qubits that can be referenced through an index. All
three syntaxes are shown in Listing 4.1.

operation AllocateQubits() : Unit {
use qubit = Qubit();
use twoQubits = Qubit[2];
use (qubit1, qubit2) = (Qubit(), Qubit());
// all qubits can be interacted with

}

Listing 4.1 Different ways of allocating a qubit in Q#.

The scope for using the qubits in the Q# code is by default limited to the scope
of the surrounding block, and in the case of Listing 4.1 that is the outer opera-
tion AllocateQubits (). Qubit allocations, however, can also be given their own
explicit limited scope by creating a block allocation statement using curly braces.

operation AllocateQubits() : Unit {
use qubit = Qubit() {

// qubit scope is limited to this block
}
use twoQubits = Qubit[2] {

// twoQubit array scope is limited to this block
}
use (qubit1, qubit2) = (Qubit(), Qubit()) {

// qubit1 and qubit2 scope is limited to this block
}

}

Listing 4.2 Allocating qubits in Q# with a dedicated scope block.

Our first interaction with the qubits in a more structured form will be building
a small program that will allocate the qubits in their default state, measure them
and keep track of the results. We will want to repeat the run for a larger number of
iterations, because we are wary of the probabilistic nature of the measurements in
quantum mechanics.

3 An alternative name often used in literature is the Hadamard basis, named like this after a French
mathematician, Jacques Hadamard
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The core measurement functionalities in Q# can be found under the
Microsoft.Quantum.Intrinsic namespace, in the form of M (qubit :
Qubit) and Measure (bases : Pauli[], qubits : Qubit[]) operations.
The former measures a single qubit in the default Z-basis—using the σz observable,
while the latter is generalized operation which can measure any number of qubits
in any of the three Pauli bases—X, Y or Z, corresponding to σx , σy and σz observ-
ables. Additional, more specialized, measurement operations are provided through
the Microsoft.Quantum.Measurement namespace. The Pauli typemakes it pos-
sible to use the measurement basis as a dynamic argument which can provide a lot
of flexibility when authoring algorithms.

One thingworth noting at this point, is that contrary to some other quantum frame-
works, Q# does not have any sampling and experiment repetition features. Therefore,
in order to be able to measure the outcomes of our quantum operations in a larger
sample size, the so-called “shots”, we will need to perform the orchestration manu-
ally. On the other hand, because the language possesses all the usual constructs that
are needed to facilitate such orchestration—arithmetic operations, loops or branching
capabilities, it is not a huge obstacle to overcome. Just like it is the case for Pauli,
Q# has keyword literals that are used when interpreting measurement results, cor-
responding to the eigenvalues of the selected observable. Since, as we know, those
can be labeled anything, they are conveniently named Zero or One. They can be
converted to integer or boolean representation if needed and can be used to handle
measurement results in a strongly-typed manner.

A generic Q# helper operation that can be used for such sampling is shown below.

operation Sample(iterations : Int, basis : Pauli, op: (Pauli =>
Result)) : Unit {
mutable runningTotal = 0;
for idx in 1..iterations {

let result = op(basis);
set runningTotal += result == One ? 1 | 0;

}

Message($"Measurement results:");
Message($"|0>: {iterations - runningTotal}");
Message($"|1>: {runningTotal}");

}

Listing 4.3 Helper Q# operation which we will use for testing purposes.

This orchestration operation allows the caller to pass in both the number of itera-
tions and the intendedmeasurement basis as arguments. In addition, the actual logical
operation being tested is also passed in as a delegate. The orchestrator will invoke
this delegate in a loop, capture its result and keep track of the total amount of 0 and
1 produced by it. This is done by comparing the measurement result, represented
by the Result type, to the keyword literal One. If at the end of the entire routine
runningTotal = 0, we would know that the measurements produced zeros only,
if runningTotal == iterations we must have received only ones. Any total in
betweenwould indicate that therewas some randomness in themeasurement process.
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Next, we need to define a simple Q# operation which is allocating a qubit in a
default state and then measuring it in the relevant basis. This will be the operation
that can be passed as delegate into the orchestration code.

operation MeasureDefaultQubit(basis : Pauli) : Result {
use qubit = Qubit();
let result = Measure([basis], [qubit]);
return result;

}

Listing 4.4 Measuring a single qubit in Q#.

Such setup allows verifying two things—whether the newly allocated qubits really
are guaranteed to have the state |0〉, and whether the measurements in the different
Pauli bases really produce different results. As we recall from Chap. 2, superposition
is basis dependent so a quantum state in an eigenstate with respect to one basis (e.g.
Z-basis), will be in a superposition with respect to another basis (e.g. X-basis).

In order to find answers to these burning questions,we need to invoke the operation
from 4.4 twice—once passing in PauliZ and then PauliX as themeasurement basis.

@EntryPoint()
operation Main() : Unit {

Message("Measuring default qubits in Z basis");
Sample(4096, PauliZ, MeasureDefaultQubit);

Message("Measuring default qubits in X basis");
Sample(4096, PauliX, MeasureDefaultQubit);

}

Listing 4.5 Measuring qubits in different bases using the helper from Listing 4.3.

The produced output should resemble the following:

Measuring default qubits in Z basis
Measurement results:
|0>: 4096
|1>: 0

Measuring default qubits in X basis
Measurement results:
|0>: 2050
|1>: 2046

Listing 4.6 Expected output from the code from Listing 4.5.

When measuring in the Z-basis, we got 4096 zeros in 4096 iterations, which is
quite encouraging. This is exactlywhatwe expected, becauseQ# promises that newly
initialized qubits have a |0〉 state, and the output of the program seems to agree. We
also never applied any transformations to the qubit, so there is no reason to expect
any deviations from |0〉.4 The qubit started in an eigenstate of σz and since it never
changed, the measurement result must be deterministic too.

On the other hand, when measuring in the X-basis, we experience maximum
uncertainty. The distribution is not perfect, because the sample size is not very large,

4 We are explicitly ignoring the topic of quantum hardware errors here.
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but the conclusion that can be drawn of this is abundantly clear. When measuring
in the X-basis, using σx observable, the measurement results are random—the state
collapses to |0〉 or |1〉 with equal probability. As a result, the measurement produces
each of 0 or 1 half of the time.

Q# imposes a requirement on the developers that at the end of each qubit scope—
be it the surrounding implicit scope or the explicitly defined one—the qubit must
either have been measured or manually reset to state |0〉.

In other words, while in its quantum memory management Q# does support auto-
matic releasing of qubits at the end of an allocation scope, the released qubit must
not be in a indeterminate state. In those situations manual reset is mandatory, and if
the qubit was not measured or returned to state |0〉, a runtime (not compile time!)
error would occur. On some quantum processors, a program state corruption may
happen. Manual reset of dirty qubits can be done through the Reset (qubit :
Qubit) operation for a single qubit, or through ResetAll (qubits : Qubit[])
for a larger number of qubits at once—in either case the qubits go back to |0〉 state.
Listing 4.7 shows a correct reset procedure of qubits.

operation AllocateQubits() : Unit {
use qubit = Qubit();
// ... no measurement
Reset(qubit);

use twoQubits = Qubit[2];
// ... no measurement
ResetAll(twoQubits);

use (qubit1, qubit2) = (Qubit(), Qubit());
// ... no measurement
ResetAll([qubit1, qubit2]);

}

Listing 4.7 Manually resetting qubits in Q#.

4.2 Quantum Circuits

In quantum computing, quantum state transformations are represented—similarly
to the analogous concept from classical computer science—by computational gates
called quantum gates. Such gates can then be composed into complex algorithmic
sequences forming quantum circuits. Each gate is a unitary transformation that can be
applied to the quantum state vector, and the size of the gate corresponds the amount of
qubits it acts upon. Single qubit gates act on two-dimensional quantum state vectors
and are thus described by 2 × 2 matrices. As a consequence of the tensor product
representation of composite quantum states, two qubit gates act on four-dimensional
quantum state vectors and are described by 4 × 4 matrices, three qubit gates act on 8
dimensional state vectors and are described by 8 × 8 matrices and so on. In general
we can say that the gate matrix for n qubits has a 2n × 2n matrix form.
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Fig. 4.1 Sample quantum
circuit

The primary role of circuits is to visualize the computation models as a sequence
of qubit state transformations. The circuits provide a consistent graphical notation
and a set of labeling conventions for expressing the flow of an algorithm, and they
can accommodate operations on single qubits, as well as those transformations that
are spanning multiple qubits.

The analogy between classical and quantum computing circuits works reasonably
well, but a work of caution is in order. In classical computing, the gates typically cor-
respond (albeit in a slightly idealized form) to physical electronic implementations.
That is not necessarily the case in quantum computing. Depending on the implemen-
tation model of the physical quantum computer, a gate may really have a physical
realization or they might be a purely logical concept, enacted on a stationary quan-
tum object via external control device (e.g. a series of pulses in nuclear magnetic
resonance or trapped ion quantum computer architectures) [5].

There are several useful tools that help authoring quantum circuits, two of the
most popular being 5Quirk, an online tool, and 6quantikz, a LATEX package.

A sample circuit is shown in Fig. 4.1 and describes a quantum algorithm that
operates on two qubits, both of which are initialized to state |0〉. Each qubit in a
quantum circuit is typically represented by an individual horizontal line, though as
we will learn in later examples, it is also possible to group multiple qubits on a single
line. The algorithm defines two quantum state transformations, first a U gate which
spans both qubits, and then V gate applied only to the first qubit. Gates are normally
visualized as squares or rectangles, with the appropriate letter corresponding to the
transformation being executed. Finally, a measurement is performed on both of the
qubits—which is indicated by the measurement symbols on both lines. Quantum
circuits in general have no notion of measurements in bases different than computa-
tional basis—so the presence of the measurement symbol implies a σz observable.
The circuit then changes both qubit lines into double lines—this indicates that at that
point the qubit has been measured and carries a classical bit—0 or 1.

One thing that may be confusing is that quantum circuits are written and left to
write, and therefore logically interpreted this way too. On the other hand, the math-
ematical description of matrix operations representing the same quantum algorithm
is written right to left. The matrix equivalent of Fig. 4.1 is shown in Eq. 4.4 below.

(V ⊗ I)U |00〉 (4.4)

5 https://algassert.com/quirk.
6 https://ctan.org/pkg/quantikz.

https://algassert.com/quirk
https://ctan.org/pkg/quantikz
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It should be noted that the usage of Imatrix implies a no-op transformation on the
qubit—something that on the circuit can also be expressed by a simple whitespace
on a given qubit line.

4.3 H Gate and the Superposition

We already referred to superposition as being one of the primary sources of potential
computational advantages for quantum computing, but so far we only interacted with
qubits in their default state. Computing in a superposition state is utilized in just about
any quantum algorithm, so being able to create a superposition state is one of the
fundamental preparation steps in quantum computing.

In Chap. 2, in Eq. 2.43, we defined a simple matrix representation for a beam
splitter that would create a uniform superposition of both of the possible photon
states. As it turns out, the exact same transformation has profound importance in
quantum information theory, and it is known as H, the Hadamard gate.

H = 1√
2

[
1 1
1 −1

]
(4.5)

The Hadamard transformation is extremely useful, because of its ability to create
a uniform superposition out of any of the two computational basis states. Suppose
we start with a qubit prepared to be |0〉. The H transformation then produces the
following:

H |0〉 = 1√
2

|0〉 + 1√
2

|1〉 = 1√
2

(
|0〉 + |1〉

)
(4.6)

Similarly, when starting in the |1〉 state, the effect of applying H is:

H |1〉 = 1√
2

|0〉 − 1√
2

|1〉 = 1√
2

(
|0〉 − |1〉

)
(4.7)

As we know from the beam splitter discussion, the difference between the two
situations is the amplitude sign ((+) vs (−)), which indicates the phase difference
between the states. At the same time, according to the Born rule, in order to obtain
classic probabilities we need to square the amplitudes, we are equally likely to have
the state collapse to |0〉 and to |1〉 upon measurement. In other words, the Hadamard
transformation always creates a uniformly distributed superposition, irrespective of
the initial state of the qubit, as long as that state was one of the computational basis
states {|0〉 , |1〉}.

The Hadamard matrix is not just unitary, it is also self adjoint (Hermitian), as it
is equal to its own conjugate transpose. In other words:

H = H† (4.8)
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This means that the following holds:

HH† = HH = I (4.9)

The obvious consequence of this is that when applying the Hadamard transfor-
mation to a qubit twice in a row, the second transformation would undo the effects
of the first one and restore the original quantum state. For example:

H
1√
2

(
|0〉 + |1〉

)
= |0〉 (4.10)

The effect that manifests itself here is the interference again, the same as we saw
in Sect. 2.4. The Hadamard gate causes constructive interference of the probability
amplitudes related to |0〉, which becomes amplified in a way that we are now certain
to measure |0〉. Conversely, destructive interference of the amplitudes on state |1〉
results in the probability of measuring it dropping to 0.

An elegant way of expressing the Hadamard gate acting on a single qubit in a
computational basis state is:

H |x〉 = 1√
2

(
|0〉 + (−1)x |1〉

)
(4.11)

where x ∈ 0, 1. This captures the phase change that happens depending on whether
we applyH to |0〉 or |1〉. We can further rewrite this into a format relevant for single
qubit input |x〉 in any superposition state:

H |x〉 = 1√
2

∑
z∈{0,1}

(−1)xz |z〉 (4.12)

Finally, there is one other alternative way of expressing the effect of the H gate
on a single computational basis state qubit, using Euler’s number e:

H |x〉 = 1√
2

(
|0〉 + eπ i x |1〉

)
(4.13)

where x ∈ 0, 1. This works because the exponent can evaluate to 1 or −1 only,
depending on the value of x .

Another interesting point of view to consider when dealing with the Hadamard
gate is that we can view the Hadamard transformation as a mean to change the
basis—from Z-basis to X-basis, and vice versa. The reason for that is that the
states from Eqs. 4.6 and 4.7 actually corresponds to the basis states of the X-basis
{|+〉 , |−〉}.

H |0〉 = |+〉 H |1〉 = |−〉 (4.14)
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And of course, sinceH is Hermitian and thus its own inverse, the following holds
as well:

H |+〉 = |0〉 H |−〉 = |1〉 (4.15)

While the Hadamard gate is a single qubit transformation, it is naturally possible
to use it in multi-qubit systems as well—in those cases it needs to be applied to the
individual qubits separately. Let us now consider a two qubit system and see what
happens when apply theH transformation to each of the individual qubits that make
it up. Since we already know that a multi-qubit system is described fully by a tensor
product of the individual component states, we can write this as follows, assuming
we start with two qubits in state |0〉 each.

H |0〉 ⊗ H |0〉 =
(

1√
2

|0〉 + 1√
2

|1〉
)

⊗
(

1√
2

|0〉 + 1√
2

|1〉
)

=
1

2

(
|00〉 + |01〉 + |10〉 + |11〉

)
(4.16)

It is possible to perform a similar calculation for the other three possible combi-
nations of the computational basis states. The difference between the results will be,
just like in the case of a single qubit H, the phase.

H |0〉 ⊗ H |1〉 =
(

1√
2

|0〉 + 1√
2

|1〉
)

⊗
(

1√
2

|0〉 − 1√
2

|1〉
)

=
1

2

(
|00〉 − |01〉 + |10〉 − |11〉

)
(4.17)

H |1〉 ⊗ H |0〉 =
(

1√
2

|0〉 − 1√
2

|1〉
)

⊗
(

1√
2

|0〉 + 1√
2

|1〉
)

=
1

2

(
|00〉 + |01〉 − |10〉 − |11〉

)
(4.18)

H |1〉 ⊗ H |1〉 =
(

1√
2

|0〉 − 1√
2

|1〉
)

⊗
(

1√
2

|0〉 − 1√
2

|1〉
)

=
1

2

(
|00〉 − |01〉 − |10〉 + |11〉

)
(4.19)

In general, any multi-qubit transformation like this can be written in the tensor
product form

(H ⊗ H ⊗ ... ⊗ H) |00...0〉 (4.20)

By utilizing the tensor product, we can describe the two-qubit Hadamard trans-
formation in a form of matrix of matrices, namely a new H⊗2 matrix. That matrix
itself is made up of H matrices.
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H⊗2 = 1√
2

[
H H
H −H

]
(4.21)

This reasoning can be generalized even further, into a H⊗n transformation that
recursively acts on an arbitrary number of n qubits.

H⊗n = 1√
2

[
H⊗(n−1) H⊗(n−1)

H⊗(n−1) −H⊗(n−1)

]
(4.22)

The transformation H⊗n is sometimes referred to as the so-called Walsh-
Hadamard (or sometimes just Walsh) transformation W, though in this account we
shall continue usingH⊗n as it ismore verbose.We can summarize the effects of aH⊗n

multi-qubit transformation on an input state |00..0〉 (n qubits in |0〉 state each) as:

H⊗n |00..0〉 = 1√
2n

2n−1∑
x=0

|x〉 (4.23)

While this provides a nice generalization for the case of using n inputs, they are
all still restricted to being in |0〉 initial state only. We can now combine Eqs. 4.12 and
4.23. We can assume that |x〉 in Eq. 4.12 has a length of n, instead of being a single
qubit, it leads us to the final generalization of the H⊗n transformation. The formula
is as follows

H⊗n |x〉 = 1√
2n

2n−1∑
z=0

(−1)x ·z |z〉 (4.24)

where x · z is the bitwise inner product of x and z, modulo 2 (binary scalar product)

x · z = x0z0 ⊕ x1z1 ⊕ ... ⊕ xn−1zn−1 (4.25)

With all this theory under our belt, we are now well positioned to take the simple
default qubit measurement examples from the previous section and extend them to
involve the usage of superposition created with the Hadamard transformation.

The first basic program will implement the circuit defined below. The newly
allocated qubit has the definite state |0〉, the H transformation is applied and the
measurement follows.

In Q# the H transformation is exposed as H (qubit : Qubit) operation in the
Microsoft.Quantum.Intrinsic namespace. As we did in Listing 4.4, it would

Fig. 4.2 Creating a uniform superposition with the H transformation
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make sense to have the possibility for measuring in different bases, in order to be able
to verify the impact of different bases on this uniform superposition (at this point it
should be clear that superposition in one basis is not necessarily a superposition in
another).

operation MeasureSuperpositionQubit(basis : Pauli) : Result {
use qubit = Qubit();
H(qubit);
let result = Measure([basis], [qubit]);
return result;

}

Listing 4.8 Q# code applying the H gate, and supporting measurements in an arbitrary basis.

Just as before, we should run this circuit a larger number of times to gather certain
representative set of results. The code will therefore reuse the sampling orchestrator
from Listing 4.3—the operation can be invoked for both Z and X-bases using the
following code.

@EntryPoint()
operation Main() : Unit {

Message("Measuring Z-basis superposition in the Z basis");
Sample(4096, PauliZ, MeasureSuperpositionQubit);

Message("Measuring Z-basis superposition in the X basis");
Sample(4096, PauliX, MeasureSuperpositionQubit);

}

Listing 4.9 Orchestration of the test code from Listing 4.8.

Of course based on the fact that theH transformation is effectively a basis switch
between Z- and X-bases, which is best shown in Eqs. 4.14 and 4.15, the expected
result is that measurements in the Z-basis produce evenly distributed 0 and 1 results,
while the X-basis measurements produce only 0.

Measuring Z-basis superposition in the Z basis
Measurement results:
|0>: 2041
|1>: 2055

Measuring Z-basis superposition in the X basis
Measurement results:
|0>: 4096
|1>: 0

Listing 4.10 Sample output from running the code from Listing 4.9.

This is obviously a rather modest example of a quantum program, but the conse-
quences are quite astonishing. Thanks to the Hadamard transformation, we managed
to generate a truly nature-guaranteed random bit.7 The qubit in the program had 50%

7 The reader may point out that we already achieved that when measuring a default in the X-basis
in the previous section. This is a correct observation—however it is the computational basis that is
really the standard way of expressing quantum algorithms, and indeed in this particular example a
measurement is a standard Z-basis measurement.
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chance of collapsing to 0 or 1 each, and those probabilities are guaranteed by the
laws of quantum mechanics and its underlying mathematics. This is something that
one cannot achieve in classical computing—where a truly random bit generation is
impossible.

Of course for most problems, a meager single bit is not a particularly useful
computation result. What we can do, however, is extend the random bit generation
onto a set of bits, which will then allow us to produce a random bit array, which can
be used to express more sophisticated information, such as for example a random
integer.

Let us assumewewould want to generate n = 8 random bits, to produce a random
unsigned 8-bit integer. There are three ways that we will approach this. First, a most
naive example will see us simply repeating the procedure of measuring a single qubit
n times, until we have all the necessary bits. With such approach, we still operate on
one individual qubit only and the circuit design from Fig. 4.2 still applies—it will
however get repeated n amount of times.

operation RandomNumber1Qubit(bitCount : Int) : Int {
mutable randomBits = [false, size = bitCount]; // 000...0

for idx in 0..bitCount -1 {
use qubit = Qubit();
H(qubit);
let result = M(qubit);
set randomBits w/= idx <- result == One;

}

return BoolArrayAsInt(randomBits);
}

Listing 4.11 A sample Q# random number generator using a single qubit.

The solution is shown in Listing 4.11 and initially allocates a mutable array of
bits, by default set to all zeroes. Then, as the code performs measurements of the
individual qubit results in a loop, if themeasurement produces a 1, an update, through
Q#’s copy-and-update expression, is performed on the array index corresponding to
the qubit being iterated over.

A more elaborate solution to the same problem, is to use all the required qubits
simultaneously. This of course might be problematic for a really large number of bits
that are required, given the quantum hardware constraints today, but for the sake of
an example let us see how such a solution would look like.

In order to create a superposition over eight qubits, we will rely on the H⊗8

transformation, which can be represented on a quantum circuit in a compact format
using the annotations shown in Fig. 4.3.

Fig. 4.3 Creating a uniform superposition with the H transformation over 8 qubits
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Q# provides two additional framework features that come in partic-
ularly useful when implementing this particular quantum circuit. First
of all, the ApplyToEach<’T> (singleElementOperation : (’T => Unit),
register : ’T[]) operation, from the Microsoft.Quantum.Canon namespace,
allows invoking a specific operation delegate against an array of qubits. This pro-
vides a rather concise way of preparing or transforming multi-qubit states. Sec-
ondly, a multi-qubit measurement helper MultiM (targets : Qubit[]), from
the Microsoft.Quantum.Measurement namespace, allows a convenient measure-
ment of an array of qubits in the computational basis, and returns an array of Result
objects back, with the index of the Result in the output array corresponding to
the index the qubit occupied in the measurement input array. Both of these are
convenience features that help keep the amount of the involved Q# code to the bare
minimum—something that is rather welcome by software engineers. The entire oper-
ation is shown in Listing 4.12.

operation RandomNumberNQubits(bitCount : Int) : Int {
use qubits = Qubit[bitCount];
ApplyToEach(H, qubits);

let result = MultiM(qubits);
return BoolArrayAsInt(ResultArrayAsBoolArray(result));

}

Listing 4.12 A sample Q# random number generator using n qubits and manual bit sampling.

The third approach to this problem, takes an even bigger dependency on the built-
in Q# functionalities. The particular feature that we take advantage of here, is the
ability to create a so-called QPU register, a LittleEndian register, which is a built-
in Q# user defined type under the Microsoft.Quantum.Arithmetic namespace.
The endianness is the classical computing concept indicating the sequencing of bits
in a byte—a little-endian approach stores the least-significant bit at the smallest
address. Q# supports both big endian and little endian registers, and can create them
from an array of qubits in order to simplify arithmetic operations.

We can then measure the register directly into an integer using yet
another measurement helper operation—MeasureInteger (target :
LittleEndian) operation from the same Microsoft.Quantum.
Arithmetic namespace. This measurement extension simplifies the process
of performing arithmetic calculations on the QPU, as one no longer has to manually
handle the raw result bits. The entire code of this third version of the quantum
random number generator in Q# is shown in Listing 4.12.

operation RandomNumberFramework(bitCount : Int) : Int {
use qubits = Qubit[bitCount];
ApplyToEach(H, qubits);

let register = LittleEndian(qubits);
let randomNumber = MeasureInteger(register);
return randomNumber;

}

Listing 4.13 A sample Q# random number generator using n qubits and the built-in standard
readout of integers.
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Irrespective of the approach taken, each of the three random number generation
operations from examples Listing 4.11, 4.12 and 4.13, can be invoked in a similar
fashion

@EntryPoint()
operation Main() : Unit {

let rnd1 = RandomNumber1Qubit(8);
Message($"Random uint8 using single qubit: {rnd1}");

let rnd2 = RandomNumberNQubits(8);
Message($"Random uint8 using multiple qubits: {rnd2}");

let rnd3 = RandomNumberFramework(8);
Message($"Random uint8 using framework features: {rnd3}");

}

Listing 4.14 Orchestration code to test the random number generators.

And the expected output is going to be three truly random8 8-bit unsigned integers.
For example:

Random uint8 using single qubit: 32
Random uint8 using multiple qubits: 176
Random uint8 using framework features: 179

Listing 4.15 Sample output from running the code from Listing 4.14.

4.4 Pauli Gates

Four of the most basic single qubit gates are represented by the Pauli matrices σi , σx ,
σy and σz . Despite the fact that in the mathematical formalism of quantummechanics
Pauli matrices are predominantly utilized as observables in themeasurement process,
in quantum computing, due to their interesting algebraic properties, they are also
useful as regular unitary state transformations. Together they form a set of some of
the most basic qubit operations that one can execute in quantum programs. These
gates are customarily referred to as the I, X, Y and Z gates.

In this section,wewill continue using the sampling code fromListing 4.3, however
at this point we can simplify it slightly and get rid of the parameterized basis—from
now on we are only going to be interested in computational basis measurements. The
updated orchestrator code is therefore:

8 We are obviously taking a simplified approach here. Quantum random number generation is a
major pillar of cryptography and a deeply complex field. Readers willing to dive deeper into the
related challenges and statistical consequences are referred to specialized studies in the topic such
as [3].
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operation Sample(iterations : Int, op: (Unit => Result)) :Unit {
mutable runningTotal = 0;
for idx in 1..iterations {

let result = op();
set runningTotal += result == One ? 1 | 0;

}

Message($"Measurement results:");
Message($"|0>: {iterations - runningTotal}");
Message($"|1>: {runningTotal}");

}

Listing 4.16 Adjusted orchestration code from Listing 4.3.

4.4.1 I Gate

Identity gate I, sometimes denoted as 1 as well, is the simplest possible quantum
gate. When applied to any quantum state vector, I leaves the state intact. Its matrix
representation is the same as σi :

I =
[
1 0
0 1

]
(4.26)

The identity gate can be interpreted similarly to identity gate in classical comput-
ing, as an identity function, namely a function that takes in an argument and returns
that argument intact (Fig. 4.4).

I |ψ〉 = |ψ〉 (4.27)

Of course the effect of the identity gate on an arbitrary qubit in a computational
basis superposition is equally unremarkable

I(a |0〉 + b |1〉) = a |0〉 + b |1〉 (4.28)

The main use case of identity is to indicate that no state transformation is per-
formed on a given qubit in a multi-qubit composite system. This is something we
mentioned already in Sect. 4.3. Another useful aspect of I is that it can often be used
to express various properties of other gates. For example, if the following condition
holds for an unknown gate U:

I = UU (4.29)

Fig. 4.4 Identity gate
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we know that the gate U is self-adjoint—Hermitian.
Although in itself it is not particularly useful, for the sake of completeness we

shall mention here that Q# also ships with an implementation of the I gate. It is part
of the Microsoft.Quantum.Intrinsic namespace and exposed as a I (target
: Qubit) no-op operation. Given that Q# is so easy to write and test, we can verify
that by running a larger sample set of an operation applying I to the default |0〉 and
measuring the qubit afterwards. This is very similar to the sample from Listing 4.8.

operation MeasureI() : Result {
use qubit = Qubit();
I(qubit);
let result = M(qubit);
return result;

}

Listing 4.17 Q# code testing the behvior of the I gate.

Naturally, such operation produces all zeroes—this becomes evident once we
invoke it a larger number of times using the orchestration code from Listing 4.16. In
the particular example below, it was done 4096 times.

Measuring I
Measurement results:
Result 0: 4096
Result 1: 0

Listing 4.18 Output from the repeated orchstration of code from Listing 4.17.

4.4.2 X Gate

The Pauli X gate is often (Fig. 4.5) referred to as the bit-flip gate, because it swaps
the probability amplitudes a and b with each other. Geometrically, the gate performs
a rotation by π about the x-axis of the Bloch sphere. Its matrix representation is the
same as σx

X =
[
0 1
1 0

]
(4.30)

We can express the linear transformation it enacts on a qubit state as

X(a |0〉 + b |1〉) = b |0〉 + a |1〉 (4.31)

If the qubit is already in aZ-basis eigenstate |0〉 or |1〉, in otherwords,we know that
the probability of one of the two basis states is zero, then the gate acts like the NOT
gate in classical computing—flipping the state vector to its orthogonal counterpart.

Fig. 4.5 Bit-flip gate
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Fig. 4.6 Phase-flip gate

X |0〉 = |1〉 X |1〉 = |0〉 (4.32)

This conceptual symmetry to the classical NOT gate makes the Pauli X gate one
of the quantum gates that is easiest to understand.We can test the effects of theX gate
by updating the code from Listing 4.17 to make use of the built-in Q# X (target
: Qubit) operation.

operation MeasureX() : Result {
use qubit = Qubit();
X(qubit);
let result = M(qubit);
return result;

}

Listing 4.19 Q# code testing the behvior of the X gate.

Since the newly allocated qubits are guaranteed to be in state |0〉, the code from
Listing 4.19 would produce only states equal to |1〉. We can verify that by running
the repeated measurements using our orchestration code—again 4096 times:

Measuring X
Measurement results:
|0>: 0
|1>: 4096

Listing 4.20 Output from the repeated orchstration of code from Listing 4.19.

4.4.3 Z Gate

Contrary to the X gate, which can be relatively easily conceptually mapped to clas-
sical computation theory, the Z gate performs a transformation whose effects are
uniquely quantum, making it a bit more difficult to apprehend. Mathematically, the
gate is very simple—it is represented by the samematrix as σz and (Fig. 4.6) performs
a rotation by π about the z-axis of the Bloch sphere.

Z =
[
1 0
0 −1

]
(4.33)

The effects on an arbitrary quantum state are thus

Z(a |0〉 + b |1〉) = a |0〉 − b |1〉 (4.34)

This is of course the exact same thing thatwe sawwhenmodelling the phase shifter
when discussing the Mach-Zehnder interferometer in Sect. 2.4. As a consequence,
the effects the Z gate has on qubits will be the same—namely, the only thing that the
Z gate changes is the sign of the second amplitude, which flips from (+) to (−).
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Because of that, the Z gate is commonly referred to as the phase flip gate, as it
changes the phase of the qubit, leaving the actual classical probabilities intact. A
simple way of remembering the effect of the Z gate on the Z-basis eigenstate is that
it leaves |0〉 intact and multiplies |1〉 by −1.

Z |0〉 = |0〉 Z |1〉 = − |1〉 (4.35)

A more concise way of expressing that notion would be

Z |x〉 = (−1)x |x〉 (4.36)

where x ∈ 0, 1.
Despite having no impact on classical probabilities, the Z gate has fundamental

importance and a wide array of useful application scenarios in quantum computing,
many of which we will cover in this book. In particular, as an integral attribute of
the wave-particle nature of quantummechanism, phase differences can amplify each
other, or cancel each other out via the interference effect—something that can be
taken advantage of in quantum algorithms. Additionally, phase difference allows for
flagging a specific quantum state with the relevant sign allowing us to differentiate
between states that would otherwise be indistinguishable.

One other thing worth noting, is that while the probability amplitudes in the Z-
basis do not get affected by the Z transformation, this is not the case in other bases.
For example in the X-basis, the Z gate would flip |+〉 into |−〉 state.

Q#, when running on a simulator allows close inspection of the current quantum
state of the program. During development, this is something that is very helpful
in ensuring that the quantum state vector is really corresponding to the algebraic
expectations that ones has. This functionality is provided by a function belong-
ing to the very helpful Microsoft.Quantum.Diagnostics namespace, called
DumpMachine<’T> (location : ’T), and can be used to output a simple visu-
alization of the wave function describing the current system state into a desired
location, such as an external file. It can also be invoked without any parameters in
order to write out that state to console (standard I/O).

Because we cannot directly detect the effects of the Z gate using measurements,
we can use this particular technique to inspect its impact instead. Listing 4.21 shows
two single qubit operations that make use of the machine dump. the first one would
show the effects of the Z gate on the default |0〉, while the second on the |1〉 basis
state. At this point we already know that |1〉 can be obtained in code by first invoking
the X transformation.

operation TestZAgainst0() : Unit {
use qubit = Qubit();
Z(qubit);
DumpMachine();
Reset(qubit);

}

operation TestZAgainst1() : Unit {
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use qubit = Qubit();
X(qubit);
Z(qubit);
DumpMachine();
Reset(qubit);

}

Listing 4.21 Q# code testing the behvior of the Z gate on a quantum simulator.

The operations can be invoked using the following code:

@EntryPoint()
operation Main() : Unit {

Message("Testing Z against |0>");
TestZAgainst0();

Message("Testing Z against |1>");
TestZAgainst1();

}

Listing 4.22 Test code orchestrating operations from Listing 4.21.

The expected output is then as follows:

Testing Z against |0>
# wave function for qubits with ids: 0
|0>:1.0000 + 0.0000i == ********** [1.0000] --- [0.00000 rad]
|1>:0.0000 + 0.0000i == [0.0000]

Testing Z against |1>
# wave function for qubits with ids: 0
|0>: 0.0000 + 0.0000i == [0.0000]
|1>:-1.0000 + 0.0000i == ********** [1.0000] --- [3.14159 rad]

Listing 4.23 Expected output from code from Listing 4.22.

A few words are required on how to read the machine dump. First of all, a qubit
label using the little endian notation is shown in the left most column, corresponding
to the possible states—it would be a range from |0〉 to |2n〉 for n-qubit state machine.
Then the probability amplitude is shown in a Cartesian format, with explicit real
and imaginary components. In the particular example in Listing 4.23 the imaginary
numbers are not needed to describe the quantum state so they are shown as 0. The
asterisks visualize the approximated probability amplitude distributions between the
possiblemeasurement outcomes.Next, an accurate value of the probability amplitude
as a decimal number is displayed, followed by a numeric value of the phase shown
in radians. In the sample snippet above the phase equals to π because eiπ = −1,
confirming our expectations for the transformation Z |1〉.

It must be emphasized again that such state debugging technique only works
on simulators—when executing against real quantum hardware, all the quantum
mechanical rules apply and thus a state can only be known with certainty after a
measurement using a relevant observable. No intermediary state peeking is possible.
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Fig. 4.7 Pauli Y gate

4.4.4 Y Gate

Pauli Y gate is almost a combination of both X and Z gates, as it effectively
performs both a bit-flip and a phase-flip at the same time. Geometrically, the gate
performs a rotation by π about the y-axis of the Bloch sphere (Fig. 4.7).

The matrix of Y form is the same as σy

Y =
[
0 −i
i 0

]
(4.37)

When applied to the basis states |0〉 and |1〉, Y produces the following states

Y |0〉 = i |1〉 Y |1〉 = −i |0〉 (4.38)

And when applied to a general superposition state

Y(a |0〉 + b |1〉) = −ib |0〉 + ia |1〉 = −i(b |0〉 − a |1〉) (4.39)

The actual relationship between the bit-flip of X and phase-flip of Z is therefore

XZ = −iY (4.40)

We can verify the detailed effects using the Q# diagnostic tools again. The code
below performs quantum state dumps against two operations that invoke theY trans-
formation on input states of |0〉 and |1〉.
operation TestYAgainst0() : Unit {

use qubit = Qubit();
Y(qubit);
DumpMachine();
Reset(qubit);

}

operation TestYAgainst1() : Unit {
use qubit = Qubit();
X(qubit);
Y(qubit);
DumpMachine();
Reset(qubit);

}

Listing 4.24 Q# code testing the behvior of the Y gate on a quantum simulator.

The output will show that indeed the state |0〉 was transformed to i |1〉 while |1〉
to −i |0〉.
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Testing Y against |0>
# wave function for qubits with ids: 0
|0>:0.0000 + 0.0000i == [0.0000]
|1>:0.0000 + 1.0000i == ********** [1.0000] ^ [1.57080 rad]

Testing Y against |1>
# wave function for qubits with ids: 0
|0>:0.0000 +-1.0000i == ********** [1.0000] v [-1.57080 rad]
|1>:0.0000 + 0.0000i == [0.0000]

Listing 4.25 Expected output of testing the Y gate on a quantum simulator.

As expected, in both cases the imaginary component of the probability amplitude
was acquired—once as i and once as −i .

4.4.5 Further Considerations

Just aswementioned in Sect. 2.5when discussing observables, each of the three Pauli
gates can also be written using Dirac notation, as the outer product of the Z-basis
vectors with their complex conjugates.

I = |0〉 〈0| + |1〉 〈1| X = |1〉 〈0| + |0〉 〈1| (4.41)

Y = − |1〉 〈0| + |0〉 〈1| Z = |0〉 〈0| − |1〉 〈1|

The Pauli gates are all Hermitian and each one is its own inverse, meaning the
following holds

X2 = Y2 = Z2 = I2 = −iXYZ = I (4.42)

In practice, it means that applying the gate the second time in a row would undo
the effects of the first transformation. Additionally, Pauli gates are closely related to
the Hadamard gate, as we can treat theH gate as “basis change”-gate. Therefore, all
of the following relations are true

X = HZH (4.43)

Y = −HYH

Z = HXH

These relationships are easy enough toverify using linear algebra, but it is naturally
very tempting to just experiment with such configurations in Q# code. One such
example is shown in Listing 4.26, which contains an operation performing a HZH
transformation sequence (Fig. 4.8).

operation MeasureHZH() : Result {
use qubit = Qubit();
H(qubit);
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Fig. 4.8 HZH operation
sequence

Z(qubit);
H(qubit);
let result = M(qubit);
return result;

}

Listing 4.26 Q# operation verifying the relationship between the Z and H gates.

When invoked 4096 times using the standard sampling code this chapter has been
using, the output shows that the transformations really result in an X bit-flip.

Measuring HZH
Measurement results:
Result 0: 0
Result 1: 4096

Listing 4.27 Expected output of the operation from Listing 4.26.

In addition to having their own standalone gate representations in Q#, the
core library of Q# also provides a generic ApplyP (pauli : Pauli, target
: Qubit) operation in the Microsoft.Quantum.Canon namespace. This is par-
ticularly useful in situations which require a conditional choice between selecting
one of the Pauli gates, as it allows applying any Pauli gate in a parameterized fashion,
such as shown in Listing 4.28.

// the following two statements are equivalent
Z(qubit);
ApplyP(PauliZ, qubit);

Listing 4.28 Example of a generic Pauli Q# operation.

For example if we want to conditionally setup a |1〉 state based on a boolean flag,
instead of wrapping the X into a conditional clause like shown in the snippet below

if (setupOneState) {
X(qubit);

}

Listing 4.29 An intuitive way of creating a |1〉 state with Q#.
it is possible to instead invoke the generic ApplyP (pauli : Pauli, target :
Qubit) operation and use that boolean flag conditionally switch between PauliI
and PauliX. This may be considered more concise and readable to some developers,
as it reduces nesting of the code.

ApplyP(setupOneState ? PauliX | PauliI, qubit);

Listing 4.30 Creating a |1〉 state with Q# using the built-in operation to apply Pauli.
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4.5 Rotation Gates

In Chap. 2 wementioned that after a unitary transformation the transformed quantum
state vector remains normalized, since unitary transformations preserve the inner
product. As such, every unitary transformation can be viewed as a vector rotation.

In quantum computing, there is nevertheless a specialized set of gates explicitly
referred to as rotation gates. These three rotation gates, called Rϕ

x , Rϕ
y and Rϕ

z , are
generalizations of the the Pauli X, Y and Z gates. The names of these gates come
form the fact that they allow a rotation around x-, y- and z-axes around the Bloch
sphere by an arbitrary angle.

4.5.1 Rϕ
z Gate

Let us first considerRϕ
z , which is a generalization of theZ gate. The gate allows rotat-

ing around the z-axis by a value of ϕ radians, changing the qubit phase accordingly
(Fig. 4.9).

The matrix representation of the gate is the following:

Rϕ
z =

[
e−i ϕ

2 0
0 ei

ϕ

2

]
(4.44)

There is also an alternative form of expressingRϕ
z , where the matrix from Eq.4.44

is multiplied by a global phase ei
ϕ

2 . Global phase is in principle unobservable and
hence is often omitted for simplicity [6].

Rzϕ = ei
ϕ

2

[
e−i ϕ

2 0
0 ei

ϕ

2

]
=

[
1 0
0 eiϕ

]
(4.45)

Due to this simplicity, we shall use the form from Eq. 4.45 in this book when
referring to Rzϕ .

Q# provides implementation of both variants. The variant from Eq. 4.45 is imple-
mented as operation R1 (theta : Double, qubit : Qubit), while the one
from Listing 4.44 is built into the Q# standard library as Rz (theta : Double,
qubit : Qubit), both in the Microsoft.Quantum.Intrinsic namespace.

When inspecting the matrix composition of the gate Listing 4.45, we can quickly
realize two things. Because the following statements are true

e0 = 1 eiπ = −1 (4.46)

when ϕ = 0,Rϕ
z becomes the identity gate, while when ϕ = π it becomes theZ gate.

Fig. 4.9 Rϕ
z rotation gate
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R0
z = I (4.47)

Rπ
z = Z

In other words, both I and Z are special cases of the general z-axis rotation gate.
There are two other commonly used special cases for Rϕ

z—when ϕ = π
2 and when

ϕ = π
4 .

4.5.2 S Gate

The first one is referred to as the S gate:

Fig. 4.10 S gate

Because of another special behavior of e, namely:

e
π i
2 = i (4.48)

substituting ϕ = π
2 into the Rϕ

z gate from (4.45) produces the following matrix rep-
resentation for S:

S =
[
1 0
0 i

]
(4.49)

Since S is a rotation by π
2 , it is performing half of a rotation of what the Z gate

would do. This leads to an interesting relationship, where S applied twice in a row,
produces the Z gate. A slightly less intuitive way of thinking about it is that S is a
square root of Z.

SS = S2 = Z (4.50)

S = √
Z

Using the samediagnostics features of theQ# simulator thatwere introducedwhen
discussing the Z gate, it is possible to see up close the effects of the transformation.
Since we already know that the phase transformation has no effect in the |0〉 state, it
is enough to only consider the |1〉 state as the input. The following Q# snippet can
be used for that (Fig. 4.10).

operation TestSAgainst1() : Unit {
use qubit = Qubit();
X(qubit);
S(qubit);
DumpMachine();
Reset(qubit);

}

Listing 4.31 Q# code testing the behavior of the S gate.
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The output of the operation should resemble the output from Listing 4.21, with
the only difference being visible in the numeric value of the phase, which should be
equal to π

2 , instead of π in the case of the Z transformation.

Testing S against |1>
# wave function for qubits with ids: 0
|0>:0.0000 + 0.0000i == [0.0000]
|1>:0.0000 + 1.0000i == ********** [1.0000] ^ [1.57080 rad]

Listing 4.32 Sample output from the code from Listing 4.31.

Because of the S and Z relationship shown in Eq. 4.50, it is clear that S gate is not
its own inverse, and therefore applying it twice in a row will not return the quantum
state vector to the original state. The inverse of S is, as we defined in Eq. 2.34, S†, a
complex conjugate transpose of S.

S† =
[
1 0
0 −i

]
(4.51)

We can calculate algebraically that multiplying the two matrices together

SS† = I (4.52)

produces an identity transformation—after all −i · i = 1. Naturally, it is yet again
tempting to see it in action in a Q# program. This can act as kind of a verification test
to ensure that the applied reasoning and subsequent calculations are indeed correct
(Fig. 4.11).

In Q# the built-in Adjoint functor, which we already briefly covered in Sect. 3.2,
allows invocation of the Hermitian conjugate of any operation that supports them—
typically one that was declared with the adjoint characteristic. As such, the code
from Listing 4.31, updated to include S†, looks like this:

operation TestSReversibility() : Unit {
use qubit = Qubit();
X(qubit);
S(qubit);
Adjoint S(qubit);
DumpMachine();
Reset(qubit);

}

Listing 4.33 Q# code testing the reversibility of the S gate.

The circuit representation for this code example is:

Fig. 4.11 Verifying the reversibility of the S gate
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The output of such operation shows clearly that applying S† after S returned the
qubit back to the initial state—which in this particular case is state |1〉, with the phase
equal to zero.

Testing S reversibility
# wave function for qubits with ids: 0
|0>:0.0000 + 0.0000i == [0.0000]
|1>:1.0000 + 0.0000i == ********** [1.0000] --- [0.0000 rad]

Listing 4.34 Sample output from the code from Listing 4.33.

4.5.3 T Gate

Another special variant of theRϕ
z rotation gate is known as the T gate, which applies

a z-axis rotation of the qubit by π
4 (Fig. 4.12).

Fig. 4.12 T gate

And the matrix form of it looks as follows:

T =
[
1 0
0 e

π
4

]
(4.53)

Just like S applies half of the rotation of the Z gate, T applies half of the rotation
of the S. Because of that we can say that the following statements are all true:

TT = T2 = S (4.54)

TTTT = T4 = S2 = Z

T = √
S = 4

√
Z

To double check if this reasoning is really correct, we shall go back to Q# now
and try to confirm that applying T gate on qubit four times in a row, really produces
the same effects as S2 from Listing 4.32 or Z from Listing 4.23. The relevant Q#
code is shown below.

operation TestTZRelationship() : Unit {
use qubit = Qubit();
X(qubit);
T(qubit);
T(qubit);
T(qubit);
T(qubit);
DumpMachine();
Reset(qubit);

}

Listing 4.35 Q# code testing the relationship between the T and Z gates.
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This produces a state output that indeed is identical to the state output of the
expected rotation of Z, confirming empirically that they are really equal to each
other.

One final thing worth mentioning at this point is that the code in listing above
is not particularly elegant—the application of T four times in a row seems rather
clumsy, if not to say gruesome. Thankfully Q# has relevant tools to help with that,
namely it provides a mechanism for automatically creating composite operations
based on powers of an individual operation.

In this particular case, we can leverage the function OperationPow<’T>
(op : (’T => Unit), power : Int) from the Microsoft.
Quantum.Canon namespace, and let it create a compound operation repre-
senting T4. Afterwards, we only need to apply the resulting operation to the qubit
once. Such technique is called operation exponantiation and is shown in Listing
4.36 and we shall make further use of it in Chap. 7.

let t4 = OperationPow(T, 4);
t4(qubit);

Listing 4.36 Using the built-in feature of Q# standard library to create operation exponantiation.

4.5.4 Rϕ
x and Rϕ

y Gates

The two rotation gates Rϕ
x and Rϕ

y are generalizations of the the X and Y gates,
performing rotations around x- and y-axes respectively. This is of course analogous
to Rϕ

z and its relationship to Z (Fig. 4.13).
Rϕ

x and Rϕ
y are described by the matrices below

Rϕ
x =

[
cos( ϕ

2 ) −sin(
ϕ

2 )i
−sin(

ϕ

2 )i cos( ϕ

2 )

]
(4.55)

Rϕ
y =

[
cos( ϕ

2 ) −sin(
ϕ

2 )

sin(
ϕ

2 )i cos( ϕ

2 )

]
(4.56)

For the purpose of fine grained control over the qubit rotations, Q# provides
implementations of all three rotation gates—Rϕ

z (which we already covered, along
with its R1 cousin), Rϕ

x and Rϕ
y . They are part of the Q# standard library under the

Microsoft.Quantum.Intrinsic namespace, and all have very similar signatures.
The desired rotation angle is specified in radians (Fig. 4.14).

operation Rx(theta : Double, qubit : Qubit) : Unit is Adj + Ctl
operation Ry(theta : Double, qubit : Qubit) : Unit is Adj + Ctl
operation Rz(theta : Double, qubit : Qubit) : Unit is Adj + Ctl

Listing 4.37 Signatures of the built-in Q# rotation gates about all three axes.

Fig. 4.13 Rϕ
x rotation gate

with an angle of ϕ
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Fig. 4.14 Rϕ
y rotation gate

with an angle of ϕ

There is an additional general rotation operation that can be used in place of the
three specialized variants—in that case the axis becomes an argument that is passed
to the operation as well. This conceptually similar to the generalized measurement
we looked at in Listing 4.4, where the Pauli basis was a parameter—here it is possible
to dynamically choose the rotation axis using the Pauli keyword literal.

operation R(pauli : Pauli, theta : Double, qubit : Qubit) : Unit
is Adj + Ctl

Listing 4.38 General rotation operation in Q#.

When the R operation from Eq. 4.38 is invoked with PauliI provided as parame-
ter, the QDK framework only applies a global phase to the qubit. This can be useful to
compensate for global phase changes. For example the aforementioned R1 operation,
defined in Eq. 4.45, is internally implemented by first performing a z-axis rotation
and then uses R operation with PauliI and a negative rotation angle to undo the
global phase change that was applied during the Rϕ

z .

4.6 Multi Qubit Gates

In Sect. 4.2, we defined quantum gates as 2n × 2n sized unitary matrices, where n
stands for the number of qubits the gate acts on. So far we only dealt with single
qubit gates, though there are not many algorithms that can be built out of single qubit
gates only. To address that, in this section we shall introduce some gates that can
span multiple qubits—they will quickly become an invaluable part of our quantum
toolbox.

The tensor product formalism for describing composite quantum systems, which
we first introduced in Sect. 2.6, tells us that for two qubits, the quantum state is
described by a four-dimensional abstract complex vector. In general, the overall
state of this two qubit system is expressed by the tensor product of those two qubits
|ψ1〉 and |ψ2〉

|ψ1〉 = a1 |0〉 + b1 |1〉 |ψ2〉 = a2 |0〉 + b2 |1〉
|ψ1〉 ⊗ |ψ2〉 = a1a2 |0〉 |0〉 + a1b2 |0〉 |1〉 + b1a2 |1〉 |0〉 + b1b2 |1〉 |1〉 (4.57)

Thus, applying the tensor product between the computational basis vectors, we
get four dimensional standard basis vectors for two qubit systems

|00〉 =

⎡
⎢⎢⎣
1
0
0
0

⎤
⎥⎥⎦ |01〉 =

⎡
⎢⎢⎣
0
1
0
0

⎤
⎥⎥⎦ |10〉 =

⎡
⎢⎢⎣
0
0
1
0

⎤
⎥⎥⎦ |11〉 =

⎡
⎢⎢⎣
0
0
0
1

⎤
⎥⎥⎦ (4.58)
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Instead of using binary notation, it is sometimes useful to label the basis state kets
using unsigned integers which the binary representations of each state represent. In
such notation, the two qubit standard basis looks as follows:

{|00〉 , |01〉 , |10〉 , |11〉} = {|0〉 , |1〉 , |2〉 , |3〉} (4.59)

This naturally canbe extrapolated further—astandard basis for three qubit systems
would be:

{|000〉 , |001〉 , |010〉 , |011〉 , |100〉 , |101〉 , |110〉 , |111〉} =
{|0〉 , |1〉 , |2〉 , |3〉 , |4〉 , |5〉 , |6〉 , |7〉} (4.60)

Additionally, individual single qubit unitary transformations can be combined
into a single multi-qubit transformation using tensor products between those gates.
For example consider the circuit below, where an X gate is applied to the first qubit,
while the Z gate is applied to the second one (Fig. 4.15).

Fig. 4.15 Two qubit circuit
with X and Z
transformations

We can define here a new two qubit unitary transformation such that:

Uxz = X ⊗ Z = (X ⊗ I)(I ⊗ Z) (4.61)

Such combined new transformation can now be depicted on a circuit as one that
really spans across two qubits (Fig. 4.16).

Fig. 4.16 Two qubit circuit
with a single transformation
encompassing X and Z
transformations

4.6.1 Controlled Gates

While we can express individual transformations as a composite tensor-based
transformation, we cannot always decompose a multi-qubit transformation into
a set of single qubit ones. This class of transformations are called controlled
transformations—where the state of one of the qubits is conditionally changed
based on the state of other qubits making up the composite system. In particular, if
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the qubits are not in a definite basis state but rather in a superposition state, these
transformations create entanglement.

Entanglement between the qubits is a critical concept in quantum information
theory, however, for the time being, we shall only consider the two computational
basis states |0〉 and |1〉, which will allow us to slowly, but diligently, uncover the
underlying theoretical scheme behind the multi-qubit gates. We shall then dedicate
the entire Chap. 5 to entanglement.

An intuitive way of thinking about controlled gates is that they are made up of
two separate transformations. First, there is the identity gate I, making up the top
left corner of the matrix representing the entire two-qubit gate, and acting on the
first qubit, commonly referred to as control qubit. This implies that the control qubit
is unchanged by the controlled gate. Second is a single qubit gate, conditionally
acting on the qubit aptly referred to as the target, and it can be found in the bottom
right corner of the two-qubit matrix. The reason why we say that the target state
transformation is applied conditionally, is because it will only be invoked if the
control qubit is in the definite basis state |1〉.

Let us now define a generic single qubit gate U:

U =
[
U11 U12

U21 U22

]
(4.62)

If we follow the generalization path for two-qubit controlled gates we just dis-
cussed, it is now possible to define a two-qubit controlled-U, or CU, such that:

CU =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 U11 U12

0 0 U21 U22

⎤
⎥⎥⎦ (4.63)

We can now classify the effects of this CU gate in the following way:

CU |00〉 = |00〉 CU |01〉 = |01〉 (4.64)

CU |10〉 = |1〉 ⊗ U |0〉 CU |11〉 = |1〉 ⊗ U |1〉

When the control is in state |0〉, the target state is not transformed, and thus the
entire gate has no effects on the system. On the other hand, when the control is in
state |1〉, control remains unchanged, but target gets transformed by U.

The common way of depicting controlled gates on quantum circuits is to use a
thick dot over the control qubit, then have a vertical line connecting the control qubit
to a target qubit, and then the regular single gate symbol over the target qubit. An
example for CU is shown in Fig. 4.17.

Q# allows for automatic generation of controlled operations from regular oper-
ation by declaring the controlled specialization on an them. This is a concept that
we already introduced in Sect. 3.2, where we also showed how to achieve this by
employing one of three possible syntax constructs. The annotation based approach,
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Fig. 4.17 A sample
controlled U gate

Fig. 4.18 CNOT gate

typically referred to as specifying the operation characteristics, is the most compact
and arguably most readable one, and is the one we will use throughout this book.

operation QuantumTransformation(q : Qubit) : Unit is Ctl {
// operation body

}

Listing 4.39 Declaring the controlled specialization on a Q# operation using an operation
characteristic.

Such controlled operations can then be invoked using the Controlled functor.

use (control, target) = (Qubit(), Qubit());
Controlled QuantumTransformation([control], target);

Listing 4.40 Example of invoking the controlled operation via the functor.

4.6.2 CNOT Gate

The most fundamental and most commonly used two-qubit gate is theCNOT gate. It
applies the controlled version of theX transformation and therefore in some literature
it is also referred to as aCX gate.CNOT ismathematically expressed using thematrix
shown in Eq. 4.65.

CNOT =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ (4.65)

Based on Eq. 4.63 and the fact that single qubitX gate is a bit-flip gate, we already
know that upon application of CNOT, the quantum state of the control qubit will
not change, while the target qubit, depending on the state of the control, may be
conditionally transformed into its own opposite (Fig. 4.18).

As long as we only consider the two computational basis states, a good analogy
for the logic executed byCNOT is the XOR, exclusive OR, operation from classical
computing. For two classic bit inputs XOR returns 0 when the two inputs are both 0
or both 1, and 1 when the two input values differ—one is a 0 and the other a 1. This
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can be written as:

0 ⊕ 0 = 0 0 ⊕ 1 = 1 1 ⊕ 0 = 1 1 ⊕ 1 = 0 (4.66)

If we now leave aside the quantummechanical concept of a possible superposition
of either control and target, and the complexities arising from that, and only consider
the two basis states |0〉 and |1〉,9 we can easily verify that the effect of the CNOT
gate actually aligns perfectly with classical XOR.

|00〉 → |0〉 ⊗ |0 ⊕ 0〉 → |00〉
|01〉 → |0〉 ⊗ |0 ⊕ 1〉 → |01〉
|10〉 → |1〉 ⊗ |1 ⊕ 0〉 → |11〉
|11〉 → |1〉 ⊗ |1 ⊕ 1〉 → |10〉 (4.67)

Such division of roles between a control qubit and a target qubit is not definite.
The model discussed so far, while helpful for high-level understanding, should not
be taken at face value, because it only applies to the standard basis. To be more
precise, so far we only considered theCNOT behavior in the standard computational
basis {|0〉 , |1〉}. However, it is equally valid to apply the gate in a different basis,
say, the X-basis {|+〉 , |−〉}. In the X-basis, the notions of control and target qubits
are effectively flipped, as it is the second qubit—the one we so far referred to as
the “target”—that remains unchanged, and the first one—the “control”—changes
its state conditionally. The CNOT state transformations for the basis states of the
X-basis looks the following:

|++〉 → |++〉
|+−〉 → |−−〉
|−+〉 → |−+〉
|−−〉 → |+−〉 (4.68)

Because X matrix is Hermitian, the CNOT gate is also Hermitian, which means
it is both unitary and also its own inverse. As a consequence, it can be applied twice
in a row to reverse its result. In other words, given an initial quantum state |ψ〉, the
following relation holds:

CNOT(CNOT |ψ〉) = |ψ〉 (4.69)

This can proven in several simple steps. Suppose we start with a two-qubit com-
posite quantum state |ψ1〉:

|ψ1〉 = |ϕ1〉 ⊗ |ϕ2〉 (4.70)

9 When considering the basis states only, quantum computer behaves like a classical computer.
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Let us now assume that the control qubit is the one in the state ϕ1 and the target
qubit is in the state ϕ2. Applying CNOT gate to |ψ1〉 will transform the system state
to |ψ2〉:

|ψ2〉 = CNOT |ψ1〉 = |ϕ1〉 ⊗ |ϕ1 ⊕ ϕ2〉 (4.71)

Applying CNOT transformation to the resulting state |ψ2〉 again, will further
transform it to |ψ3〉:

|ψ3〉 = CNOT |ψ2〉 = |ϕ1〉 ⊗ |ϕ1 ⊕ (ϕ1 ⊕ ϕ2)〉 (4.72)

Since the XOR logic is commutative and associative, we can actually replace
ϕ1 ⊕ ϕ1 with 0—recall that XOR returns 0 when both inputs are the same—which
leads to the representation |ψ3〉:

|ψ3〉 = |ϕ1〉 ⊗ |0 ⊕ ϕ2〉 = |ϕ1〉 ⊗ |ϕ2〉 (4.73)

and that is really equivalent to the initial state |ψ1〉 from (4.70).

Q# naturally ships with a built-in implementation of the CNOT gate, but before
we explore that, let us use the Q# ’s Controlled functor to manually construct a
CNOT from the single qubit X gate. We would like to test the outcome of such gate
for input being four possible basis states for a two-qubit system—|00〉, |01〉, |10〉
and |11〉. The example operation is shown in the Listing 4.41.

operation ManualCNOT(initState : Bool[]) : Unit {
use (control, target) = (Qubit(), Qubit());
ApplyP(initState[0] ? PauliX | PauliI, control);
ApplyP(initState[1] ? PauliX | PauliI, target);

Controlled X([control], target);
let result = MultiM([control, target]);
PrintResult(initState, result);

}

Listing 4.41 Constructing a CNOT from a controlled functor and an X gate

The code listing takes advantage of several things worth explaining. First of all,
since we would like to test various combinations of the initial system state, the
operation allows parameterized input that will determine the states of control and
target qubit. This can easily be done with boolean flags, which could be set to true
in case a given qubit needs to be in state |1〉.

This conditional transformation into the basis state |1〉, where necessary, is
achieved by using the code discussed previously inListing 4.30—namely by invoking
the ApplyP (pauli : Pauli, target : Qubit) operation with the appropri-
ate Pauli keyword literal. The measurement, in order to avoid the verbosity related to
individual qubit measurements is done using the MultiM (targets : Qubit[])
operation, which was introduced previously in Sect. 4.3.
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Finally, a helper function from Listing 4.42 to print out the results is used. It is
technically not necessary but is a nice way to help keep the operation itself focused
on the important aspects of the quantum logic only. We shall reuse this function in
other parts of this chapter as well—it converts the Result and Bool arrays into user
friendly console output messages.

function PrintResult(initialState : Bool[], measuredState :
Result[]) : Unit {
mutable input = "";
mutable output = "";
for i in 0..Length(initialState)-1 {

set input += (initialState[i] ? "1" | "0");
set output += (measuredState[i] == One ? "1" | "0");

}

Message($"|{input}> ==> |{output}>");
}

Listing 4.42 Helper function to print out testing results.

We would want to invoke the operation we just set up in Listing 4.41 four times—
providing |00〉, |01〉, |10〉 and |11〉 as input states. The output should be exactly the
same as the expected state transitions that we defined as part of Listing 4.67.

@EntryPoint()
operation Main() : Unit {

ManualCNOT([false, false]); // |00>
ManualCNOT([false, true]); // |01>
ManualCNOT([true, false]); // |10>
ManualCNOT([true, true]); // |11>

}

Listing 4.43 Orchestration code verifying the code from Listing 4.41.

|00> ==> |00>
|01> ==> |01>
|10> ==> |11>
|11> ==> |10>

Listing 4.44 Expected output from the code in Listing 4.43.

Code fromListing 4.41 can also be easilymodified to replace themanual construc-
tion of theCNOT gate from the Controlled functor and anX gate with the built-in
CNOT (control : Qubit, target : Qubit) operation. The updated code is
shown in Listing 4.45.

operation LibraryCNOT(initState : Bool[]) : Unit {
use (control, target) = (Qubit(), Qubit());
ApplyP(initState[0] ? PauliX | PauliI, control);
ApplyP(initState[1] ? PauliX | PauliI, target);

CNOT(control, target);
let result = MultiM([control, target]);
PrintResult(initState, result);

}

Listing 4.45 Orchestrating the Q# built-in CNOT implementation.
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4.6.3 SWAP Gate

Another commonly used two-qubit gate is the SWAP gate. As the name implies, it
can be applied in order to swap the quantum states of two qubits. This is a feature
that is commonly relied upon in various quantum algorithms, especially given that
an unknown quantum state cannot be copied. We will utilize the SWAP gate in later
chapters (Fig. 4.19).

SWAP is described by the following matrix:

SWAP =

⎡
⎢⎢⎣
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦ (4.74)

The effect of SWAP is similar to the effect of the single qubit X gate. Recall that
the X gate effectively swaps the probability amplitudes of |0〉 and |1〉:

X(a |0〉 + b |1〉) = b |0〉 + a |1〉 (4.75)

For a two qubit composite quantum system, in the computational basis, the SWAP
gate actually swaps the probability amplitudes of the coefficients of |01〉 and |10〉.
Such outcome is a consequence of applying the tensor product between the subsys-
tems in the reverse order.

SWAP(a1a2 |00〉 + a1b2 |01〉 + b1a2 |10〉 + b1b2 |11〉) =
a2a1 |00〉 + a2b1 |01〉 + b2a1 |10〉 + b2b1 |11〉 (4.76)

As a result, SWAP state transitions for the computational basis states |0〉 and |1〉
can be summarized as:

|00〉 → |00〉 |01〉 → |10〉
|10〉 → |01〉 |11〉 → |11〉 (4.77)

Fig. 4.19 SWAP gate
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Fig. 4.20 SWAP gate
reconstructed from a
sequence of three CNOT
gates

The SWAP gate can be accurately reconstructed using a series of three CNOT
transformations, applied in the order shown on the circuit in Fig. 4.20.

While such composition may not appear very intuitive at first, it can be proven,
similarly to our earlier CNOT reversibility proof, relatively easily. Let us imagine
having an initial state |ψ1〉 of the composite two-qubit system:

|ψ1〉 = |ϕ1〉 ⊗ |ϕ2〉 (4.78)

After applying the first CNOT we end up with the state |ψ2〉:

|ψ2〉 = CNOT |ψ1〉 = |ϕ1〉 ⊗ |ϕ1 ⊕ ϕ2〉 (4.79)

Following with the second CNOT, this time with reversal of control qubit, we
end up with |ψ3〉. Notice that the reversal causes the state that was already described
by XOR to stay intact.

|ψ3〉 = CNOT |ψ2〉 = |ϕ1 ⊕ (ϕ1 ⊕ ϕ2)〉 ⊗ |ϕ1 ⊕ ϕ2〉 (4.80)

Due to associativity of XOR, |ψ3〉 can then be reduced to:

|ψ3〉 = |ϕ2〉 ⊗ |ϕ1 ⊕ ϕ2〉 (4.81)

Finally, applying the final CNOT (reversing the control qubit again) leads us to
the final state |ψ4〉:

|ψ4〉 = CNOT |ψ3〉 = |ϕ2〉 ⊗ |(ϕ1 ⊕ ϕ2) ⊕ ϕ2〉 (4.82)

And just like before, this can be reduced to:

|ψ4〉 = |ϕ2〉 ⊗ |ϕ1〉 (4.83)

State |ψ4〉 is the same tensor product as in |ψ1〉, except applied in reverse order,
which is precisely the definition of SWAP.

SWAP(|ϕ1〉 ⊗ |ϕ2〉) = |ϕ2〉 ⊗ |ϕ1〉 (4.84)

SWAP gate is implemented in Q# in the form of a SWAP (qubit1 : Qubit,
qubit2 : Qubit) operation in the Microsoft.Quantum.Intrinsic namespace.
We can test it using by making only a small modification to the code from Listing
4.45—by replacing the CNOT call with SWAP:
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operation LibrarySWAP(initState : Bool[]) : Unit {
use (first, second) = (Qubit(), Qubit());
ApplyP(initState[0] ? PauliX | PauliI, first);
ApplyP(initState[1] ? PauliX | PauliI, second);

SWAP(first, second);
let result = MultiM([first, second]);
PrintResult(initState, result);

}

Listing 4.46 Usage of the built-in SWAP gate.

The output of this code, when ran for four different input states: |00〉, |01〉, |10〉
and |11〉 would be:

|00> ==> |00>
|01> ==> |10>
|10> ==> |01>
|11> ==> |11>

Listing 4.47 Output of the code from Listing 4.46.

We are also going to implement SWAP in Q# manually, however, we will not do
it by simply calling the built-inCNOT operation three times in a row—that would be
too simple. Instead, we will take this opportunity to explore the conjugation feature
of Q#, which we initially introduced in Sect. 3.2. Given that CNOT is Hermitian
we can take advantage of the Q# conjugation syntax to reconstruct a SWAP gate by
writing:

within {
CNOT(first, second);

}
apply {

CNOT(second, first);
}

Listing 4.48 SWAP constructed from three CNOT gates using the conjugation feature of Q#.

The compiler here would generate the U†VU pattern, which due to the fact that
CNOT is Hermitian will result in a de facto application of three CNOT gates in a
row, exactly how we pictured it on Fig. 4.20. The rest of the code would be identical
to Listing 4.46 so we shall not repeat it here again.

4.6.4 CZ Gate

Similarly to CNOT being a controlled variant of the single qubit X gate, CZ is a
gate that allows applying, in a controlled fashion, the Z transform (Fig. 4.21).

As we already learnt, Z gate performs a rotation around the z-axis by π radians,
resulting in the so-called phase change (sign flip) of the qubit. Just like the entire
category of controlled transformations, CZ applies the Z phase flip onto the target
when the control qubit is in a basis state |1〉. The single qubitZ transformation, in the
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computational basis, only acts on the amplitude associated with |1〉 and, similarly,
in the CZ, the only affected state is |11〉.

CZ is described by the following matrix:

CZ =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎤
⎥⎥⎦ (4.85)

It is easy to notice that, as it is the case with other controlled gates, CZ consists
of the I matrix in the top left corner, and the relevant target transformation matrix,
Z in this case, in the bottom right corner.

An interesting feature ofCZ is that despite being a controlled gate, due to the fact
that it always only impacts the |11〉 state, it actually does not matter which qubit is
control and which one is target—the effect of the CZ transformation is always the
same regardless.

Similarly to Z gate, which can be reconstructed from a combination of X and H,
CZ can be expressed as a combination of CNOT and H

CZ = (I ⊗ H)CNOT(I ⊗ H) (4.86)

The general effect of the CZ on a two qubit quantum state, with a1 and b1 being
the probability amplitudes for the first qubit, a2 and b2 for the second one, can be
summarized as

CZ(a1a2 |00〉 + a1b2 |01〉 + b1a2 |10〉 + b1b2 |11〉) =
a1a2 |00〉 + a1b2 |01〉 + b1a2 |10〉 − b1b2 |11〉) (4.87)

which of course is the sign flip of the amplitude related to |11〉. Consequently, CZ
state transitions for the computational basis states |0〉 and |1〉 can be written as:

|00〉 → |00〉 |01〉 → |01〉 (4.88)

|10〉 → |10〉 |11〉 → − |11〉

Q# does not have a built-in CZ gate, but it can be easily constructed out of a
combination of the built-in Z gate and the Controlled functor. The CZ gate can
also be extend to span any number of qubits and would always only affect state
|11..1〉.

Fig. 4.21 CZ gate
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4.6.5 Toffoli Gate

Toffoli gate, also known as CCNOT gate, is a three-qubit doubly controlled gate. It
is a generalization of CNOT over three-qubits and as such it behaves the same ways
asCNOT does, that is, logically, it follows XOR rules.CCNOT, instead of having a
single control qubit, has two control qubits, both of which must be in state |1〉 for the
X transformation to be applied to the target. From that perspective, the gate only acts
on states |110〉 and |111〉, leaving the others unchanged. We can generalize this as:

|x, y, z〉 → |x, y, (z ⊕ xy)〉 (4.89)

Since the CCNOT gate operates on three qubits, which are described by an eight
dimensional quantum state vector, the matrix used to express it is 8 × 8 in size:

CCNOT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.90)

All of the possible state transitions enacted by the CCNOT gate on the eight
computational basis states are:

|000〉 → |000〉 |001〉 → |001〉 (4.91)

|010〉 → |010〉 |011〉 → |011〉
|100〉 → |100〉 |101〉 → |101〉
|110〉 → |111〉 |111〉 → |110〉

In other words, the gate swaps the states |110〉 and |111〉 with each other
(Fig. 4.22).

In Q#, just like the CNOT, SWAP and other basic gates, CCNOT is part of
the Microsoft.Quantum.Intrinsic namespace and it happens to be the only
three-qubit gate that is built-into the Q# standard library. However, other multi-
qubit controlled gates can always be manually constructed using the aforementioned
Controlled functor, which supports arbitrary sizes of controlled gates.

We can yet again reuse code from Listing 4.45, and test the Q# implementation of
CCNOTwith it. The only change required is to actually use theCCNOT in place of
CNOT, and scale up the initial state setup, as well as the qubit allocation statements,
from two to three qubits.



4.6 Multi Qubit Gates 129

Fig. 4.22 CCNOT gate

operation LibraryCCNOT(initState : Bool[]) : Unit {
use (ctl1, ctl2, target) = (Qubit(), Qubit(), Qubit());
ApplyP(initState[0] ? PauliX | PauliI, ctl1);
ApplyP(initState[1] ? PauliX | PauliI, ctl2);
ApplyP(initState[2] ? PauliX | PauliI, target);

CCNOT(ctl1, ctl2, target);
let result = MultiM([ctl1, ctl2, target]);
PrintResult(initState, result);

}

Listing 4.49 Usage of the built-in CCNOT gate.

We will need to invoke this test operation eight times to capture all possible
outcomes for the eight dimensional quantum state vector describing three qubits.

@EntryPoint()
operation Main() : Unit {

LibraryCCNOT([false, false, false]); // |000>
LibraryCCNOT([false, false, true]); // |001>
LibraryCCNOT([false, true, false]); // |010>
LibraryCCNOT([false, true, true]); // |011>
LibraryCCNOT([true, false, false]); // |100>
LibraryCCNOT([true, false, true]); // |101>
LibraryCCNOT([true, true, false]); // |110>
LibraryCCNOT([true, true, true]); // |111>

}

Listing 4.50 Testing the built-in CCNOT gate.

The output of this code should be the same as the expectations we outlined in
Eq. 4.91, namely we should only see the last two states |110〉 and |111〉 getting
swapped with each other.

|000> ==> |000>
|001> ==> |001>
|010> ==> |010>
|011> ==> |011>
|100> ==> |100>
|101> ==> |101>
|110> ==> |111>
|111> ==> |110>

Listing 4.51 Expected output of code from Listing 4.50.
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4.7 Gate Universality

In classical computation theory, we often speak of the universal gates—a minimum
set of gates that can be arranged in away that they can represent any logical algorithm.
Conversely, any existing algorithm could theoretically be decomposed into such uni-
versal gate-based representation. Such (de)composition would be suboptimal from
the performance standpoint, but it would nevertheless be functionally complete. In
fact, a single classical gate, the NOT-AND gate, commonly referred to as the NAND
gate, is such a universal gate. Using a combination of NAND gates alone, and no
other helper gates, it is possible to express any boolean logic expression or function.
In quantum computing, the concept of gate universality is a little more challenging.

As it turns out, quantum computing does not allow for a perfect set of universal
gates. The main reason behind it, is that any arbitrary unitary transformation can
become a gate that transforms the quantum state of a qubit. Consequently, this pre-
cludes the existence of a perfect set of universal gates. A helpful way of thinking
about it, reported by Bernhardt [1], is to remember that due to the continuous nature
of the single qubit rotations, there are infinitely many transformations that could be
applied to a single qubit, yielding infinitely many potential circuits. On the other
hand, a finite set of gates could only be combined in a finite possible ways.

Despite this rather sobering assessment of the state of affairs, Nielsen and Chuang
[4] do identify a set of universal quantum gates. They do this by providing their
own criteria for gate universality—introducing a quantum-specific definition of gate
universality. They define a set of gates to be universal when any unitary operation
could be “approximated to arbitrary accuracy by a quantum circuit involving only
those gates”. Those universal quantum gates are three single qubit gates:H, S and T
gate and the two-qubit CNOT gate.10

4.8 DiVincenzo’s Criteria

It may come as a surprise to some, but for a long time there existed no general, agreed
upon architecture for building quantum hardware uponwhich quantum computations
are to be executed.

In 2000 Paul DiVincenzo, working for IBM Research, published his 5 criteria
[2] needed to be fulfilled to implement a quantum computer. They helped create
a structural framework for quantum computing research and while it still remains
open which technology will establish itself as the dominant approach to building
quantum hardware, DiVincenzo’s criteria are to this day the best waywe can describe
a quantum computer.

The criteria are:

10 While the S gate can be created from two T gates, Nielsen and Chuang include the S gate in
their universal set due to its important role in quantum error correction protocols. This is, however,
beyond the scope of this book.
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(C1) A scalable physical system with well characterized qubits
(C2) The ability to initialize the state of the qubits to a simple fiducial state, such as

|000...〉
(C3) Long relevant decoherence times, much longer than the gate operation time
(C4) A “universal” set of quantum gates
(C5) A qubit-specific measurement capability

Criteria (C1) defines that we need to be able to characterize the qubit as two-state
quantum system, with clearly distinguishable states |0〉 and |1〉. This is particularly
important because it is possible to build quantum computers where the subsystems
employed to act as qubits may enter other states beyond the two required by the
definition of the qubit. It is then the responsibility of the computer’s control apparatus
to actively prevent that.

Though not explicitly mentioned, within criteria (C1), the scalability definition
implies that the architecture of a quantum chip must not prohibit adding additional
qubits or, alternatively, needs to allow connecting other chips to permit the steady
evolution and growth of a quantum computer.

Criteria (C2) states that newly allocated qubits must be initialized to the known
state. This is rather obvious, given that unitary evolution of the system according
to the program’s circuit must begin from a specific expected state. Additionally,
quantum error correction techniques require a constant, fast supply of new qubits in
well-defined state. The qubit initialization times should also be small compared to
decoherence times and gate operation times.

In (C3), DiVincenzo refers to the time after which the state amplitudes of the
qubits “decay”. Decoherence is used to describe the dynamics of a qubit when it
interacts with its surrounding. In other words, after certain period of time, typically
through contact with their external environment, qubits begin to drift away from
their expected state. Longer decoherence times are needed to guarantee the overall
stability of the system and is absolutely critical to successful implementation of
error-correction schemes.

In Sect. 4.7 we briefly discussed gate universality from the theoretical perspective.
Similarly, DiVincenzo defines in (C4) that quantum computers needs to offer a set
of universal gates which can be used to build universal quantum algorithms. Due to
the difference in physical realization of quantum hardware technologies, this is not
a straightforward proposition. In particular, various platforms would have different
constraints, error rates, gate operation time and decoherence times—all of which
contributing to a fragmented technological landscape. It is imperative for the success
of quantum computing that algorithm authors can rely on the ability of using a
standard set of gates in their work.

Finally (C5) addresses the quality and dependability of the measurement pro-
cesses. DiVincenzo states that ideal fidelity is not an absolute necessity—in absence
of other major impediments, the quantum efficiency of the measurement, so its suc-
cess rate, needs to exceed 90% for quantum computing to be viable. It is also key
that single shot measurements are possible.
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In addition to the quantum computational criteria, DiVincenzo also laid out two
additional criteria, specifically targeted toward quantum communications.

(C6) The ability to interconvert stationary and flying qubits
(C7) The ability to faithfully to transmit flying qubits between specified locations

In (C6) DiVincenzo reminds that while qubits within a quantum processing unit
can be realized using a wide range of different physical embodiments, qubits within
the theory of quantum communications are required to be transmitted between spa-
tially separated locations, and are thus limited to very few realization possibilities—
primarily photon-based. This naturally requires a reliable mechanism of conversion
between these different representations.

In (C7), DiVincenzo warns that successful cross-encoding between “computa-
tional qubits” and “transmission qubits” is only the tip of the iceberg. He raises
concerns related to the quality of transmissions, decoherence during the movement
of qubits and points at the need of great advances required in that space, for example
in the area of quantum repeaters.
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Chapter 5
Entanglement

Earlier in this book we covered some high-level quantum mechanical aspects of
entanglement, with the mention of the EPR thought experiment and the refinement
work done by David Bohm. We then discussed Bell’s theorem and the dramatic
consequences that can be drawn from it.

In Sect. 4.6, we went through various controlled gates, however we conveniently
side stepped their relationship with entanglement—instead, we focused on compu-
tational basis states and merely hinted that controlled gates can also be used to create
entanglement. We are now in a position to put all these pieces together and learn
how entanglement arises from the mathematical formalism of quantum theory and
see how it can be utilized in quantum computing.

5.1 Bell States

In classical computing based on the von Neumann architecture, COPY is one of
the fundamental instructions, and the ability to copy information from one location
to another is an intrinsic property of the involved hardware. Computers constantly
shuttle data around variousmemory addresses andCPU registers to be able to perform
calculations.

If we closely study the state transitions enacted by theCNOT gate on the compu-
tational basis states, which we outlined in (4.67), it becomes apparent that CNOT,
in a classical sense, can also considered a simple single-bit copy machine.

In particular, if we consider only the situations when the target qubit is initialized
to |0〉, which in such scheme would be considered a blank state, CNOT provides a
single-bit-like copy mechanism of control state onto target. In the case when control
qubit is |0〉, it copies |0〉 onto |0〉, whilewhen control qubit is |1〉, it copies |1〉 onto |0〉.

|00〉 → |00〉 |10〉 → |11〉 (5.1)
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Fig. 5.1 Bell circuit

Of course this is consistent with the no-cloning theorem, which precludes copying
of unknown quantum states, but allows copying of orthogonal states. In Sect. 2.7
we have proven that in quantum mechanics there cannot exist a universal copying
transformation. We are now going to supplement this by showing how entanglement
arises from an attempt to use CNOT on a system where the control qubit is in a
superposition with respect to the standard basis.

Let us consider the quantum circuit shown on Fig. 5.1, consisting of two gates—
CNOT and H.

This innocently looking two-qubit circuit, called commonly the Bell circuit,
has profound importance in the quantum information theory. In this particular
embodiment—as we will learn soon, there are three other ones as well—it is starting
with both qubits in state |0〉. In this circuit, the first qubit passes through the H gate,
which forces it into a state of a uniform linear superposition of |0〉 and |1〉. Then, a
CNOT transformation is applied to both of the qubits, with the one in superposition
acting as the control.

It is easy to calculate the output of the circuit.

CNOT(H|0〉 ⊗ |0〉) = CNOT
((

1√
2
(|0〉 + |1〉)

)
⊗ |0〉

)
= (5.2)

CNOT
(

1√
2
|00〉 + 1√

2
|10〉

)
= 1√

2
|00〉 + 1√

2
|11〉 = 1√

2

(
|00〉 + |11〉

)

The resulting state is one of the Bell states, commonly denoted as |�+〉

|�+〉 = 1√
2

(
|00〉 + |11〉

)
(5.3)

We previously introduced the Bell states in Sect. 2.6 as an orthonormal basis for
two qubit system. Bell states, due to entanglement, are not factorizable into the a
tensor product of the individual qubit states.

Notice that in |�+〉 the probability amplitudes related to measuring the states |01〉
or |10〉 are both equal to 0, so upon measurement the system can only ever end up in
a state |00〉 and |11〉, even when the individual qubits are measured independently
of each other. This implies that if one of the qubits is measured to be |0〉, the second
is guaranteed to be |0〉 too, while if the first one produces |1〉 on measurement, the
other is certain to produce a measurement value of |1〉—provided the measurements
are always done in the same basis, in this case in the computational basis.

Despite the fact that entanglement is a rather counter-intuitive concept, especially
from the perspective of the macroscopic world, there is certain logic, or at least
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consistency behind it. We need to remember that theH gate creates a uniform super-
position of states |0〉 and |1〉, and that the CNOT gate acts as the bit flip of the target
qubit, but only if the control assumes a definite state |1〉. Since the control qubit is in
a superposition, and that will not be resolved until a measurement is performed, the
outcome of the application of CNOT needs to be deferred until then. In a twisted,
albeit logically consistent way, since the control qubit is not in any of the definite
basis states |0〉 and |1〉, the bit flip on the target qubit is both applied and not applied
at the same time. This state of maximal uncertainty is resolved only when one of the
qubits—irrespective whether it is control or target, is measured, because at this point
the wave function of the system collapses and based on the probabilities calculated
using the Born rule, the state of the other object in the pair also becomes known
(though it still needs to be measured!).

In the example we used, Bell state |�+〉 emerges after running the so-called
Bell circuit—a sequence of H ⊗ I and CNOT transformations—on an input pair of
qubits in the initial state |00〉. Should the initial state be different—there are three
additional possibilities |01〉, |10〉 and |11〉—the Bell circuit still creates entangled
pairs, but corresponding to three other Bell states.

CNOT(H ⊗ I)|00〉 = 1√
2

(
|00〉 + |11〉

)
= |�+〉 (5.4)

CNOT(H ⊗ I)|10〉 = 1√
2

(
|00〉 − |11〉

)
= |�−〉

CNOT(H ⊗ I)|01〉 = 1√
2

(
|01〉 + |10〉

)
= |�+〉

CNOT(H ⊗ I)|11〉 = 1√
2

(
|01〉 − |10〉

)
= |�−〉

In order to create a Bell state in Q# one simply has to execute the circuit depicted
in Fig. 5.1, which uses only the gates we already covered in previous chapters. For
example, Listing 5.1 shows how to create the state |�+〉.
use (control, target) = (Qubit(), Qubit());

H(control);
CNOT(control, target);
// at this point the pair is entangled

Listing 5.1 Bell circuit in Q#.

Very conveniently, Q#, being a higher level quantum programming language,
does not force us to only work with the bare bone concept of gates. Instead,
it also offers a shortcut convenience operation to prepare a Bell state automati-
cally. This operation, PrepareEntangledState (left : Qubit[], right :
Qubit[]), is available in the Microsoft.Quantum.Preparation namespace and
allows to create an arbitrary number of entangled EPR pairs. The way the API is
constructed, the two arrays that are passed into the operation must contain the same
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amount of qubits, and the ones in the first array will become control qubits for the
target qubits located at the same index position in the second array. Thus, one could
replace the manual usage of H and CNOT gates with the call shown in Listing 5.2.

use (control, target) = (Qubit(), Qubit());

PrepareEntangledState([control], [target]);
// at this point the pair is entangled

Listing 5.2 Bell circuit in Q# using the built-in standard library feature instead of manual gate
interaction.

We can of course test all of this in a Q# program. An operation, utilizing various
features of Q# that we covered so far is shown in Listing 5.3. Since the effects of
measuring aBell state are probabilistic, we need to rerun the test code a larger number
of times, and, just like we did it earlier in a book, a sample size of 4096 is chosen
here.

operation TestBellState(init : Bool[], bases : Pauli[]) : Unit
{

mutable res = [0, 0, 0, 0];

for run in 1..4096 {
use (control, target) = (Qubit(), Qubit());
ApplyP(init[0] ? PauliX | PauliI, control);
ApplyP(init[1] ? PauliX | PauliI, target);
PrepareEntangledState([control], [target]);

let c1 = resAsBool(Measure([bases[0]], [control]));
let c2 = resAsBool(Measure([bases[1]], [target]));
if (not c1 and not c2) { set res w/= 0 <- res[0]+1; }
if (not c1 and c2) { set res w/= 1 <- res[1]+1; }
if (c1 and not c2) { set res w/= 2 <- res[2]+1; }
if (c1 and c2) { set res w/= 3 <- res[3]+1; }

}

let initialState = (init[0] ? "1" | "0") + (init[1] ? "1" | "
0");

Message($"Initial state: |{initialState}>, measurement of
control in {bases[0]} and of target in {bases[1]}");

Message($"|00>: {res[0]}");
Message($"|01>: {res[1]}");
Message($"|10>: {res[2]}");
Message($"|11>: {res[3]}");

}

Listing 5.3 Orchestration code for testing Bell states in Q#.

The testing operation allows providing input parameters that will determine the
initial state of the two-qubit system—|00〉, |01〉, |10〉 or |11〉, as well as the mea-
surement bases for both the control and target qubits. We shall initially focus on the
standard basis measurements only, but the ability to reuse the same base code for
other measurement bases will come in handy soon as well.
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The code keeps track of the four possible measurement results using a dedicated
results array, where index 0 is linked to measuring |00〉, index 1 to |01〉 and so on.
After all, we are interested to check how many times the measurements of control
qubit and target qubit agree with each other, which of course allows us to verify
whether we really encounter the entanglement phenomenon and whether we can
spot any statistical patterns in the experiment outcomes. Since Q# is immutable by
default, the array that tracks results must be flagged as mutable.

For the initial state |00〉, and a measurement in the Z-basis for both qubits, the
operation can now be invoked in the following manner:

@EntryPoint()
operation Main() : Unit {

TestBellState([false, false], [PauliZ, PauliZ]);
}

Listing 5.4 Invoking the code from Listing 5.3 for initial state |00〉.
The produced outputwill be probabilistic, but the onlymeasurement results should

be 00 or 11, and the distribution of results should be close to the expected 50% for
each.

Initial state: |00>, measurement of control in PauliZ and of
target in PauliZ

Measured |00>: 2059
Measured |01>: 0
Measured |10>: 0
Measured |11>: 2037

Listing 5.5 Sample output from running the code from Listing 5.4.

The way the operation in 5.3 has been written, it can be easily reused to verify
other combinations of input states and measurement bases. For example, the code
in Listing 5.6 invokes the test operation for all four Bell states and measures the
involved qubits in the computational basis.

@EntryPoint()
operation Main() : Unit {

TestBellState([false, false], [PauliZ, PauliZ]);
TestBellState([false, true], [PauliZ, PauliZ]);
TestBellState([true, false], [PauliZ, PauliZ]);
TestBellState([true, true], [PauliZ, PauliZ]);

}

Listing 5.6 Invoking the code from Listing 5.3 for all the possible two qubit initial states.

An interesting result can be observed for states |�+〉 and |�−〉, as those are
correlated negatively. They can be obtained via the Bell circuit for input states |10〉
and |11〉 respectively. For example, the test operation output for |�+〉 should resemble
the output shown in Listing 5.7.

Initial state: |01>, measurement of control in PauliZ and of
target in PauliZ

Measured |00>: 0
Measured |01>: 2054
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Measured |10>: 2042
Measured |11>: 0

Listing 5.7 Sample output from running the code from Listing 5.6.

Finally, it is also possible to use the test operation to verify the effects ofmeasuring
an entangled pair in mutually unbiased bases. For example, this could correspond
to the hypothetical scenario where Alice measured her particle along the z-axis,
and Bob, unaware of that, measured his particle along the x-axis. This is shown
in Listing 5.8, explicitly using the Bell state |�+〉, though the reasoning would be
identical to the other ones as well.

@EntryPoint()
operation Main() : Unit {

TestBellState([false, false], [PauliZ, PauliX]);
}

Listing 5.8 Invoking the code from Listing 5.3 for initial state |00〉, with measurement of each
qubit in a different basis.

In such situation, we should expect the results of measurement to be completely
random, because the measurement in the Z-basis creates maximum uncertainty for
themeasurement in theX-basis. So ameasurement of one qubit, let us say the control,
along the z-axis, produces an eigenstate of Z-basis asmeasurement result. At the same
time, for state |�+〉, the second qubit is guaranteed to produce the same eigenstate
if it was measured in the Z-basis too. However, it is measured in the X-basis, so
upon measurement it will collapse with 50% probability to |+〉 or |−〉, because the
two bases are mutually unbiased. Running the code from Listing 5.6 should produce
output similar to that below, experimentally confirming our reasoning.

Initial state: |00>, measurement of control in PauliZ and of
target in PauliX

Measured |00>: 1006
Measured |01>: 1050
Measured |10>: 1032
Measured |11>: 1008

Listing 5.9 Sample output from running the code from Listing 5.6.

5.2 Testing Bell’s Theorem

InSect. 2.9we coveredBell’s theorem. Inwhat is undoubtedly a spectacular testament
to the progress in computational physics, while it took almost two decades until
Bell’s original idea could be verified experimentally, we can now easily test Bell’s
inequalities using a quantum computer, writing a program in high-level programming
language like Q#.
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5.2.1 Bell’s Inequality in Q#

We originally introduced Bell’s inequality in Eq. (2.106) as

Pr(a+,b+) + Pr(b+, c+) ≥ Pr(a+, c+) (5.5)

and then derived its quantum mechanical version in Eq. (2.112), which took the
form of

sin2
(

θab

2

)
+ sin2

(
θbc

2

)
≥ sin2

(
θac

2

)
(5.6)

We also know already that this inequality is predicted to be maximally violated
when we set θ to π

3 , forming a set of vectors as shown in Fig. 2.6.
With that in mind, we can now write a simple Q# program that will verify the

violation of Bell’s inequality. The overall approach that we will employ is outlined
on the quantum circuit on Fig. 5.2.

The circuit takes the input qubits in the default |00〉 state and creates an entangled
pair forming the singlet |�−〉 state. This is achieved by initially creating a state
|11〉 and then by executing the Bell circuit. What follows is the arbitrary gate U
which will execute the rotation of the qubits by the angles prescribed by Bell’s
inequality. Since we need to measure the results for Pr(a+,b+), Pr(a+, c+) and
Pr(b+, c+), three separate unique implementations of U will be required. Finally,
since Z-basis measurement is not appropriate in this case, a measurement in the X-
basis is done at the endof the circuit. There exists nouniformly established convention
for visualization of an X-basis measurement on quantum circuits—the measurement
node always refers to Z-basis measurement. However, anH transformation followed
by a standard basis measurement is a de-facto X-basis measurement, so that aspect
is also visualized this way.

The internals of U needed to measure Pr(a+,b+) is shown in Fig. 5.3, while
the other two vector pairs Pr(a+, c+) and Pr(b+,b+) are covered by Figs. 5.4 and
5.5 respectively. They are all simple z-axis rotations, and differ by rotation angle
only—two of them create a π

3 , while the other a
2π
3 relative rotation angle between

the two qubits.

Fig. 5.2 General circuit for
testing Bell inequality

Fig. 5.3 U implementation
for measuring P(a+,b+)
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Fig. 5.4 U implementation
for measuring P(a+, c+)

Fig. 5.5 U implementation
for measuring P(b+, c+)

When writing Q# code, it will be most appropriate to follow similar pattern as
outlined on the circuit Fig. 5.2 and build the three variants of U gates as standalone
operations. They can then benefit from being orchestrated together in a commonway,
which will make the Q# code tidy and concise.

The first operation, shown in Listing 5.10, will be called Uab (q1 : Qubit,
q2: Qubit) and will correspond to Pr(a+,b+). It will use θ = π

3 angle between
a and b as outlined on Fig. 5.3. With that in mind, the corresponding Q# code is
extremely simple—it only executes the rotation of the second qubit about the |1〉
state by π

3 using the R1 (theta : Double, qubit : Qubit) operation from
Microsoft.Quantum.Intrinsic namespace. While the first qubit remains intact,
the operation creates a π

3 offset between the two qubit states.

operation Uab(q1 : Qubit, q2: Qubit) : Unit {
R1(PI() / 3.0, q2);

}

Listing 5.10 Q# operation for Pr(a+,b+).

In a similar fashion, we name the second operation Uac (q1 : Qubit, q2:
Qubit), and it will be our way to capture data for Pr(a+, c+). This is corresponding
to Fig. 5.4. Just like the previous one, it would transform only the second qubit, but
using a larger rotation angle—because the angle between a and c should be 2π

3 . It is
shown in Listing 5.11

operation Uac(q1 : Qubit, q2: Qubit) : Unit {
R1(2.0 * PI() / 3.0, q2);

}

Listing 5.11 Q# operation for Pr(a+, c+).

Finally, operation Ubc (q1 : Qubit, q2: Qubit) fromListing 5.12 allows us
to calculate Pr(b+, c+). It will be the only operation where both qubits are rotated—
the first one by π

3 while the second one by 2π
3 . The delta angle still remains π

3 , as
prescribed by Fig. 5.5 and the vector layout shown in Fig. 2.6.

operation Ubc(q1 : Qubit, q2: Qubit) : Unit {
R1(PI() / 3.0, q1);
R1(2.0 * PI() / 3.0, q2);

}

Listing 5.12 Q# operation for Pr(b+, c+).
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With these three operations implemented we are well positioned to tackle the
problem of experimental verification of Bell’s inequalities. What we still need is
the orchestration code that will facilitate capturing the measurements over a larger
sample size. This is not much different from any of the orchestration code snippets
we already wrote in earlier parts of this book.

Wewill call the orchestration operation Run (op: ((Qubit, Qubit) => Unit)),
and its input will be a delegate to either of the three Bell’s inequality U opera-
tion implementations. This will allow us to execute the code for each of the three
variants—Pr(a+,b+), Pr(a+, c+) and Pr(b+, c+) and ultimately calculate the
inequality.

To stay consistent with the code written so far, we shall set the sample size to
4096 iterations. Similarly to how we did in the Q# code used in Sect. 5.1, we will
use a four element mutable array for keeping track of how many measurement out-
comes of |00〉, |01〉, |10〉 and |11〉 we encountered. For each iteration, we allocate
two fresh qubits and entangle them into the |�−〉 state by executing the Bell circuit
on a pair of qubits in the initial state |11〉—the H gate on the first qubit, and then a
CNOT transformation over both of the involved qubits. Next, the results for a given
run are obtained via a measurement of both qubits in the X-basis. A helper function
IsResultOne(input : Result) from the Microsoft.Quantum.Canon names-
pace is used to avoid manual comparison of the measurement result to the keyword
literals Zero and One.

Because in Q# Zero results maps to the +1 eigenvalue, and because we are inter-
ested in cases where both qubits measure the+1 eigenvalue only, the final probability
for Pr(a+,b+), Pr(a+, c+) and Pr(b+, c+) can be calculated as the amount of times
we measured |00〉, divided by the total amount of iterations. IntAsDouble(a :
Int) from Microsoft.Quantum.Convert namespace is needed to cast the integer
representation of the running total and iterations into a double-precision floating-
point number, so that the produced probability is not rounded to the integer.

operation Run(op: ((Qubit, Qubit) => Unit)) : Double {
mutable res = [0, 0, 0, 0];

let runs = 4096;
for i in 0 .. runs {

use (q1, q2) = (Qubit(), Qubit());
PrepareBellState(q1, q2);
op(q1, q2);
let (r1, r2) = (MResetX(q1), MResetX(q2));

if (IsResultZero(r1) and IsResultZero(r2)) {
set res w/= 0 <- res[0]+1;

}
if (IsResultZero(r1) and IsResultOne(r2)) {

set res w/= 1 <- res[1]+1;
}
if (IsResultOne(r1) and IsResultZero(r2)) {

set res w/= 2 <- res[2]+1;
}
if (IsResultOne(r1) and IsResultOne(r2)) {
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set res w/= 3 <- res[3]+1;
}

}

let p = IntAsDouble(res[0]) / IntAsDouble(runs);
return p;

}

Listing 5.13 Q# orchestration code for testing Bell’s inequality.

Finally, to aggregate the overall results, the orchestration operation must be
invoked three times—for Pr(a+,b+), Pr(a+, c+) and Pr(b+, c+). The final result
is obtained using the Bell’s formula from Eq. (5.5) as shown in the Q# code List-
ing 5.14.

@EntryPoint()
operation Main() : Unit {

let pAB = Run(Uab);
Message($"P(a+,b+) = "

+ DoubleAsStringWithFormat(pAB, "N2"));

let pBC = Run(Ubc);
Message($"P(b+,c+) = "

+ DoubleAsStringWithFormat(pBC, "N2"));

let pAC = Run(Uac);
Message($"P(a+,c+) = "

+ DoubleAsStringWithFormat(pAC, "N2"));

let bellResult = pAB + pBC >= pAC;
Message($"Bell’s inequality satisfied? {bellResult}");

}

Listing 5.14 Invoking the code from Listing 5.13 for all three test cases.

The formatting feature used there is the DoubleAsStringWithFormat (a :
Double, fmt : String) function from the Microsoft.Quantum.
Convert namespace. It allows formatting floating point numeric value according
to the predefined format, which is modeled after the similar feature in C#. In this
particular case, using N2 means that we would want to convert the input double into
a string, and display it using two decimal places.

When running the program, we should see results similar to the ones below.

P(a+,b+) = 0.12
P(b+,c+) = 0.12
P(a+,c+) = 0.38
Bell’s inequality satisfied? False

Listing 5.15 Sample output from the code from Listing 5.14.

This is exactly the conclusion we came to in Eq. (2.116) while studying Bell’s
theorem as part of Chap. 2. The experimental outcome is clear—Bell’s inequality
is violated and no local hidden variable theory can reproduce quantum mechanical
predictions, which also indirectly confirms the non-local nature of quantum phenom-
ena. While we knew this all along based on the algebraic calculations done here and
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earlier in the book, it is nevertheless very welcome to be able confirm that we did not
make any mistakes in our reasoning. In fact, taking a step back, and considering how
difficult it was to experimentally confirm the Bell’s theorem, it is quitemind boggling
that we can simply write less than a hundred lines of Q# and quickly get the answer
to the question that has troubled some of the greatest mind in the history of physics.

5.2.2 CHSH Inequality in Q#

Using similar approach as we just went through for the Bell’s inequality, we can
also verify the CHSH inequality. We covered the theory behind CHSH inequality in
Sect. 2.9.2 and we introduced it in Eq. (2.121) as

〈SQM 〉 = E(a,b) + E(a,b′) + E(a′,b) − E(a′,b′) (5.7)

−2 ≤ 〈S〉 ≤ 2

The primary change needed is that it requires usage of four vectors, instead of
three and hence we will need to define four dedicated test operations in Q# code. The
CHSH vectors are arranged as shown in Fig. 2.7, namely with a π

4 angle between
each neighboring pair.

The four required operations will be constructed using similar approach to how
we constructed Q# code in Listings 5.10–5.12, namely by considering the first vector
from the bottom right to be fixed, and not rotate the qubit representing it at all, while
rotating the remaining three qubits by π

4 ,
π
2 and 3π

4 respectively. The operations are
shown in Listing 5.16.

operation Ua1b1(q1 : Qubit, q2: Qubit) : Unit {
R1(PI() / 4.0, q1);
R1(2.0 * PI() / 4.0, q2);

}

operation Ua1b2(q1 : Qubit, q2: Qubit) : Unit {
R1(PI() / 4.0, q1);

}

operation Ua2b1(q1 : Qubit, q2: Qubit) : Unit {
R1(3.0 * PI() / 4.0, q1);
R1(2.0 * PI() / 4.0, q2);

}

operation Ua2b2(q1 : Qubit, q2: Qubit) : Unit {
R1(3.0 * PI() / 4.0, q1);

}

Listing 5.16 Four operations preparing the two qubits according to CHSH inequality test defined
in Fig. 2.7.
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Because Q# does not allow non-alphanumeric characters in operation names,
instead of naming the operations after the original vector names—a, a′, b, b′—we
use the a1, a2, b1, b2 notation.

The orchestration codewill be almost identical to theListing 5.13,with the notable
difference that we need to operate on expected value rather than probabilities. There-
fore, instead of merely adding the probabilities for the outcomes we are interested in,
we also substract the probabilities for the outcomes we are not interested in, as shown
in Listing 5.17, which contains the orchestration code RunCHSH (op: ((Qubit,
Qubit) => Unit)).

operation RunCHSH(op: ((Qubit, Qubit) => Unit)) : Double {
mutable res = [0, 0, 0, 0];

let runs = 4096;
for i in 0 .. runs {

use (q1, q2) = (Qubit(), Qubit());
PrepareBellState(q1, q2);
op(q1, q2);
let (r1, r2) = (MResetX(q1), MResetX(q2));

if (IsResultZero(r1) and IsResultZero(r2)) {
set res w/= 0 <- res[0]+1;

}
if (IsResultZero(r1) and IsResultOne(r2)) {

set res w/= 1 <- res[1]+1;
}
if (IsResultOne(r1) and IsResultZero(r2)) {

set res w/= 2 <- res[2]+1;
}
if (IsResultOne(r1) and IsResultOne(r2)) {

set res w/= 3 <- res[3]+1;
}

}

let p = IntAsDouble(res[0] + res[3] - res[2] - res[1]) /
IntAsDouble(runs);

return p;
}

Listing 5.17 Q# orchestration code for CHSH inequality test.

Finally, wewill need to invoke the orchestration operation and calculate the expec-
tation value for the four vector pairs—(a,b), (a,b′), (a′,b) and (a′,b′). The protocol
here is identical to what we did earlier in Listing 5.14.

@EntryPoint()
operation Main() : Unit {

let eA1B1 = RunCHSH(Ua1b1);
Message($"E(a1,b1) = "

+ DoubleAsStringWithFormat(eA1B1, "N2"));

let eA1B2 = RunCHSH(Ua1b2);
Message($"E(a1,b2) = "
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+ DoubleAsStringWithFormat(eA1B2, "N2"));

let eA2B1 = RunCHSH(Ua2b1);
Message($"E(a2,b1) = "

+ DoubleAsStringWithFormat(eA2B1, "N2"));

let eA2B2 = RunCHSH(Ua2b2);
Message($"E(a2,b2) = "

+ DoubleAsStringWithFormat(eA2B2, "N2"));

let chshResult =
AbsD(eA1B1 + eA1B2) + AbsD(eA2B1 - eA2B2) <= 2.0;

Message($"CHSH inequality satisfied? {chshResult}");
}

Listing 5.18 Invoking Q# orchestration code for the four different CHSH vector pair rotations.

The resulting CHSH inequality expects local realist hidden variable theories
to stay within the range between minus two and two, as defined in Eq. (5.7). To
make this check simpler we can actually compare against absolute values, which
is what the code does here, utilizing the AbsD(a : Double) function from the
Microsoft.Quantum.Math namespace.

Running the CHSH inequality test code prepared this way should produce out-
put similar to the one shown in Listing 5.19, which is of course confirming our
expectations.

E(a1,b1) = -0.69
E(a1,b2) = -0.72
E(a2,b1) = -0.73
E(a2,b2) = 0.71
CHSH inequality satisfied? False

Listing 5.19 Sample output of Q# CHSH inequality verification code.

5.3 Non-local Games

One gets quickly confronted with the stunning predictions of quantum mechanics
when playing logic games based on Bell’s inequality. In this section we will explore
two examples of this remarkable category of the so-called non-local games.1 In such
games, typically built around simple boolean logic problems, completely against
common sense, quantum mechanics, due to its non-local correlations, can produce
winning strategies higher than any classical approach.The concept ofTsirelsonbound
places a mathematical restriction on the correlation between quantum mechanical
objects and provides a limit by which entangled quantum objects can violate the Bell
inequalities. This in turns defines by how much quantum strategies can outperform
their classical counterparts in non-local games.

1 An excellent overview of a wide range of such games can be found in [6].
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These games are designed to be executed using quantum communications proto-
cols, where both players are spatially separated from each other. Nevertheless, it is
also possible to reconstruct them using a program executed on a quantum computer,
where the game plays itself out locally, and where logical separation of the player
roles happens in the code. This provides a very easy mechanism for learning and
analyzing the quantum mechanical principles involved.

5.3.1 CHSH Game

The origin of the CHSH game is unclear, but most likely the first mention comes
from the series of lectures by Boris Tsirelson in the 1990s [16]. The game starts
with two participating players, Alice and Bob, receiving a random bit each from an
impartial referee. We shall denote those bits with i A (input Alice) and iB (input Bob).
They then proceed to randomly select a bit on their own, which we shall refer to as
oA (output Alice) and oB (output Bob) respectively.

The goal of the game is for the players to satisfy the following formula

i A · iB = oA ⊕ oB (5.8)

without communicating with each other during the game. They can, however, agree
on the strategy to follow upfront.

The major difficulty the players need to overcome in the game is that Alice should
select the most optimal value of oA, without knowing oB , and Bob should select best
possible value of oB , without knowing oA, such that their selections, when the XOR
logic is applied to them, would match the product of the original input bits.

Let us break down the possible development scenarios for the game. Since two
bits can have four possible combinations, the randomly generated game input bits i A
and iB could be combined to calculate the product in four different ways. Similarly,
there are four different possibilities for taking an XOR between the two output bits
oA and oB . All of those combinations are shown in Table 5.1.

By looking at the table, we can quickly realize that the most optimal classical
strategy for Alice and Bob is blatantly simple. Since i A · iB produces 0 in 75% of
cases, they should aim at producing 0 out of their oA ⊕ oB operation too. This means
that they should both always output 0 or always 1, regardless of the input values of
i A and iB—as long as they both stick to the same agreed value all the time. This will

Table 5.1 Possible configurations for a product and XOR taken between pairs of classical bits

i A iB iA · iB oA oB oA ⊕ oB

0 0 0 0 0 0

0 1 0 0 1 1

1 0 0 1 0 1

1 1 1 1 1 0
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ensure that oA ⊕ oB always results in 0, and since we already established that i A · iB
gives 0 in three out of four cases, they will also win the game 75% of the time. This
is the best they can do classically.

Remarkably, due to the phenomenon of entanglement and the EPR correlations,
quantum strategy can lead to a higher winning probability, namely about 85%. Let
us now outline the quantum approach, based on the entangled pair of qubits in the
Bell state |�−〉, shared by Alice and Bob.

|�−〉 = 1√
2

(
|01〉 − |10〉

)
(5.9)

The advantage of the quantum strategy for the CHSH game is that Alice and
Bob can rely on the quantum correlations in their EPR pair to help them select oA

and oB bits in the most optimal fashion—in a way that will not be reproducible
classically. This is facilitated by a scheme based on different measurement bases,
carefully chosen in such a way that they can tilt the winning probability to their favor.

The strategy of Alice is not particularly complex, and can be summarized as: Alice
toggles between the Z and X-bases, depending on the value of the input bit i A, and
measures her part of the Bell state qubit accordingly. If her measurement result, in
either of the two bases, maps to a classical 0, she returns oA = 0, otherwise it would
be oA = 1. The strategy is fully outlined in the Table 5.2.

As a consequence of Alice’s measurements, and due to the usage of |�−〉 and its
negative correlations, the quantum state of Bob’s part of the entangled pair would
collapse to the opposite state from what Alice measured, should he use the same
measurement basis. The problem is—of course—he would not know which of the
two bases Alice used, because he does not know which referee bit she received and
the players are not allowed to communicate.

Here is where the unusual features of quantum correlations come into play. The
players can take advantage of the fact that superposition is basis-dependent, so when
a qubit in a definite state in one basis, it would be in some superposition in a different
basis. The key observation to make here, is that superposition does not necessarily
have to be uniform. Instead, it may be more likely to produce one of the eigenstates
over the other, for example:

|ψ〉 = 4

5
|0〉 + 3

5
|1〉 (5.10)

Table 5.2 Alice strategy for the CHSH game

Alice input bit i A = 0 i A = 1

Alice basis Z X

Alice
measurement
result

|0〉 |1〉 |+〉 |−〉

Alice output bit oA = 0 oA = 1 oA = 0 oA = 1



148 5 Entanglement

In this particular case the probability amplitudes are uneven, so according to the
Born rule, the probability of measuring |0〉 would be | 45 |2 which is 64%, while |1〉
would be | 35 |2 which is 36%.

In addition to that, we already know that Z and X-bases are mutually unbiased,
so measuring in the X-basis a qubit that is known to be in a eigenstate |0〉 or |1〉
of the Z-basis, produces measurement results with maximum uncertainty. However
instead of measuring by arbitrarily selecting one these commonly used bases, Bob
can try to choose his measurement basis close enough to Z and X, in such a way that
his probability amplitude for a collapse to the eigenstate (and ultimately eigenvalue)
opposite of Alice, is as large as possible when Alice measured her qubit, and use that
trick to optimally select his oB .

It turns out that the most optimal value for Bob in the CHSH game is to use the
basis that is rotated from the Z-basis by θ = π

8 clockwise and anti-clockwise around
the y-axis. We will call the first basis π

8 -basis, with eigenvectors represented in the
standard basis are

|u1〉 = cos
(π

8

)
|0〉 + sin

(π

8

)
|1〉 (5.11)

|u2〉 = − sin
(π

8

)
|0〉 + cos

(π

8

)
|1〉

We will call the other basis −π
8 -basis, with eigenvectors

|v1〉 = cos
(
−π

8

)
|0〉 + sin

(
−π

8

)
|1〉 (5.12)

|v2〉 = − sin
(
−π

8

)
|0〉 + cos

(
−π

8

)
|1〉

The strategy for Bob is then summarized in Table 5.3.
Of course this does not answer the real question yet—why would such specific

basis choice and quantum strategy work better than its classical counterpart?
Imagine that Alice receives i A = 0 from the referee, measures in the Z-basis,

receives a measurement outcome |0〉 and therefore outputs oA = 0. Such measure-
ment result would mean Bob’s qubit is now collapsed to |1〉, because they are nega-
tively correlated in the Bell state.

Since Alice produced oA = 0, for them to win the game, Bob needs to output
oB = 0 too, something that he will do—according to Table 5.3—if he manages to
measure |u2〉 or |v2〉. Notice that these states, being “second eigenstates” should
really map to a classical 1, but an additional consequence of the negative correlation

Table 5.3 Bob strategy for the CHSH game

Bob input bit iB = 0 iB = 1

Bob basis π
8 − π

8

Bob measurement
result

|u1〉 |u2〉 |v1〉 |v2〉

Bob output bit oB = 1 oB = 0 oB = 1 oB = 0
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of the initial entangled state |�−〉 is that Bob will need to return his output bit values
oB that are opposite to his classical measurement results.

Suppose now that Bob receives iB = 0 from the referee, so hewould bemeasuring
in the π

8 basis. By inspecting the states from Eq. 5.11, we can see that for the input
referee bits i A = 0, iB = 0, the winning combination of states are (Alice’s state first,
then Bob’s) |0, u2〉 and |1, u1〉, which the players will encounter with the following
probabilities

Prwin1 = |〈0, u2|�−〉|2 = 1

2
cos2

(π

8

)
(5.13)

Prwin2 = |〈1, u1|�−〉|2 = 1

2
cos2

(π

8

)

By adding them we find out that Bob will be able to observe the desired mea-
surement result, and thus produce the winning bit oB to pair with oA, with a total
probability of cos2( π

8 ) ≈ 85%.
Following similar reasoning we could easily calculate this to be the same for all

the other permutations of the game input conditions.

We can implement the CHSH game in Q# in just a few simple steps, which will
naturally help verify our theoretical discussion. If the reasoning we went through
above is correct, we should indeed see a classical strategy providing 75% winning
rate, with the quantum strategy outperforming it with its 85% success rate.

Let us first look at the game code shown in Listing 5.20. The operation RunGame
(strategy : (Bool, Bool) => (Bool, Bool)) will take care of drawing the
random referee bits, as well as invoke the provided strategy—be it classical or quan-
tum. The strategy can be passed in as a delegate, which accepts two referee input
bits arguments, and which returns two game output bits.

operation RunGame(strategy : (Bool, Bool) => (Bool, Bool)) :
Double {
let runs = 4096;
mutable wins = 0;

for i in 0..runs {
let inputA = DrawRandomBool(0.5);
let inputB = DrawRandomBool(0.5);

let chosenBits = strategy(inputA, inputB);
if ((inputA and inputB) == Xor(chosenBits)) {

set wins += 1;
}

}

return IntAsDouble(wins) / IntAsDouble(runs);
}

Listing 5.20 CHSH game strategy testing code in Q#.

Notice that we also expanded the terse mathematical naming scheme used so far,
like i A or iB , to more descriptive variable names such as inputA or inputB. For the
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purposes of code readability and verbosity, this pattern will be repeated throughout
the rest of the Q# implementation.

The code executes a loop of 4096 shots, which is the general sample size
we have been using throughout this book so far. The referee bits inputA and
inputB for Alice and Bob are drawn using the operation that is part of Q# stan-
dard library—DrawRandomBool (successProbability : Double) from the
Microsoft.Quantum.Random namespace. It is a very convenient helper opera-
tion that generates a quantum-backed random bit value. The parameter allows us to
control the statistical distribution of the retrieved values—passing in a 0.5 means
that we will get a truly random value.

The results of the execution of the game strategy, which are returned as tuples
of booleans, are compared to the randomly drawn referee bits using the CHSH
game formula from Eq. (5.8). Q# actually provides a handy built-in function Xor (a
: Bool, b : Bool) in the Microsoft.Quantum.Logical namespace which we
use to verify the outcome of the game.We keep the running total of wins in a mutable
integer variable, and at the end of the orchestration operation, we calculate the win
percentages for the strategy.

Let us now turn our attention to the implementations of both classical and quantum
strategies. The classical one is very straightforward—as we already know, returning
oA = 1 and oB = 1 or oA = 0 and oB = 0 will result in a 75% success rate. List-
ing 5.21 shows such simple implementation, where both oA and oA are returned as 0
bit values. Notice that the lack of quantum features means that it could be declared as
a Q# function rather than a Q# operation, however, because our game delegate
from Listing 5.20 requires a strategy to be supplied as operation, we define an
operation here as well.

operation ClassicalStrategy(inputA : Bool, inputB : Bool)
: (Bool, Bool) {
return (false, false);

}

Listing 5.21 CHSH game classical strategy implementation in Q#.

Next, we need to have a look at the implementation of quantum strategy, which
is shown in Listing 5.22.

operation QuantumStrategy(inputA : Bool, inputB : Bool)
: (Bool, Bool) {
use (qubitA, qubitB) = (Qubit(), Qubit());
X(qubitA);
X(qubitB);
H(qubitA);
CNOT(qubitA, qubitB);

let resultA = MeasurementA(inputA, qubitA);
let resultB = not MeasurementB(inputB, qubitB);
return (resultA, resultB);

}

Listing 5.22 CHSH game quantum strategy implementation in Q#.
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The operation QuantumStrategy (inputA : Bool, inputB : Bool) allo-
cates two qubits for both of the players and initializes the entangled Bell state |�−〉.
It then returns two bits—represented by two booleans—corresponding to the result
of Alice’s and Bob’s quantum measurement outcomes. Because of the negative cor-
relation between qubits in the entangled state |�−〉, the result of Bob’s measurement
must be negated, hence the usage of the not operator in the code.

As we already outlined, Alice and Bob will measure their qubits in different
ways, depending on the input bits received from the referee, so we need to define
two dedicated Q# operations to capture the logic relevant for each of them separately.
They are called MeasurementA (bit : Bool, q : Qubit) and MeasurementB
(bit : Bool, q : Qubit) in the code. The implementation of Alice’s quantum
strategy—the simpler one of the two—is shown in Listing 5.23.

operation AliceMeasurement(bit : Bool, q : Qubit) : Bool {
let result = Measure([bit ? PauliX | PauliZ], [q]);
return IsResultOne(result);

}

Listing 5.23 Alice’s measurement procedure in the CHSH game.

Alice will measure in the Z-basis when the bit she received from the referee is
i A = 0, and she will use the X-basis when i A = 1. In this particular case the oper-
ation Measure(bases : Pauli[], qubits : Qubit[]) allows us to dynami-
cally select the measurement basis for the qubit by passing in the relevant keyword
literal based on the referee bit.

Finally, let’s explore Bob’s strategy, implemented in Q# in Listing 5.24.

operation BobMeasurement(bit : Bool, q : Qubit) : Bool {
let rotationAngle = bit ? (2.0 * PI() / 8.0) | (-2.0 * PI() /

8.0);
Ry(rotationAngle , q);
return IsResultOne(M(q));

}

Listing 5.24 Bob’s measurement procedure in the CHSH game.

Bob would need to measure in the ±π
8 basis, but there is no built-in Q# feature

for measurements in an arbitrary basis like that one. However, just like the X-basis
is the Z-basis rotated around the y-axis by −π

4 , the ±π
8 bases measurement can be

reconstructed by the usage of an appropriate rotation about the y-axis followed by
a regular Z-basis measurement. One thing we need to remember is that while the
orthogonal vectors for real numbers are π

2 apart, on the Bloch sphere, the orthogonal
vectors point to the antipodal points on the surface of the sphere, so they areπ radians
apart. Due to that, we need to multiply the desired rotation angle by a factor of 2.
This is the reason why in the code we rotate not by (+/-)PI() / 8.0, but instead
of by (+/-)2.0 * PI() / 8.0.

This is almost everything that was needed to complete the program, however we
still need to add the Q# program entry point which will invoke the game code from
Listing 5.20 for both classical and quantum strategies, as well as output the results.
This operation is shown in Listing 5.25.
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@EntryPoint()
operation Main() : Unit {

let classicalWinRate = RunGame(ClassicalStrategy);
Message($"Classical win probability: "

+ DoubleAsStringWithFormat(classicalWinRate * 100., "N2")
);

let quantumWinRate = RunGame(QuantumStrategy);
Message($"Quantum win probability: "

+ DoubleAsStringWithFormat(quantumWinRate * 100., "N2"));
}

Listing 5.25 Q# code for CHSH game orchestration.

The output from running the program should confirm our expectations and resem-
ble the following:

Classical win probability: 75.95
Quantum win probability: 84.74

Listing 5.26 Sample output from the CHSH game code from Listing 5.25.

One final wrinkle that can be added to the code is to check if it would make
any difference to the outcome of the experiment, if we tried to randomize the mea-
surement order in the quantum strategy. So far, due to how the code was written—
sequentially—Alice’s measurement are always performed first. This can be tested
by making a small modification to the code from Listing 5.22.

operation QuantumStrategy(inputA : Bool, inputB : Bool)
: (Bool, Bool) {
use (qubitA, qubitB) = (Qubit(), Qubit());
X(qubitA);
X(qubitB);
H(qubitA);
CNOT(qubitA, qubitB);

let shouldAliceMeasureFirst = DrawRandomBool(0.5);
if (shouldAliceMeasureFirst) {

let resultA = MeasurementA(inputA, qubitA);
let resultB = not MeasurementB(inputB, qubitB);
return (resultA, resultB);

}
else
{

let resultB = not MeasurementB(inputB, qubitB);
let resultA = MeasurementA(inputA, qubitA);
return (resultA, resultB);

}
}

Listing 5.27 CHSH game quantum strategy implementation in Q#, with randomized measurement
order between Alice and Bob.



5.3 Non-local Games 153

In the updated variant of quantum strategy,we introduced an extra randomboolean
variable that is drawn with success probability of 50%, to determine whether Alice
should perform her measurement first. The remaining times, Bob will run his mea-
surements, based on the ±π

8 bases first, and Alice would follow him. As it turns out,
however, due the bidirectional nature of quantum correlations, such randomization
of the process would not have any impact on the outcome.

This is exactly what we expected based on the theory of quantum computing. In a
rather remarkable outcome, by replacing classical bits with entangled qubits, without
any classical communication, the CHSH game receives a ten percentage points boost
over the best logical classical winning scenario. We all know that in sports passion
often trumps logic, but as the Bell’s theorem and EPR correlations show, quantum
mechanics also has a way of trumping (classical) logic.

5.3.2 GHZ Game

The violations of Bell’s inequality show up as statistical results of the Bell’s test when
performed a larger number of times and involving spatially separated observers. As
such, while the conclusions we draw from it, once the experiment is analyzed, are
rather astonishing, the overall process of determining the incompatibility with local
realism is certainly somewhat convoluted and cumbersome as it relies on data from
statistical ensembles.

As it turns out, the so-called GHZ state allows us to experience a violation of
local hidden variables theories using a single shot experimental setup. In other words,
instead of illustrating the conflict with local realism with probabilistic results, the
GHZ state can do that with deterministic approach as well. The GHZ state was first
proposed in 1989 by Daniel Greenberger, Michael Horne and Anton Zeilinger [9],
who suggested to go beyond using the usual EPR pairs, as it is the case in Bell’s
theorem, and employ systems consisting of larger amounts of particles when trying to
prove that no local hidden variables theory could be used to reproduce the predictions
of quantum theory. This drastically simplifies the reasoning, compared to using the
usual Bell states.

The GHZ state is a maximally entangled three qubit state that has the following
form:

|GHZ〉 = 1√
2

(
|000〉 + |111〉

)
(5.14)

It is a special three qubit state of a more general class of multi-qubit entangled
states that take the following form:

|ψ〉 = 1√
2

(
|0〉⊗n + |1〉⊗n

)
(5.15)
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We can create a GHZ state using the same steps as needed to create the state |�+〉,
followed by an extra CNOT between the second qubit making up the |�+〉 pair and
an extra third qubit. This can be expressed algebraically as:

|GHZ〉 = (I ⊗ CNOT)(CNOT ⊗ I)(H ⊗ I ⊗ I)|000〉 (5.16)

The corresponding quantum circuit is depicted on Fig. 5.6.
Let us now imagine the following logical game. A referee generates three random

bits x , y and z and hands one bit to each of the three players. In return, each player
is supposed to provide a single bit back to the referee—we will call them a, b and c.
The goal of the players to satisfy the following logical condition:

a ⊕ b ⊕ c = x ∨ y ∨ z (5.17)

Similarly to the CHSH game, the players cannot communicate with each other
once they receive their bits, however they can agree on a common strategy upfront.
While the referee could issue 23 = 8 possible combinations of x , y and z, the game
only restricts referee to choose from one of the four predefined sets of x , y and z
outlined in Table 5.4. The table also lists the corresponding winning condition which
must be fulfilled by the players.

A quick analysis of the task would tell us that it is logically impossible for the
players to win the game 100% of the time, and that the best classical strategy can be
75% successful. That would be a strategy where all players, regardless of their input
bit, return 1 as their output.

Remarkably, when using a GHZ state, the players can win the game every single
time. To achieve that, the playerswill need tomap the twopossible states of the referee

Fig. 5.6 Circuit to create a
GHZ state

Table 5.4 Combinations of referee bits in GHZ game, and the winning condition required by the
players to produce

x y z Winning condition

0 0 0 0

0 1 1 1

1 0 1 1

1 1 0 1
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bit to unitary transformations shown in (5.18), and apply the relevant transformation
to their specific part of the GHZ triplet prior to measuring it in the standard basis.

0 → H (5.18)

1 → HS†

Let us first consider the case when the referee issues x = 0, y = 0 and z = 0.
Based on the mapping in (5.18), the players—each one independently of course, and
not knowing what bit their co-players received—will apply the H transformation to
the qubit in their possession. Altogether, this changes the original |GHZ〉 state to
the following:

(H ⊗ H ⊗ H)|GHZ〉 = 1

2

(
|000〉 + |011〉 + |101〉 + |110〉

)
(5.19)

This state clearly indicates that when each of the qubits making up the |GHZ〉
triplet is transformedby theH transformation and thenmeasured in the computational
basis, the players altogether have (based on the Born rule) an equal 25% probability
of having the entire system collapse to |000〉, |011〉, |101〉 or |110〉.

Irrespective of which of these four states ends up being themeasurement outcome,
when we now take the XOR of each of the variations, we find out that they always
produce a 0, satisfying the first of the winning conditions.

0 ⊕ 0 ⊕ 0 = 0 0 ⊕ 1 ⊕ 1 = 0 1 ⊕ 0 ⊕ 1 = 0 1 ⊕ 1 ⊕ 0 = 0 (5.20)

Let us now consider another situation, this timewhen the referee distributes x = 1,
y = 1 and z = 0. Based on (5.18), the players will now need to perform a transfor-
mation:

(HS† ⊗ HS† ⊗ H)|GHZ〉 = 1

2

(
|001〉 + |010〉 + |100〉 + |111〉

)
(5.21)

Such composite set of transformations—consisting of one independently executed
by each player—would now create a different set of possiblemeasurement outcomes,
againwith 25%each, namely, |001〉, |010〉, |100〉 or |111〉. TheXOR for each possible
outcome is always equal to 1.

0 ⊕ 0 ⊕ 1 = 1 0 ⊕ 1 ⊕ 0 = 1 1 ⊕ 0 ⊕ 0 = 1 1 ⊕ 1 ⊕ 1 = 1 (5.22)

This, yet again, satisfies the rules of the game and puts the players in the winning
position. The other two cases of referee bits would follow similar reasoning and we
shall skip them—however the players would also win the game as long as they stick
to the transformations prescribed by the mapping (5.18).

All in all, the GHZ state enables the players to always win the game, something
that is impossible using classical logic only.



156 5 Entanglement

The key to understanding how GHZ state is able to provide correlations stronger
than classical is to realize, as diligent reader may have already done, that the two
transformations used in the GHZ game, H and HS†, when followed by a default Z-
basis measurement, are nothing more than measurements done in the X and Y-bases
respectively. This leads us to the heart of the mystery surrounding the GHZ state.

Let us first consider the case where all three players measure in the X-basis.
We can construct the corresponding observable-operator X ⊗ X ⊗ X where X is the
Pauli matrix σx , and see what are its effects on the |GHZ〉. Note that we are not
performing a measurement here, but instead using this operator as a regular unitary
transformation to see where it would lead us. When applied to the GHZ state |GHZ〉
from Eq. (5.14) it gives us

(X ⊗ X ⊗ X)|GHZ〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1√
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
0
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= |GHZ〉 (5.23)

This leads us to a surprising conclusion. It tells us that |GHZ〉 is the eigenstate of
an operatorX ⊗ X ⊗ Xwith the eigenvalue of+1. In other words, if all three players
measure their parts of the tripartite entangled GHZ state in the X-basis, the product
of their measurement results is going to be +1. If we now denote measurement
outcomes of players A, B and C as Ax , Bx and Cx (since measurements happen in
the X-basis), we can conclude that

Ax · Bx · Cx = 1 (5.24)

To avoid repetition, we will spare ourselves from performing this calculation for
the other three observable-operators that can be used by the players in the game—
those where two of the components of the GHZ triplet are measured in the Y-basis
(using the σy observable)—but that can easily be done in a similar way.2 It would
lead us to the following outcome

(X ⊗ Y ⊗ Y)|GHZ〉 = −|GHZ〉 (5.25)

(Y ⊗ X ⊗ Y)|GHZ〉 = −|GHZ〉
(Y ⊗ Y ⊗ X)|GHZ〉 = −|GHZ〉

which in turn means that |GHZ〉 is the eigenstate of each of these three observable-
operators with the eigenvalue of −1. This tells us if two players measure their parts

2 In general, going forward in the book we will avoid expanding the kets to classic matrix format
to avoid the unnecessary verbosity.
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of the tripartite entangled GHZ state in the Y-basis, while one of them measures in
the X-basis, the product of their measurement results is going to be −1.

Just as we did it before, we can summarize this using measurement outcomes A,
B and C :

Ax · By · Cy = Ay · Bx · Cy = Ay · By · Cx = −1 (5.26)

This also means that

(Ax · By · Cy) · (Ay · Bx · Cy) · (Ay · By · Cx ) = −1 (5.27)

However one can easily point out that no matter whether +1 or −1 was measured
the following is true

A2
y = 1 B2

y = 1 C2
y = 1 (5.28)

We can use that to rewrite Eq. (5.27) as

Ax · Bx · Cx = −1 (5.29)

This is of course the exact opposite from the expected value of +1 we calculated
in Eq. (5.24). If local hidden variable theory replicating the predictions of quantum
mechanicswas possible, itwould havemeant that both of these incompatible values of
Ax · Bx · Cx would have needed to be “pre-encoded” into the system simultaneously.
This is of course blatantly contradicting the very idea behind such theory. Instead,
in quantum mechanics the product of measurement outcomes Ax · Bx · Cx assumes
the value of either +1 or −1 contextually, depending on the basis choices done by
participating (independent!) observers.

The GHZ puzzle illustrates, in a far more dramatic fashion, what was already
established in earlier sections by analyzing the Bell’s and CHSH inequalities. Quan-
tum mechanics seems to completely upend the picture of what our human common
sense considers to be a reasonable model of reality, one that the EPR trio tried to
assert in their original paper.

Let us start the Q# implementation of the GHZ game by defining the classical
function that will simulate the best possible classical strategy. Since we already
established that there is no complicated logic behind it, the code is very simple too—
we will simply return 1, represented by a boolean true, for each of the three player
bits a, b and c. In that sense the function is very similar to the classical strategy used
in the CHSH game in Listing 5.21.

function ClassicalStrategy(x : Bool, y : Bool, z : Bool)
: Bool[] {

return [true, true, true];
}

Listing 5.28 Classical strategy for the GHZ game implemented in Q#.
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Since the quantum strategy will use the GHZ state, we will need to include the
transformations necessary to create it, according to the quantum circuit defined in
Fig. 5.6. Then each of the three qubits will be measured either in the PauliY basis
(when the referee bit is 1) or PauliX basis (when the referee bit is 0). At the end of
the operation, similarly to how it was done in the classical strategy, all three bits will
be returned from the operation in a form of an array.

operation QuantumGHZStrategy(x : Bool, y : Bool, z : Bool) : Bool
[] {
use qubits = Qubit[3];
H(qubits[0]);
CNOT(qubits[0], qubits[1]);
CNOT(qubits[1], qubits[2]);

let basis1 = x ? PauliY | PauliX;
let basis2 = y ? PauliY | PauliX;
let basis3 = z ? PauliY | PauliX;

let result = [Measure([basis1], [qubits[0]]) == One,
Measure([basis2], [qubits[1]]) == One,
Measure([basis3], [qubits[2]]) == One];

return result;
}

Listing 5.29 Quantum strategy for the GHZ game implemented in Q#.

The next piece of the puzzle is going to be the check for the game outcome. This
will follow the rules specified in Eq. (5.17) and is shown in Listing 5.30.

function CheckGameOutcome(xyz : Bool[], abc : Bool[]) : Bool {
return Xor(abc[0], Xor(abc[1], abc[2])) == (xyz[0] or xyz[1]

or xyz[2]);
}

Listing 5.30 GHZ game result check implemented in Q#.

Finally, we need the orchestration code which will bring all the pieces together.
The four sets of referee input bits can be hardcoded as an array of four boolean arrays.
For each of these inputs, we shall execute both quantum and classical strategies and
keep track of the amount of wins achieved by each of them. In the end we will
expect 100%win success for the quantum approach, and 75%win probability for the
classical one—more precisely the case when referee deals out x = y = z = f alse
should always result in a failure of the classical methodology. To accumulate a larger
sample size, we will play the game 128 times for each of the four sets of referee bits.
The entire orchestrator code is shown next.

@EntryPoint()
operation Main() : Unit {

let xyz = [
[false, false, false],
[false, true, true],
[true, false, true],
[true, true, false]
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];

mutable qStrategyWins = 0;
mutable cStrategyWins = 0;

for refBits in xyz {
mutable qStrategyRoundWins = 0;
mutable cStrategyRoundWins = 0;

for _ in 1 .. 128 {
let qOutput = QuantumGHZStrategy(

refBits[0], refBits[1], refBits[2]);
let qGameResult = CheckGameOutcome(refBits, qOutput);
set qStrategyWins += qGameResult ? 1 | 0;
set qStrategyRoundWins += qGameResult ? 1 | 0;

let cOutput = ClassicalStrategy(
refBits[0], refBits[1], refBits[2]);

let cGameResult = CheckGameOutcome(refBits, cOutput);
set cStrategyWins += cGameResult ? 1 | 0;
set cStrategyRoundWins += cGameResult ? 1 | 0;

}

Message($"For input: {refBits} Quantum GHZ strategy won:
{cStrategyRoundWins} times.");

Message($"For input: {refBits} Classical strategy won: {
cStrategyRoundWins} times.");

}

Message($"Quantum GHZ strategy won: {qStrategyWins *
100/512}%.");

Message($"Classical strategy won : {cStrategyWins *
100/512}%.");

}

Listing 5.31 Orchestration code to run the GHZ game in Q#.

The orchestration code prints out the results aswell, so upon running this program,
we shall see the same console output as shown in 5.32.

Quantum GHZ strategy won: 100%.
Classical strategy won: 75%.

Listing 5.32 Expected output from running the code from Listing 5.31.

This is of course in line with our expectations, and in agreement with the predic-
tions of quantum mechanics.

5.4 Teleportation

Aside from time travel and various forms of extraterrestrial life, teleportation is
quite possibly the most spectacular concept in science fiction writing. Even more
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remarkably, teleportation is an integral part of quantum information theory,where it is
a natural consequence of both entanglement and the linearity of quantummechanics.

Quantum teleportation was first introduced in 1993 by Bennett and Brassard [2],
who developed an ingenious idea of relying on a combination of EPR correlations and
classical bits tomove the complete set of information about an undetermined quantum
state |ψ〉 from one physical location to another. The reason why we refer to it as
teleportation is that the protocol does not require a physical quantum communication
channel over which the data describing the teleported state travels—in the process of
quantum teleportation, there is no physical spatial movement of matter or particles.

In the teleportation scheme, the description of the original source quantum state
effectively gets destroyed in one place, and recreated in another location over a
target quantum object. This is also the subtle difference between science-fiction and
the quantum mechanical phenomenon—it is not the physical quantum object itself
that gets destroyed in the original location, but the information about its quantum
state—the object itself remains in existence, albeit in a different quantum state.
Conversely, in the target location the teleported object does not appear out of nowhere,
but instead another pre-existing quantum object assumes the informational structure
of the original object.

This information destruction at the source happens via the processes of measure-
ment, forcing the quantum object out of its |ψ〉 state and into one of the eigenstates of
the measurement basis, such as for example |0〉 or |1〉 when using the standard com-
putational basis. The state |ψ〉 is then reconstructed onto another quantum object
through a clever series of entanglements. In other words, at any given time, only
one of the actors at both the source and target sides of the teleportation process can
reconstruct the original quantum state [14].

This is also precisely the reason why the process of teleportation does not violate
the no-cloning theorem—at no point does the same quantum state exist in two places,
as original and a copy.3 Additionally, as should soon become apparent, the telepor-
tation protocol requires a classical communication channel between the two actors
to be available as well, ensuring that no faster-than-light information transmission
can occur—even though the quantum information can be considered to be propagate
instantaneously by means of the state collapse of the EPR pair [7].

The protocol was first successfully implemented experimentally in 1997, by two
independent groups—one, using a four-photon design, lead byAnton Zeilinger at the
University of Innsbruck [4], and the other, using a two-photon procedure, by Sandu
Popescu at the University of Rome “La Sapienza” [3].

In 2006, a group from the Niels Bohr Institute in Copenhagen [15] reported a
successful teleportation of a quantum state encoded in a laser beam, into a quantum
system made up of an atomic ensemble of caesium atoms. This in itself is a phe-
nomenal achievement, as it represented the first time a quantum state was teleported
between light and matter. It also marked an important milestone in practical appli-

3 While the analogy is not perfect, it may be helpful to think of teleportation as cut-and-paste,
instead of copy-and-paste.
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Fig. 5.7 Quantum teleportation circuit

cation of quantum information theory, which allows encoding the same information
in quantum systems of different nature.

In 2014 researchers [5] demonstrated quantum teleportation of the polarization
state of a telecom-wavelength photon onto the state of a solid-state quantummemory,
which could underpin transferring quantum information between remote quantum
networks. In 2015, a group from the University of Science and Technology of China
[13], carried out a successful teleportation experiment between a ground observatory
and low orbit Earth satellite—some 1400 km away.

The circuit depicting the teleportation protocol is shown in Fig. 5.7.
We can start reasoning about the teleportation protocol by imagining the usual

two actors, Alice and Bob, who are spatially separated from each other and would
want to teleport a qubit state |ϕ〉, that is currently in the possession of Alice. It is in
an arbitrary superposition state and is labeled as message on the circuit.

Naturally, Alice cannot just measure her qubit and send the measurement result to
Bob using classical means, because a measurement would cause the quantum state
collapse and would destroy the unique quantum state—simply yielding one of the
eigenstates of the measurement basis.

To facilitate the teleportation process, Alice and Bob are also sharing an entangled
pair of qubits, represented by any of the four Bell states. We shall use |�+〉 as
an example here, but the other three states are equally appropriate. This entangled
pair is labeled on the circuit as resource, which denotes Alice’s qubit and target,
which represents Bob’s qubit. This entangled state is, as we already know, created
by applying the sequence of H transformation followed by a two qubit CNOT.

|�+〉 = 1√
2

(
|00〉 + |11〉

)
(5.30)

Taking all of this into account, Alice and Bob are dealing with a three qubit
system, consisting of the message qubit |ϕ〉 that is owned by Alice, and the shared
entangled pair of qubits |�+〉, where one part is in possession of Alice and the other
is controlled by Bob. This overall initial system state can be annotated as |ψ1〉, and
it will be a tensor product between the message |ϕ〉 and the EPR pair |�+〉.

|ψ1〉 = |ϕ〉 ⊗ |�+〉 = (a|0〉 + b|1〉) ⊗ 1√
2

(
|00〉 + |11〉

)
= (5.31)
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1√
2

(
a|0〉 ⊗ (|00〉 + |11〉) + b|1〉 ⊗ (|00〉 + |11〉)

)
=

1√
2

(
a|000〉 + a|011〉 + b|100〉 + b|111〉

)

At this point, let us recall the four Bell states which we first introduced in
Eq. (2.90). Together, they form an orthonormal basis for a two-qubit system in a
four dimensional Hilbert space—for two maximally entangled particles. We can
therefore perform a joint measurement over two qubits in the Bell basis and obtain
one of the Bell states as a result—in case of a uniform superposition, with equal
probabilities.

Since all quantum transformations are reversible, we can also apply a reverse Bell
circuit—CNOT, followed byH, to transform the Bell state back to the original input
single qubits states. Using this principle, a Bell basis measurement can be converted
into a standard measurement in the computational basis.

As a result, the next step for Alice is to allow her message qubit that will be
teleported, |ϕ〉, to interact with her part of the entangled pair |�+〉. She first applies
a CNOT transformation to the two qubits in her possession, with the qubit that she
wishes to teleport acting as a control qubit.

This creates an overall system state |ψ2〉, which we can describe this mathemati-
cally in the following way:

|ψ2〉 = (CNOT ⊗ I)|ψ1〉 = 1√
2

(
a|000〉 + a|011〉 + b|110〉 + b|101〉

)
(5.32)

State |ψ2〉 depicts a system “halfway” into the reverse Bell circuit, since the
CNOT is applied already. Alice then follows with a Hadamard transformation on
the message qubit |ϕ〉. Executing H on the first qubit in the system, using the state
|ψ2〉 as input, results in state |ψ3〉.

|ψ3〉 = (H ⊗ I ⊗ I)|ψ2〉 = (5.33)

1

2

(
a(|000〉 + |011〉 + |100〉 + |111〉) + b(|010〉 + |001〉 − |110〉 − |101〉)

)
=

1

2

(
|00〉(a|0〉 + b|1〉) + |01〉(a|1〉 + b|0〉)+

|10〉(a|0〉 − b|1〉) + |11〉(a|1〉 − b|0〉)
)

The final picture becomes clearer now. Upon Alice performing the measurement
over the pair of qubits in her possession, the wave function collapses into one of
the four unentangled states—with equal probability of 25%—she could receive |00〉,
|01〉, |10〉 or |11〉. As we see in state |ψ3〉 in Eq. (5.33), each of these results has a
direct impact on the state of the qubit of Bob. Those are summarized in Table 5.5.
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Table 5.5 Overview of the teleportation protocol

Alice measurement Bob qubit state Bob normalized state

|00〉 a|0〉 + b|1〉 a|0〉 + b|1〉
|01〉 a|1〉 + b|0〉 X(a|0〉 + b|1〉)
|10〉 a|0〉 − b|1〉 Z(a|0〉 + b|1〉)
|11〉 a|1〉 − b|0〉 ZX(a|0〉 + b|1〉)

As a consequence of Alice’s measurement, Bob’s qubit can assume one of four
possible states. It either already is in the correct state |ϕ〉, or is in the state |ϕ〉
transformedbyX,ZorZX,which are of course the single qubit Pauli transformations.

Consider the first case listed in Table 5.5, where Alice measurement produced two
eigenstates |00〉. In that case Bob’s qubit is in the state |ϕ〉 and we can consider the
teleportation as completed, since that is really the original state ofAlice’s qubit. In the
three other situations, Bob would still to apply additional corrective transformations
on the target qubit in order to successfully recover the original state |ϕ〉.

Because Pauli gates are unitary and Hermitian, Bob can rely on them to reproduce
the original quantum message state |ϕ〉. All he needs to do is to simply apply either
X, Z or ZX, in order to normalize his qubit’s state at the desired |ϕ〉

X(a|1〉 + b|0〉) = a|0〉 + b|1〉 = |ϕ〉 (5.34)

Z(a|0〉 + b|1〉) = a|0〉 + b|1〉 = |ϕ〉
ZX(a|1〉 − b|0〉) = a|0〉 + b|1〉 = |ϕ〉

While all of that, in quite a stunning fashion, allows Bob to extract the initial
quantum message state that he and Alice wanted to be teleported, the problem is
that, of course, Bob does not know the state without measuring it. As a result, Bob
does not know which of the three transformations to apply to it, or whether to apply
any at all.4 This problem is solved in the teleportation protocol by requiring an
additional mandatory classical communication channel, such as a phone connection,
to exist between Alice and Bob. This could be any channel, as long as classical bits
can reliably flow through it. Alice would then communicate to Bob the result of her
measurement to Bob using 2 classical bits—00, 01, 10 or 11. Bob knows that his four
corrective transformations are tied toAlice’smeasurement result and thus can choose
the relevant Pauli transformation to recover the qubit state based on that information.

This completes the teleportation protocol. The end result is that Alice’s original
quantum state |ϕ〉 on her message qubit gets destroyed upon measurement and that
qubit assumes one of the orthogonal basis states |0〉 or |1〉 of the Z-basis. Alice’s
qubit forming the entangled pair with Bob also gets used up—it got measured and
was forced to collapse to |0〉 or |1〉 as well. On the other hand, Bob’s qubit assumed
the state of |ϕ〉, X|ϕ〉, Z|ϕ〉 or ZX|ϕ〉. Bob, based on the information about Alice’s
measurement results, received from her using classical means, managed to correct

4 Not applying any transformation may also simply mean applying I.
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it to back to |ϕ〉. Bob can now measure that qubit, should he choose to do so, or
use it in any other quantum algorithm. They can naturally repeat this procedure for
any number of qubits, provided they are equipped with enough entangled pairs to
facilitate the teleportation process.

The requirement of sharing the two classical bits betweenAlice andBob to finalize
the protocol also ensures that the teleportation procedure obeys the theory of special
relativity, that is, that it cannot be used for superluminal communication. This was
also pointed out by the original authors of the teleportation procedure, who assert
that the process requires classical channel of two bits of capacity [2].

Themethods applied in the teleportation scheme are generally referred to in quan-
tum information theory asLOCC, local operations and classical communication. The
concept captures the following activities of the involved parties:

• they apply local quantum mechanical unitary transformations on the quantum
objects in their possession

• they use classical communication channels to announce measurement results, and
those measurement results may then be used to execute further local transforma-
tions

Both aspects of LOCC are an integral part of the process, necessary for a given
protocol to be successfully completed. Without any of the parts, the outcome would
be random.

The process of quantum entanglement is remarkable for two primary reasons. First
of all, an arbitrary quantum state got teleported using no physical quantumconnection
between the two actors Alice and Bob. Yes, there was a classical communication link
between to transmit the two classical bits representing Alice’s measurement, but no
specific information regarding the quantum state was shared. Additionally, it means
that the message was moved between Alice and Bob in a completely safe way—
there is no way for an eavesdropper or a malicious party to intercept the quantum
message. Even the concept of the eavesdropper is rendered obsolete—since there is
nothing to eaves drop on—as there is no physical connection related to themovement
of the quantum state. It simply does not travel through spacetime in a classical
understanding of the word.

Secondly, and this is may not be immediately clear, using only two bits of classical
data, Alice facilitated sending a continuous quantum state—after all the coefficients
a and b could be any values as long as |a|2 + |b|2 = 1. Even a numerical description
of such state would be impossible to express classically in just two bits.

Let us now reconstruct the teleportation protocol using the quantum computer—
with Q# and QDK as our tooling vector. While we are free to teleport any arbitrary
quantum state, to illustrate the teleportation process well, we shall define a dedicated
operation that prepares a unique state as shown in Listing 5.33.

operation PrepareState(q : Qubit) : Unit is Adj + Ctl {
Rx(1. * PI() / 2., q);
Ry(2. * PI() / 3., q);
Rz(3. * PI() / 4., q);

}
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Listing 5.33 Preparing an arbitrary quantum state for teleportation

The operation applies some arbitrary rotations around all three axes, and defines
an Adjoint specialization. This way, we will be able to prepare the state to be
teleported starting from a computational basis eigenstate such as |0〉, teleport it, and
afterwards apply the adjoint to return back to |0〉 to verify the correctness of the
teleportation protocol.

When writing the Q# code for the protocol, we will use variable names cor-
responding to the ones we already established on the quantum circuit—message,
resource and target, to facilitate better cognitive association between the circuit
and the code.

Next, we define a Q# operation to execute the large part of the logic from circuit
Fig. 5.7, andwhich shall be our vessel to execute the protocol. The operation is shown
in Listing 5.34, where we call it Teleport (message : Qubit, resource :
Qubit, target : Qubit), and the three qubits it accepts as parameters will be
the ones over which the teleportation procedure will play out. The message will
already come in prepared in the state it should be teleported in, while the other two
qubits, one representing Alice, the other Bob, are passed into the operation in the
default, unentangled, state.

operation Teleport(message : Qubit, resource : Qubit, target :
Qubit) : Unit {
// create entanglement between resource and target
H(resource);
CNOT(resource , target);

// reverse Bell circuit on message and resource
CNOT(message, resource);
H(message);

// mesaure message and resource
let messageResult = M(message) == One;
let resourceResult = M(resource) == One;

// and decode state
DecodeTeleportedState(messageResult , resourceResult , target);

}

Listing 5.34 Step one of the teleportation protocol in Q#.

The operation creates a Bell state using the resource and target qubits. Those
are now entangled and will facilitate the teleportation process. Next, a reverse Bell
circuit, to decompose a joint measurement in the Bell basis into standard single qubit
measurements in the computational basis is applied on message and resource.
Finally, we perform a Z-basis measurement on both message and resource mim-
icking the actions of Alice that we discussed earlier.

At this point Alice has two classical bits in her possession and will pass them
over to Bob, who will complete the protocol and transform the received state of
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his qubit to decode the original teleported message state. This is achieved by call-
ing the DecodeTeleportedState(messageResult : Bool, resourceResult
: Bool, target : Qubit) operation, shown in Listing 5.35.

operation DecodeTeleportedState(
messageResult : Bool,
resourceResult : Bool,
target : Qubit) : Unit {

if not messageResult and not resourceResult {
I(target);

}
if not messageResult and resourceResult {

X(target);
}
if messageResult and not resourceResult {

Z(target);
}
if messageResult and resourceResult {

Z(target);
X(target);

}
}

Listing 5.35 Decoding step of the teleportation protocol in Q#.

We follow precisely the rules we already defined Table 5.5, so depending on the
outcome of Alice’s measurements, the relevant decoding transformation is applied
by Bob, who invokes an I (no-op), X, Z or ZX against the target qubit. We should
remember that all four possibilities in this case are equally likely to be the result of
the joint Bell measurement, each one with the probability of 25%, so the decoding
step required to be applied may be different from run to run.

The final thing left to do, is to define the entry point operation for our Q# pro-
gram andmake use of the Teleport (message : Qubit, resource : Qubit,
target : Qubit) operation from Listing 5.34. As usually, it would make sense to
gather results from a larger sample size, so, to ensure the outcome is always as
expected, we will execute the teleportation procedure in a loop of 4096 iterations.
The orchestration code also needs to take care of allocating the three required qubits
upon every iteration, invoke the state preparation operation from Listing 5.33 against
the message qubit, and then its adjoint against the target qubit to verify that the
target really acquired the correct quantum state. The entire operation is shown in
Listing 5.36.

@EntryPoint()
operation Start() : Unit {

let runs = 4096;
mutable successCount = 0;

for i in 1..runs {
use (message, resource , target) = (Qubit(), Qubit(),

Qubit());
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// prepare the source state
PrepareState(message);

// execute teleportation
Teleport(message, resource , target);

// verify the target state
Adjoint PrepareState(target);
set successCount += M(target) == Zero ? 1 | 0;

}

Message("Success rate: "
+ DoubleAsStringWithFormat(

100. * IntAsDouble(successCount) / IntAsDouble(runs),
"N2"));

}

Listing 5.36 Orchestration operation for executing the teleportation code a larger number of times.

Invoking this program should yield the output like the one shown in 5.37—the
reported success rate, of course when running on a simulator or when the hardware
offers perfect fidelity, would be 100%.

Success rate: 100.00

Listing 5.37 Expected output from running the code from Listing 5.36.

5.5 Entanglement Swapping

Another fascinating consequence of the teleportation protocol is that it can be used to
entangle two qubits that are spatially separated and never interacted with each other
in the first place. This is possible by using two pairs of entangled qubits such as any
of the four Bell states.

Due to the fact that entanglement swapping is effectively a variation of quantum
teleportation, the circuit representing it, shown on Fig. 5.8, is very similar to the
teleportation circuit that we studied in Fig. 5.7.

Imagine Alice and Bob, independently of each other, holding a pair of qubits in
the state |�+〉. We have not needed that so far, but in order to not lose track which
qubits are owned by Alice and which by Bob, let us additionally use a subscript-
based annotation of qubits. They will be denoting which qubits belong to the pair
owned by Alice—those with indices 1 and 2—and which belong to a pair owned by
Bob—those with indices 3 and 4. Because of that we shall refer to both of the Bell
states not as |�+〉 but as |ψa〉 (for Alice) and |ψb〉 (for Bob).

|ψa〉 = 1√
2

(
|00〉12 + |11〉12

)
(5.35)

|ψb〉 = 1√
2

(
|00〉34 + |11〉34

)
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Fig. 5.8 Entanglement swapping circuit

The initial overall system state is the usual tensor product of both of these |ψ〉
pairs.

|ψa〉 ⊗ |ψb〉 = 1√
2

(
|00〉12 + |11〉12

)
⊗ 1√

2

(
|00〉34 + |11〉34

)
= (5.36)

1

2

(
|00〉12|00〉34 + |00〉12|11〉34 + |11〉12|00〉34 + |11〉12|11〉34

)

We can rearrange the order of indices slightly

|ψa〉 ⊗ |ψb〉 = (5.37)

1

2

(
|00〉14|00〉23 + |01〉14|01〉23 + |10〉14|10〉23 + |11〉14|11〉23

)

Due to linearity of quantum mechanics, this can be further rewritten into tensor
products of different Bell states.

|ψa〉 ⊗ |ψb〉 = (5.38)

1

2

(
|�+〉14 ⊗ |�+〉23 + |�+〉14 ⊗ |�+〉23 + |�−〉14 ⊗ |�−〉23 + |�−〉14 ⊗ |�−〉23

)

Now consider Alice and Bob handing off one of their qubits to a third party,
which we shall call Carol. She receives qubits with index 2 from Alice, and with
index 3 from Bob, and performs a joint Bell measurement over them—similar to
that shown in Eqs. (5.32) and (5.33). Depending on Carol’s measurement result, the
system spanning the other two qubits, with indices 1 and 4 now collapses to one
of the four Bell states |�+〉14, |�+〉14, |�−〉14 or |�−〉14. Similarly to how it was
done in the core teleportation flow, Alice and Bob do not know the character of their
correlations yet, so Bob would need to apply corrective transformations based on
Carol’s results—exactly as it was done in Eq. (5.34).
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All things considered, this is quite a spectacular result, because Carol, by mea-
suring qubits indexed 2 and 3 effectively projected the entanglement onto qubits
indexed 1 and 4, which are now entangled—even though they never interacted with
each other in the first place or never shared any common history.

In a traditional set up, entanglement between two particles is obtained by allowing
those particles to physically interact, for example by simultaneously emitting two
photons from the same source. Entanglement swapping along the lines of the protocol
steps discussed here, using autonomous continuous wave sources, was first realized
experimentally in 2007 by a group at University of Geneva [10].

In order to implement entanglement swapping with Q# we will reuse most of the
code from the Q# teleportation implementation and Listing 5.36. The operation for
entanglement swapping will follow similar steps, except we will need to start with
two entangled pairs, one belonging to Alice and one to Bob. Just as we discussed
moments ago, the state |�+〉 is the easiest to use from the code perspective too.

The operation EnganglementSwapping() is shown in Listing 5.38. It will return
a tuple of two classical bits asBoolvalues representing the results of themeasurement
of Alice’s and Bob’s qubits—those that were not handed off to Carol and that became
entangled even though they never interacted in the first place.

operation EnganglementSwapping() : (Bool, Bool) {
// Alice
use (q1, q2) = (Qubit(), Qubit());
H(q1);
CNOT(q1, q2);

// Bob
use (q3, q4) = (Qubit(), Qubit());
H(q3);
CNOT(q3, q4);

// rest of the protocol to follow
}

Listing 5.38 Initial step of the entanglement swapping protocol in Q#.

At this point our actors both hold an independently created entangled pair of
qubits, denoted by (q1, q2) for Alice and (q3, q4) for Bob. In the next step, they
hand off one qubit from their Bell states to Carol–Alice sends her qubit q2, while Bob
shares q4. Carol proceeds to apply the reverse Bell circuit to facilitate the execution
of the Bell basis measurement, similar to howwe did it in regular teleportation. Code
in Listing 5.39 extends the operation from Listing 5.38 with this logic.

// Bell measurement - done by Carol
CNOT(q2, q4);
H(q2);

let q2Result = M(q2);
let q4Result = M(q4);

Listing 5.39 Step two of the entanglement swapping protocol in Q#.
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From this point on, the qubitsmeasured byCarol, (q2, q4), are no longer needed
and can be discarded. The result of Carol’s measurement are two classical bits, which
Carol hands over to Bob. The current state of the system is that the other qubits of
the entangled pairs owned by Alice and Bob, namely qubits q1 and q3, have become
entangled, but could be in any of the four Bell states.

One of Alice or Bob can now use the measurement results received from Carol
to transform the qubit in his or her possession in order to change the entangled state
spanning q1 and q3 into the desired |�+〉 state. Let us imagine Bob doing it—he
can follow the same rules as shown in teleportation Listing 5.35.

if (q2Result == Zero and q4Result == Zero) {
I(q3);

}

if (q2Result == Zero and q4Result == One) {
X(q3);

}

if (q2Result == One and q4Result == Zero) {
Z(q3);

}

if (q2Result == One and q4Result == One) {
X(q3);
Z(q3);

}

Listing 5.40 Step three of the entanglement swapping protocol in Q#.

The final thing we will want to do here is to measure the qubits q1 and q3 and
return their classical bit results as the output of the operation. This will allow us to
execute this protocol in a loop and gather some statistically significant results. The
entire operation with all the steps, including this last one, collapsed into a single code
block is shown in Listing 5.41.

operation EnganglementSwapping() : (Bool, Bool) {
// Alice
use (q1, q2) = (Qubit(), Qubit());
H(q1);
CNOT(q1, q2);

// Bob
use (q3, q4) = (Qubit(), Qubit());
H(q3);
CNOT(q3, q4);

// Bell measurement - done by Carol
CNOT(q2, q4);
H(q2);

let q2Result = M(q2);
let q4Result = M(q4);
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if (q2Result == Zero and q4Result == Zero) {
I(q3);

}
if (q2Result == Zero and q4Result == One) {

X(q3);
}
if (q2Result == One and q4Result == Zero) {

Z(q3);
}
if (q2Result == One and q4Result == One) {

X(q3);
Z(q3);

}

let c1 = ResultAsBool(M(q1));
let c3 = ResultAsBool(M(q3));
return (c1, c3);

}

Listing 5.41 Complete entanglement swapping protocol in Q#.

We are now only missing the simple orchestrator that will run the operation
Listing 5.41 a larger amount of times and collect the output. It will execute the
swapping4096 times, and record themeasurement results over q1 and q3, categorized
into buckets for classical 00, 01, 10 and 11. It will also check if the measurement
results for the two qubits match. The entire orchestrator is shown in Listing 5.42.

@EntryPoint()
operation Start() : Unit {

mutable matchingMeasurement = 0;
mutable res = [0, 0, 0, 0];

for i in 1..4096 {
let (c1, c3) = EnganglementSwapping();
if (not c1 and not c3) { set res w/= 0 <- res[0]+1; }
if (not c1 and c3) { set res w/= 1 <- res[1]+1; }
if (c1 and not c3) { set res w/= 2 <- res[2]+1; }
if (c1 and c3) { set res w/= 3 <- res[3]+1; }
if (c1 == c3) { set matchingMeasurement += 1; }

}

Message($"Measured |00>: {res[0]}");
Message($"Measured |01>: {res[1]}");
Message($"Measured |10>: {res[2]}");
Message($"Measured |11>: {res[3]}");
Message($"Measurements of qubits 1 and 3 matched: {

matchingMeasurement}");
}

Listing 5.42 Orchestrating the operation from Listing 5.41.

Because of the fact that qubits q1 and q3 should, at the end of the protocol, and
prior to the finalmeasurements, be in the state |�+〉, we should see perfect correlation
in their measurement results, and the only measurement outcomes should be either
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00 or 11, with equal probability each. This should be confirmed by the program’s
output, which after running, should resemble the one from 5.43.

Measured |00>: 2046
Measured |01>: 0
Measured |10>: 0
Measured |11>: 2050
Measurements of qubits 1 and 3 matched: 4096

Listing 5.43 Sample output from the code from Listing 5.42.

We need to note that this does not fully confirm that q1 and q3 are really in state
|�+〉, as the states |�+〉 and |�−〉 are actually indistinguishable using measurement
only, because they only differ by the phase. To better confirm that we are indeed
dealing with state |�+〉 we can extend the entanglement swapping operation with an
extra line of code, to be executed after Bob’s fix-up of his qubit state, and prior to
performing measurements of q1 and q3:

Adjoint PrepareEntangledState([q1], [q3]);

Listing 5.44 Invoking an adjoint of an operation preparing the Bell state |�+〉.
This of course relies on one of the basic postulates of quantummechanics, namely

that every operation is by definition reversible, and that applying the adjoint of
a transformation will effectively undo this transformation. Given that we expect
the qubits to be in state |�+〉, applying the adjoint of PrepareEntangledState
(left : Qubit[], right : Qubit[]) : Unit, which in Q# creates the state
|�+〉 from two qubits in state |00〉, should return those qubits back to state |00〉.

And this is indeed what we should see in this case. After such a change to the
EnganglementSwapping() operation, we should now have both q1 and q3 in state
|0〉 upon measurement, and therefore all we should see in the measurement results
would be classical 00. This can be confirmed by running the code again.

Measured |00>: 4096
Measured |01>: 0
Measured |10>: 0
Measured |11>: 0
Measurements of qubits 1 and 3 matched: 4096

Listing 5.45 Sample output from the code testing entanglement swapping updated with the adjoint
call from Listing 5.44.

5.6 Superdense Coding

Another canonical example of using entanglement to achieve an outcome that is
beyond reach of classical physics is the so-called superdense coding protocol. It was
first proposed by Bennett andWiesner in 1992 [1]. The unusual name stems from the
fact that the protocol allows sending two classical bits of information by physically
moving only a single qubit. From that perspective, as we shall learn in this section,
it can also be considered to be a conceptual inverse of teleportation.
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Just like in the case of quantum teleportation, superdense coding starts of with
two actors, Alice and Bob, sharing an entangled EPR pair of qubits. The source
of entanglement is irrelevant—they could entangle their qubits when they are both
in physical presence of one another, or the entangled pair may come from a third
party source. Once the entanglement is established, Alice and Bob can be spatially
separated for the rest of the protocol.

Alice decides that she would like to send Bob a classical two-bit message. Such
a message can have four possible contents

00, 01, 10, 11 (5.39)

Naturally, given that themessage consists of twobits, classically,Alicewould need
to send those two bits for Bob in order to transfer this information to him. In quantum
communications, thanks to superdense coding protocol, she can convey these two
bits of classical information using a single qubit that is currently in her possession.

Bennett and Wiesner realized that due to how entangled particles behave, Alice
can apply one of four unique unitary transformations on her part of the entangled
pair, and the result of that operation is the system evolving into one of the four
orthogonal Bell states making up an orthonormal basis for two-qubit systems. Of
course a two-qubit quantum system, just like a two-bit classical one, is suitable to
carry two bits of information. In other words, Alice can encode two classical bits of
information into the entangled pair by applying a relevant unitary transformation to
her qubit only, even if Alice and Bob are spatially separated from each other.

Alice can then send that single qubit to Bob using a quantum channel, such as a
quantum optical link. Upon a joint measurement in the Bell basis spanning the qubit
he alreadyhad in his possession and the qubit received fromAlice,Bob candecode the
two classical bits—and deconstruct the original two-bit message encoded by Alice.

Ultimately the actors still need to leverage two qubits to send two classical bits
of information, which is not much different from having two classical bits sent over
between the two parties in a classical way. However in the quantum case, the initial
EPR pair is shared upfront and the communication protocol is ultimately completed
by physically moving only one of the qubits. The net result is two bits of information
are transported when sending only one physical qubit. The other qubit, just like in
the case of teleportation, assumes the correct state through the quantum processes
which we cannot explain any better than through non-local effects.

From a purely theoretical standpoint, the superdense coding protocol was an
important milestone in the development of quantum information theory. At the same
time, its practical benefits are rather questionable, especially given the instability
of quantum communication links, rapid improvements in classical data compression
protocols and the quality and capacity of classical information channels, such as fiber
networks.

As such, generally speaking, using bits wherever possible is still dramatically
cheaper and preferred over using qubits. On top of that, in the field of quantum com-
munications, there are still a lot of complexities related to stably moving entangled
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Fig. 5.9 Quantum superdense coding circuit

particles over long distances, and then storing them carefully, while preserving the
cohesion of the entanglement [12].

Despite these difficulties, there are additional application scenarios for superdense
coding protocol beyond the original “data compression” concept, such as in the
field of quantum security. The prerequisite of physically requiring both qubits to
decode the encoded message makes superdense coding a very attractive tool for
secure communications—it means that even if the qubit in transit is intercepted by
an eavesdropper, it alone cannot be used to recover the initial message. One such
approach was suggested by a group of researches back in 2005 [17]. Superdense
coding was experimentally confirmed for the first time, using a pair of entangled
photons, by scientists from the University of Innsbruck in 1996 [11].5

As we mentioned before, superdense coding is often referred to as the inverse of
the quantum teleportation protocol. The reason for this is that the decoding step that
is needed in the teleportation process by the receiving party (Bob), happens to be an
identical set of unitary transformation that must be applied in the encoding step the
sending party (Alice) needs to apply in the superdense coding protocol.

Theworkflowof the protocol is illustrated by the quantum circuit Fig. 5.9. TheU is
the encoding gate that can become a Pauli I,X, Z or ZX transformation—depending
on the data that Alice would like to encode.

Let us walk through this procedure step by step. Alice and Bob start off with a
pre-prepared pair of maximally entangled qubits, in our case it will be the Bell state
|�+〉, though other Bell states are equally suitable.

|�+〉 = 1√
2
(|00〉 + |11〉) (5.40)

Alice and Bob can then set off in their separate directions, each one with a qubit
of their own in their possession. Alice would then encode two bits of classical infor-
mation into this shared entangled pair—and she can do it by applying one of the
aforementioned single-qubit Pauli transformation to her qubit only. She chooses the
appropriate transformation according to the rules outlined in Table 5.6.

By doing so, she may end up leaving the joint system state intact as |�+〉—in the
case of the I transformation, or shemay end up transforming the state of the entangled
pair to one of the three other Bell states |�+〉, |�−〉 or |�−〉. This is summarized

5 A diligent reader may recall that one of the first realizations of the teleportation protocol also
happened at University of Innsbruck, and also under the leadership of Anton Zeilinger [4].
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Table 5.6 Overview of the superdense coding protocol when the initial system state is |�+〉
Alice encoding Alice transformation System state Bob decoding

00 I |�+〉 |00〉
01 X |�+〉 |01〉
10 Z |�−〉 |10〉
11 ZX |�−〉 |11〉

algebraically in Eq. (5.41). Note that the second qubit, physically held by Bob, is not
being acted upon in any way at this stage.

(I ⊗ I)
1√
2

(
|00〉 + |11〉

)
= 1√

2

(
|00〉 + |11〉

)
= |�+〉 (5.41)

(X ⊗ I)
1√
2

(
|00〉 + |11〉

)
= 1√

2

(
|01〉 + |10〉

)
= |�+〉

(Z ⊗ I)
1√
2

(
|00〉 + |11〉

)
= 1√

2

(
|00〉 − |11〉

)
= |�−〉

(ZX ⊗ I)
1√
2

(
|00〉 + |11〉

)
= 1√

2

(
|01〉 − |10〉

)
= |�−〉

At that point Alice sends off her qubit to Bob using a quantum communica-
tions channel, who is now in complete possession of the entangled pair. Bob can
decode the two bits of information using a reverse Bell circuit—a CNOT on both
qubits, followed by an H transformation on the qubit he received. As discussed in
earlier when covering teleportation, this allows Bob to decompose a joint measure-
ment in the Bell basis into standard single qubit measurements in the computational
basis.

To be more explicit, depending on which of the four Bell states Bob is dealing
with (which, in turn, depends on the encoding operation applied by Alice in the first
place), as soon as Bob executes the CNOT transformation, the system state evolves
into one the following four possibilities:

CNOT|�+〉 = 1√
2

(
|00〉 + |10〉

)
= 1√

2

(
|0〉 + |1〉

)
⊗ |0〉 (5.42)

CNOT|�+〉 = 1√
2

(
|11〉 + |01〉

)
= 1√

2

(
|1〉 + |0〉

)
⊗ |1〉

CNOT|�−〉 = 1√
2

(
|00〉 − |10〉

)
= 1√

2

(
|0〉 − |1〉

)
⊗ |0〉

CNOT(|�−〉 = 1√
2

(
|01〉 − |11〉

)
= 1√

2

(
|0〉 − |1〉

)
⊗ |1〉

What follows is the H transformation applied to the first qubit, taking the system
into its final pre-measurement state. This state would be one of four cases, that
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manifest themselves as:

(H ⊗ I)
1√
2

(
|0〉 + |1〉

)
⊗ |0〉 = |00〉 (5.43)

(H ⊗ I)
1√
2

(
|1〉 + |0〉

)
⊗ |1〉 = |01〉

(H ⊗ I)
1√
2

(
|0〉 − |1〉

)
⊗ |0〉 = |10〉

(H ⊗ I)
1√
2

(
|0〉 + |1〉

)
⊗ |1〉 = |11〉

At the end Bob is in possession of two qubits, which, upon measurement in the
Z-basis, with 100% probability collapse to the two eigenstates exactly corresponding
to the two classical bits that Alice encoded, either 00, 01, 10 or 11. This concludes
the protocol.

We are now ready to shift our attention towards experimental implementation of
the superdense coding protocol in Q#. Our Q# code will be structured in a way that,
similarly to other demos in this book, will allow for repeated execution and collection
of results over a larger sample size.

We will begin by implementing both the encoding and the decoding operation
according to the circuit from Fig. 5.9. Encoding will mimic the steps Alice went
through in our theoretical discussion and accepts two classical data bits and a sin-
gle qubit as arguments—Encode (value1 : Bool, value2 : Bool, qubit
: Qubit). This operation is shown in Listing 5.46.

operation Encode(value1 : Bool, value2 : Bool, qubit : Qubit) :
Unit {
if not value1 and not value2 {

I(qubit);
}
if not value1 and value2 {

X(qubit);
}
if value1 and not value2 {

Z(qubit);
}
if value1 and value2 {

X(qubit);
Z(qubit);

}
}

Listing 5.46 Encoding operation of the superdense coding protocol.

Depending on which two-bit message Alice would like to send to Bob, the
encoding procedure chooses a no-op I transformation or one of the Pauli gate
combinations—X, Z or ZX. Note that the encoding procedure happens only over
one of the qubits of the entangled pair—the one belonging to Alice—and hence the
encoding operation only gets access that single qubit. Since the transformation is
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applied in place on the qubit, there is no need for the operation to return anything
and its return type can be defined as Unit.

The decoding operation will accept both qubits as input parameters Decode
(qubit1 : Qubit, qubit2 : Qubit) and will return two classical bits as its
output. The operation corresponds to Bob’s activities in the protocol and represents
his procedure of decoding of the two classical bits out of the involved qubits—the
reverse Bell circuit and two independent Z-basis measurements of each of the qubits.
Contrary to encoding, decoding requires access to both of the qubits. The operation
is defined in Listing 5.47.

operation Decode(qubit1 : Qubit, qubit2 : Qubit) : (Bool, Bool) {
CNOT(qubit1, qubit2);
H(qubit1);

let result1 = IsResultOne(M(qubit1));
let result2 = IsResultOne(M(qubit2));
return (result1, result2);

}

Listing 5.47 Decoding operation of the superdense coding protocol.

With these twomajor building blocks in place, we are ready to define an operation
that will encapsulate the entire protocol. The operation RunDenseCoding (value1
: Bool, value2 : Bool) from Listing 5.48 accepts two input boolean parame-
ters corresponding to the bits that will be encoded and, making internal use of the
encoding and decoding operation we just defined, executes the entire superdense
coding protocol. To achieve that, the operation allocates two qubits and entangles
them creating the initial system state |�+〉. Finally, it returns the two bits decoded by
Bob so that the orchestrating code can use them for verifying whether the protocol
was successful.

’

operation RunDenseCoding(value1 : Bool, value2 : Bool) : (Result,
Result) {

use qubits = Qubit[2];

PrepareEntangledState([qubits[0]], [qubits[1]]);
Encode(value1, value2, qubits[0]);

return Decode(qubits[0], qubits[1]);
}

Listing 5.48 Single run of a superdense coding protocol in Q#.

To round things off, we introduce the orchestration code that will invoke
RunDenseCoding (value1 : Bool, value2 : Bool) an arbitrary number of
times and that would act as an entry point for our application. In previous
examples across this book, we settled on 4096 repetitions as the rule of thumb
for verifying our code. The code in Listing 5.49 provides all the necessary
orchestration capabilities and keeps track of how many times the encoded and
decoded messages agreed with each other. To randomize the input, we make
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use of DrawRandomBool (successProbability : Double) operation from the
Microsoft.Quantum.Random namespace.

@EntryPoint()
operation Main() : Unit {

mutable successCount = 0;
let runs = 4096;
for run in 1..runs {

let (alice1, alice2) =
(DrawRandomBool(0.5), DrawRandomBool(0.5));

let (bob1, bob2) = RunDenseCoding(alice1, alice2);
set successCount += alice1 == bob1 and alice2 == bob2

? 1 | 0;
}

Message("Success rate: "
+ DoubleAsStringWithFormat(100. * IntAsDouble(

successCount) / IntAsDouble(runs), "N2"));
}

Listing 5.49 Superdense coding Q# orchestration code.

Equipped with such a Q# program, we can now execute it to verify the correctness
of the superdense coding protocol. Ideally, if no errors happen, we expect the encoded
input and the decoded output to always be the same. Under perfect conditions, this
is what we should see in the output of our program.

Success rate: 100.00

Listing 5.50 The expected output of the superdense coding test program.

5.7 Entanglement as a Resource

The entanglement-based communication protocols discussed here all share a very
important trait—they use entanglement as a transient resource, sort of a fuel, to be
able to execute. Viewing entanglement as a resource is a unique way of approaching
the entanglement phenomenon from the quantum informational theory perspective,
and the idea was first proposed by William Wootters [8]. He noted that as entan-
glement facilitates quantum information exchange, a stable established scheme and
infrastructure for replenishing it is required—a notion critical to further growth and
maturation of the field. Additionally, just like any other resource, such as energy or
information, entanglement needs to be quantifiable.

This is a very valuable perspective. Indeed, if quantum information theory, and
more specifically quantum communication, are to graduate to anything more than
a scientific curiosity and truly revolutionize our approach to communication and
information, it will most likely be because of the features facilitated by entanglement.
Commoditization of entanglement, as well as ensuring stability and coherence of
entangled particles, is thus one of the keys to unlocking and harnessing the true
potential buried in quantum hardware.
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Chapter 6
Quantum Key Distribution

So far we have covered a wide array of topics around the nature of quantum
computation–the theoretical aspects of qubits, superposition, single-qubit gates,
multi-qubit gates, entanglement and several other interesting concepts from the area
of quantum information theory and quantum communications.

In this chapter we will shift our attention to the field of quantum cryptography,
and we will explore a few interesting key distribution protocols based on quantum
phenomena. We shall also learn how to securely exchange a key between two parties
using qubits transmitted over public channels and, naturally, realize the discussed
protocols with basic implementations in Q#.

6.1 Key Distribution in Cryptography

While there is obviously a lotmore to thefield of cryptography than just key exchange,
in principle, a securely shared symmetric key is enough to guarantee perfect pro-
tection against message cracking. This is thanks to a message encryption technique
called one-time pad, which is information-theoretically secure, that is, it cannot be
cracked because the ciphertext produced by it would not provide the attacker with
any information about the original message.

The basic theory behind it is remarkably simple. Consider a 1-byte message that
Alice would like to send over to Bob, as shown in the Table 6.1.

Of course in reality sending a single letter F is of questionable usefulness, but
it makes for a good example. Because the message consists eight bits, the ASCII
letter F that is being sent is one of the 28 possible values the message can take. In
other words, it is one of the possible 256 manifestations of the message content. An
adversary party, Eve, could guess the message with the probability of 1 in 256.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F.Wojcieszyn, Introduction to Quantum Computing with Q# and QDK, Quantum Science
and Technology, https://doi.org/10.1007/978-3-030-99379-5_6
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Table 6.1 Uppercase letter F encoded in ASCII

message 0 1 0 0 0 1 1 0

Table 6.2 A random key

key 0 1 1 1 1 1 1 0

Table 6.3 A ciphertext created from message XOR key

ciphertext 0 0 1 1 1 0 0 0

Now let us imagine that Alice and Bob happen to shared a secret key, known only
to them, that has the same length as the message—also eight bits (Table6.2).

The key is represented here by a random bit sequence—01111110, which happens
to be the tilde ~ character in ASCII, but that is irrelevant. It is, like the message, one
of the possible 256 values for the key.

What Alice can do, is put the two together using XOR logic, to produce the
ciphertext as shown in Table 6.3.

message ⊕ key = ciphertext (6.1)

The resulting ciphertext is 00111000, which is actually the character 8 in ASCII,
though that is yet again inconsequential. The important thing is that the message
and the key together produced another representation of the original message, yet
again one of the 256 values in the 8-bit value pool. If the attacker, Eve, intercepts the
ciphertext on its way from Alice to Bob, she would gain no information about the
original message at all. All she has is one of the 256 8-bit values—which is as useful
as the 8-bit value she could have guessed herself with the probability of 1 in 256.

Bob, on the other hand, can rely on another property ofXOR, namely its reversibil-
ity. Applying XOR between the ciphertext and the key, would product the original
message back. The reason why this works is because applying XOR between two
copies of the same value, produces 0, so:

ciphertext ⊕ key = (message ⊕ key) ⊕ key = message (6.2)

This gives Alice and Bob a safe way of exchanging a message, even on a public
channel. The prerequisites for the one-time pad technique to be unbreakable, are the
following:

1. the key would be completely random
2. the key must be at least the length of the message to encrypt
3. the key must not be reused and naturally, must be kept secret by both parties

(especially in transit).
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Quantum key distribution protocols can provide guarantee to the parties engaging
in cryptographic message exchange that the first and last requirements from the list
above are going to be fulfilled. In particular the randomness achieved through the
employment of quantum hardware would be the randomness underwritten by the
laws of nature and particularly attractive for the cryptographic use cases. This is
in stark contrast to classical computing, where most of the software based random
number generators in various programming frameworks and libraries are not suitable
for high sensitivity cryptographic scenarios. Andwith regards to ensuring that the key
is kept safe even when exchanged over the public channel, quantum key distribution
protocols, by taking advantage of the unique properties of quantum phenomena,
provide a provable and reliable way of detecting an eavesdropper attempting to steal
the key in transit between the two parties. This allows the engaged parties to abort
the protocol if such intrusive behavior is determined, which dramatically improves
the security of the key, as the two actors only have two focus on protecting the key
once in their possession.1

Djordjevic [8] provides two main taxonomies for quantum key distribution
schemes—one depending on the detection strategy used, and the other depending on
the organization of quantum devices participating in the protocol.

In the first taxonomy, we can speak about two generic categories of QKD proto-
cols:

1. Discrete-Variable QKD, typically built around single photon detectors, deal-
ing with individual discrete events and thus measurement outcomes that form a
finite set. The main security guarantee here are the no-cloning theorem and the
indistinguishability of non-orthogonal states.

2. Continuous-Variable QKD, which rely on measurements of the quadratures
of the electric field of the incident light, yielding a continuum of measurement
outcomes. Security-wise, relies on uncertainty principle.

Secondly, we can also categorize quantum key distribution protocol into three of
the following subgroups:

1. Device-dependent QKD. In these types of key exchange schemes, quantum
source is placedwith one of the actors, typicallyAlice, while the quantumdetector
is located at Bob’s side.

2. Source-device-independent QKD. In these schemes, the quantum source is
placed with a third party (Charlie), while the detectors are located with both
Alice and Bob

3. Measurement-device-independent QKD. In such setup, the quantum sources
are located with both Alice and Bob, but the detectors are placed with Charlie,
who performs partial Bell measurements

1 It is outside of the scope of this book to discuss cryptographic techniques any further, however
a great introduction to one-time pad and other algorithms can be found in [17], which dedicates a
very digestible chapter to this “simplest and most secure way to keep secrets”.
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In this study we shall focus on discrete-variable QKD only, and protocol descrip-
tions according to device-dependent QKD (BB84, B92) and source-device-
independent QKD (E91) only. While that does not correspond to the most practi-
cal and efficient set of schemes from the commercial application perspective, the
protocols we will cover here form a solid basis for introduction to quantum key
distribution.

Even though quantum-powered distribution of encryption keys may seem like
science fiction, it has not only been realized in laboratory, but is already employed in
various quantum communications networks. Among the most impressive examples
has been the SwissQuantum QKD network, in operation between 2009 and 2011,
which demonstrated that QKD was mature enough to be deployed and integrated
into telecommunications networks and “has proven its reliability and robustness in
a real life environment outside of the laboratory.” [16].

Another terrific example is the Chinese research project “The Quantum Experi-
ments at Space Scale” (QUESS),which launched the low-Earth-orbitQuantumSpace
Satellite nicknamedMicius in 2016 [10], or the recent work in the area of underwater
quantum key distribution [18].

Within the QUESS project, in 2018, a group led by Sheng-Kai Liao reported a
staggering success [12], performing quantum key distribution between the satellite
and ground stations located in Xinglong and Graz, on other sides of the globe, with a
separation of 7600 km. The keys were then used for both one-time pad encryption to
transmit images, as well as to encrypt a video conference call. The researchers stated
that this can be viewed as “a simple prototype for a global quantum communications
network.”

The technique used by Chinese researchers was the BB84 quantum key distribu-
tion protocol, which will be our focus point next.

6.2 BB84 Protocol

The BB84 quantum key distribution protocol2 was developed by Charles Bennett
from IBMResearch and Gilles Brassard from the University ofMontreal in 1984 [4],
whowere thefirst ones to propose to use the principles of quantum information theory,
as well as certain constraints of quantum mechanics, in the field of cryptography.

Bennett and Brassard sparked the birth of an entire new branch of quantum
research—quantum cryptography. Through their work they also laid foundations
for various other quantum key distribution protocol ideas that followed. The specific
variant designed Bennett and Brassard has since been revised multiple times and has
become an important building block for quantum information teaching curriculums.
It is also relatively simple to follow, and hence is a suitable place for us to start the
journey into the quantum key distribution world.

2 The name comes from the year the paper was published and the first letters of the authors’ last
names—a relatively common practice for landmark papers.
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Currently, our best classical cryptographic protocols are designed around prob-
lems that are deemed too hard to solve, such as finding large prime factors. But in
the case of BB84 and related protocols, the security is not based on an idea that
certain class of problems is difficult, but is instead underpinned by the physical laws
of nature. The ingenuity of the BB84 protocol lies in its remarkable simplicity. One
only needs to be familiar with two fundamental quantum mechanical concepts to be
able to grasp the idea behind it.

First of all, the protocol relies on indistinguishability of non-orthogonal states.
When we first introduced the concept of superposition in Sect. 2.2, we mentioned
that it is, in fact, basis dependent, and this is the phenomenon explored by BB84.
Given two of the so-called unbiased bases, such as the computational basis (Z-basis)
{|0〉, |1〉} theX-basis {|+〉, |−〉}, when the system is prepared in one of the orthogonal
states of one of the bases, all possible measurement outcomes with respect to the
other basis are equally likely. In other words—a definite basis state in one of these
bases, is the perfect uniform superposition in the other basis. Using this principle,
BB84 authors proposed to encode information, not as usually, in two orthogonal
states making up one basis, but by randomly switching between two unbiased bases.
As a consequence of this, the information can only be retrieved from the quantum
system by correctly applying the basis used in the encoding process. Additionally,
such approach to handling of information prevents even partial access to information
by unauthorized parties.

Secondly, the protocol explores the fact that according to the no-cloning theorem,
which we covered in Sect. 2.7, an unknown quantum state cannot be reliably copied.
While eigenstates of a known basis can be cloned without any limitations, the BB84
protocol, by employing two mutually unbiased bases to encode information, benefits
from the restrictions of no-cloning theorem with quite profound consequences.

BB84 additionally incorporates mechanisms for detecting possible eavesdroppers
on the communication channel. This in turns means that BB84 can be theoretically
used to securely exchange a symmetric encryption key over a public unsecured
channel and without a need for sharing any prior information between the parties.

In order to best be able to follow the steps of the BB84 protocol, let us set the stage
on which it can play out. Alice and Bob would like to communicate between each
other privately, and thus would like to share an encryption key. To get going, they
establish that Alice will send a truly random key to Bob, which they can later use to
engage in symmetric cryptography. Unbeknownst to them, the evil Eve is plotting
against Alice and Bob and will attempt to hijack the key in transit.

The key will have a length of n classical bits. According to BB84, Alice will use
two distinct bases, Z-basis and X-basis, to encode those bits into qubits—switching
between them randomly. In other words, she shall use one of the following four quan-
tum states denoted by |ψn〉 to send a classical bit value encoded into a qubit to Bob.

|ψ1〉 = |0〉 = 0 |ψ3〉 = |+〉 = 1√
2

(
|0〉 + |1〉

)
= 0 (6.3)

|ψ2〉 = |1〉 = 1 |ψ4〉 = |−〉 = 1√
2

(
|0〉 − |1〉

)
= 1
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As outlined in (6.3), in theBB84 scheme classical 0 and 1 have two representations
each. |ψ1〉 and |ψ3〉 can be used to represent classical bit value 0, while |ψ2〉 and |ψ4〉
can be used to represent classical 1. Notice that with such configuration, we are able
to encode the same classical bit value using two non-orthogonal states, one being an
eigenstate of the Z-basis, the other an eigenstate of the X-basis.

BB84 also prescribes that for a key of a desired length n, 4n random bits should be
generated and transported between the parties. As we shall see soon, this is required
because of the efficiency of the protocol and because certain bits shall later be dis-
carded for the purpose of detecting the eavesdropper. Since a single qubit is required
for each bit that needs to be encoded, once her encoding process finishes, Alice pos-
sesses 4n qubits containing her original bit values encoded using two different bases.

In the next step, using a quantum communication channel, Alice sends the qubits
to Bob, who then proceeds to measure them. This communication can happen over
an unsecured public network, which is one of the strengths and advantages of BB84.
Bob is unaware of how the data was encoded into the qubits, and therefore is forced to
guess the bases that Alice used. Therefore, upon measurement, he randomly changes
between the Z and X-basis measurements. Statistically speaking, Bob will choose
the correct basis half of the time. Of course we know that when the qubit is in
an eigenstate of Z-basis, its measurement in X-basis is maximally uncertain, and
vice versa. A consequence of this is that if Bob guesses the basis right, then his
measurement result will exactly agree with the value that Alice encoded, but if
he chooses wrongly, because of a uniform superposition, he would get the correct
classical bit result only for 50% of his measurements.

At this point Alice and Bob both possess arrays of classical bits—Alice the one
she initially created randomly to encode into the qubits, while Bob the one that he
read out from the received qubits. The length of those arrays is going to be the same,
however, at indices where they used a different basis to encode/decode bit into the
corresponding qubit bit, the values may differ. Because of that, the next thing they
need to do, is to compare the bases they chose for each individual qubit—Alice
to encode, and Bob to decode the information. They can do this over the classical
information channel, such as phone, email or any other suitable medium. Obviously
they should only announce the bases chosen—not the classical bit values, as those
need to remain private. Alice and Bob would then discard all of the indices for which
they used different bases and leave only the ones for which the applied basis was
identical. Given that, statistically speaking, Bob would guess the correct basis half of
the time, they should at this point be left with about 2n bits. We will not consider this
here, as we are assuming ideal conditions for simplicity, but Alice and Bob might
also establish a certain level of tolerance for deviation from the mean—for example,
if the amount of bits left is significantly lower than 2n, they may opt to restart the
protocol from the beginning.

The reason why Alice and Bob still need to have approximately 2n of bits each,
despite the fact they are only wanted to share a key of length n length, is that the
remaining half—so n bits—will be sacrificed in order to perform an eavesdropper
check. The way it plays out is as follows. Alice should randomly select n of the
remaining ≈ 2n bits, and share their indices with Bob. This, again, can happen over
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a public channel, and allows Alice and Bob to compare their bit values (not bases
anymore, but the actual values!). Since they already ensured that the bases their
chose were identical for those specific bits, the values must be identical as well—
and therefore they expect a 100% agreement. This is indeed what they will confirm
when no eavesdropper tapped into their quantum communication channel. On the
other hand, when they find out any mismatch, it suggests malicious activity—due to
the very specific wave function collapse effect an eavesdropper would have on the
qubits in transit.3

It is reasonable to ask at this point, how would an attacker’s involvement look
like. Consider what happens to the qubits when an attacker, Eve, tries to intercept
the qubit in transit. The most optimal scenario for a threat actor would be to copy
the qubit into her own storage and let the original continue over the network towards
the intended recipient. However, as we already know, due to the no-cloning theorem,
this is physically impossible to realize. As a result, the only attack Eve can undertake
is to attempt to measure the qubit in transit, save the resulting classical bit and send
the qubit back onto its original path to Bob. The obvious problem here is that a
measurement irreversibly changes the state of the qubit, which would not matter if
the qubit was in an eigenstate of a specific basis, and then was measured in that
basis, but would definitely matter if it was measured in the wrong basis. In principle,
just like Bob, Eve does not know in which basis to measure so she would need
to guess too, and we already established that this would lead to only 50% success
probability—and this is the core idea behind BB84. In those 50% of cases when
Eve guesses the bases wrongly, she causes the state vector to collapse to one of the
eigenstates of herwrong basis. This naturallymeans that Bob, even though he is using
the appropriate basis to decode the qubit, is now measuring against a superposition
state, and is equally likely to read out a 0 or 1. As a consequence, in 50% of those
cases where an attacker guess wrongly, Bob’s decoded classical bit would differ from
Alice’s. As a result, Alice and Bob would see a discrepancy of about 25% in the n
set they used for eavesdropper detection.

What BB84 prescribes is that if Bob and Alice determine that their bit values
disagree even though their bases agree, they should abort the protocol as it indicates
that they might have fallen victims to an attacker.

In the situation when no eavesdropper was detected, Alice and Bob proceed to
throwing away the n bits they used for the security check and can safely use the
remaining n bits as their intended shared encryption key.At the end the price they paid
for the theoretical security of the protocol and for the ability to sniff out a potential
eavesdropper is that they needed to transfer four times the amount of required qubits
between them—4n, instead of n, leading to a 25% BB84 protocol efficiency rate.

The overview of the protocol, excluding the eavesdropper check, is shown in
Table 6.4. Only the bits with probability of correct decoding equal to 1 can be kept.

3 Yet again, for simplicity we ignore here any potential quantum communication errors, noise,
packet loss and consider ideal conditions only.
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Table 6.4 Overview of the BB84 protocol

Alice bit a = 0 a = 1

Alice encoding basis Z X Z X

Alice state sent |0〉 |+〉 |1〉 |−〉
Bob decoding basis Z X Z X Z X Z X

Probability of correct decoding 1 0.5 0.5 1 1 0.5 0.5 1

The original description of BB84 was premised on switching the encoding of
information between Z {|0〉, |1〉} and X {|+〉, |−〉} bases, however, in principle, any
two mutually unbiased bases would be applicable too.

Despite its obvious advantages and the theoretical security, the biggest obstacles
for the BB884 protocol are the well-known problems of cheaply and reliably trans-
ferring quantum objects between different network nodes. The quantum communi-
cations infrastructure is currently limited, expensive, error-prone, and still far from
mainstreamusage. Large distance successful realizations of quantumkey distribution
protocols remain challenging, in particular due to fibre attenuations, environment
noise, challenges related to scaling and limitations of repeater technology. At the
moment the longest successful BB84 key exchange using optical fiber telecommu-
nication network infrastructure has been performed over the distance of 421km [5].

The original basic BB84 variant is very difficult to scale because it was based on a
single photon source, which creates a number of challenges. Instead, faint lasers are
often used in place, but at the expense of increasing the attack-surface. In principle,
such multi-photon signals are susceptible to the so-called photon-number splitting
attacks, allowing Eve to send over beam-splitted photon signals to Bob, keeping the
other photon, now entangled with the one travelling to Bob, to herself, effectively
bypassing the restrictions of the no-cloning theorem [13].

In 2004, a Swiss research team from the University of Geneva developed a BB84
spin-off,which becomeknown, after the names of the teamof creators, as theSARG04
protocol [15]. It was specifically designed to address the Achilles heel of BB84,
the photon-number splitting attacks, and was intended to be its replacement. In the
servers of the SwissQuantum QKD network, both BB84 and SARG04 were sup-
ported, though the ultimate production operation was done on top of the SARG04
protocol only.

As we just learnt, the theory behind BB84 is not very difficult to follow, once you
understand the basics behind the qubit measurement in different bases. Similarly, we
can relatively easily built an illustrative example of BB84 in Q# code. We will need
to improvise a little and take certain shortcuts—after all the whole protocol will have
to play itself out in a single process—but nevertheless, we shall be able to reflect all
the core concepts and ideas behind BB84 in a small Q# program.

To keep things manageable, we shall split the entire protocol into a number
of smaller Q# operations and functions. The main functionality will be encap-
sulated in a RunBB84Protocol (roundtrips : Int, rountripSize : Int,
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eavesdropperProbability : Double) operation, which will orchestrate execu-
tion of all these other callables following the protocol steps we just outlined theoret-
ically. The orchestration operation is shown in its entirety in Listing 6.1.

operation RunBB84Protocol(roundtrips : Int, rountripSize : Int,
eavesdropperProbability : Double) : Unit {
mutable aliceKey = [false, size = 0];
mutable bobKey = [false, size = 0];

for roundtrip in 0..roundtrips -1 {
use qubits = Qubit[rountripSize];

// 1. Alice chooses her bases
let aliceBases = GenerateRandomBitArray(rountripSize);

// 2. Alice chooses her random bits
let aliceValues = GenerateRandomBitArray(rountripSize);

// 3. Alice encodes the values in the qubits using the
random bases

EncodeQubits(aliceValues , aliceBases , qubits);

// 4. Eve attempts to evesdrop based on the configurable
probability

Eavesdrop(eavesdropperProbability , qubits);

// 5. Bob chooses his bases
let bobBases = GenerateRandomBitArray(rountripSize);

// 6. Bob measures qubits using the random bases
let bobResults = DecodeQubits(bobBases , qubits);

// 7. Alice and Bob compare their bases and throw away
those values that were encoded/decode in non-matching
bases

let (aliceRoundTripResult , bobRoundTripResult)
= CompareBases(aliceBases , aliceValues , bobBases ,

bobResults);

// 8. Append both key from this roundtrip to the overall
key

// repeat however many times needed
set aliceKey += aliceRoundTripResult;
set bobKey += bobRoundTripResult;

}

// 9. Perform the eavesdropper check
let (errorRate, trimmedAliceKey , trimmedBobKey) =

EavesdropperCheck(aliceKey , bobKey);

// 10. Output the resulting keys and additional useful info
ProcessResults(errorRate, trimmedAliceKey , trimmedBobKey ,

eavesdropperProbability);
}

Listing 6.1 Skeleton of the BB84 implementation in Q#.



190 6 Quantum Key Distribution

The operation takes three input parameters, that will allow us to fine-tune its
execution and test the behavior of the protocol under various conditions. The first two
are the roundtrips and roundtripSize, whichwill help us control the interactions
between Alice and Bob. For example, if we aim to execute the BB84 for an n = 128
bit key, it wouldmean that wewould need to allocate at minimum 4n = 512 qubits—
way beyond the capabilities of current quantum computing hardware or, especially,
simulators. Instead, we can run the protocol in a number of roundtrips—using
roundtripSize qubit batches in each roundtrip. A realistic approach for executing
this code on a quantum simulator would be to keep the roundtripSize under 20.

In addition to all of that, the eavesdropper probability can be passed into the entry
operation from Listing 6.1 too. It is represented by a double—to express percentage
values—and will let us invoke the code with eavesdropper participation determined
by arbitrary probabilities as well.

Before the procedure begins, we shall allocate two mutable arrays, one to hold
the key of Alice and the other of Bob. The arrays must be mutable, as we shall
continuously expand themafter every roundtrip—given the roundtrip size limitations,
each roundtrip will extend the key by a relatively small number of bits only. Alice’s
array aliceKey will be derived from her initial random bit set (source bits) while
Bob’s array bobKey will be based on his measurement results (result bits).

The roundtrips are simulated with a regular for loop, and each iteration allo-
cates roundtripSize number of qubits. The first two steps of the protocol, as
annotated in Listing 6.1 as well, are for Alice to generate her random bits and
choose her random bases. Since both of these operations are effectively just gen-
erations of random bit arrays, they can be handled by the same helper operation,
GenerateRandomBitArray (length : Int), which is shown in Listing 6.2.

operation GenerateRandomBitArray(length : Int) : Bool[] {
mutable bits = [false, size = length];

for i in 0..length -1 {
let randomBit = DrawRandomBool(0.5);
set bits w/= i <- randomBit;

}

return bits;
}

Listing 6.2 Q# operation to generate a random bit array.

The randomness of the bits in the newly created arrays is guaranteed by the
DrawRandomBool (successProbability : Double) operation from the
Microsoft.Quantum.Random namespace—the same one we used already several
times across this book.

The next step, denoted in Listing 6.1 with number three, is for Alice to encode the
randomly selected bits aliceValues into the qubits, using the randomly selected
bases aliceBases as reference. This is done via the EncodeQubits (bits :
Bool[], bases : Bool[], qubits : Qubit[]) operation.
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operation EncodeQubits(bits : Bool[], bases : Bool[], qubits :
Qubit[]) : Unit {
for i in 0..Length(qubits)-1 {

let valueSelected = bits[i];
if (valueSelected) { X(qubits[i]); }

// 0 will represent |0> and |1> computational (PauliZ)
basis

// 1 will represent |-> and |+> Hadamard (PauliX) basis
let basisSelected = bases[i];
if (basisSelected) { H(qubits[i]); }

}
}

Listing 6.3 Encoding of qubits step of the BB84 protocol in Q#.

In this encoding operation, Alice will iterate through all the qubits, and, since
the randomly generated arrays of bit values and bit bases have the same amount of
elements, she will access the corresponding random value and random basis using
the indexer. If the corresponding bit value was intended to be 1, she will apply the
X gate to the qubit to perform the bit-flip operation. She will also adopt a rule that
if the random basis bit is 0, she will use computational basis {|0〉, |1〉} to encode the
data in the qubit, while if it is 1, she will use the X-basis {|+〉, |−〉}. The practical
consequence of such a scheme, is that in the latter case shewould need to additionally
apply the H unitary transformation to the qubit.

At this point we can—in our imagination at least—assume that the qubits
fly over to Bob using a quantum communication link. Thus, in the next step,
marked in Listing 6.1 with number four, we will introduce Eve, who will attempt
to intercept and read those qubits. She does it with the operation Eavesdrop
(eavesdropperProbability : Double, qubits : Qubit[]).

operation Eavesdrop(eavesdropperProbability : Double, qubits :
Qubit[]) : Unit {
for qubit in qubits {

let shouldEavesdrop = DrawRandomBool(
eavesdropperProbability);

if (shouldEavesdrop) {
let eveBasisSelected = DrawRandomBool(0.5);
let eveResult = Measure([eveBasisSelected ? PauliX |

PauliZ], [qubit]);
}

}
}

Listing 6.4 Eavesdropper involvement as part of BB84 implementation in Q#.

Eve gets a chance to interact with each of the qubits in the roundtrip batch,
based on the eavesdropperProbability. If we have determined that eavesdrop-
per can act on a given qubit, she shall randomly switch between the Z and X-bases,
because she has to guess the bases, and can proceed to the measurement. The same
DrawRandomBool (successProbability : Double) operation as used earlier,
can act here as a reliable decision maker. Toggling between measurement bases in
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Q# is very easily achieved using the Measure (bases : Pauli[], qubits :
Qubit[]) which we first introduced already back in Sect. 4.1. After the measure-
ment, Eve obtains her result and the qubit then continues on its way to Bob.

The next step of the protocol foresees Bob receiving the batch of qubits. In princi-
ple, he shall follow the exact same procedure as Eve had to go through—he will need
to select a random basis for each qubit and measure it. In this implementation, anno-
tated with step five in Listing 6.1, Bob will select all his random bases upfront using
GenerateRandomBitArray(length : Int) operation from Listing 6.2, just as
Alice did. Those bases are then captured into the bobBases variable.

Bob will then measure the qubits using his randomly selected bobBases as mea-
surement guide—and this is expressed by the DecodeQubits(bases : Bool[],
qubits : Qubit[]) operation and marked in Listing 6.1 with step six.

operation DecodeQubits(bases : Bool[], qubits : Qubit[])
: Bool[] {

mutable bits = [false, size = 0];

for i in 0..Length(qubits)-1 {
let result = Measure([bases[i] ? PauliX | PauliZ], [

qubits[i]]);
set bits += [ResultAsBool(result)];

}

return bits;
}

Listing 6.5 Decoding of qubits step of the BB84 protocol in Q#.

In order to properly decode the qubits that arrived, Bob allocates a mutable array
to hold the bit results, iterates through the qubits, and measures each qubit randomly
choosing either the X or Z-basis. Themeasurement result is converted into a classical
bit using the ResultAsBool (input : Result) conversion function, from the
Microsoft.Quantum.Convert namespace.

At this point we can quickly regroup, to make sure we know exactly where
we are in BB84. Alice has sent her random bits, encoded into qubits and stored
them in aliceValues array. Her, also random, bases to encode those values
have been stored in aliceBases array. Bob’s measurement results are located in
bobResults array, while his randomly chosen measurement bases are stored in
bobBases array. Eve interfered with the communication with the probability equal
to eavesdropperProbability though her measurement results and bases are not
stored anywhere as they are irrelevant for the protocol—what is important is whether
Alice and Bob will be able to detect her malicious presence at all.

The next step, marked with seven in Listing 6.1 is the first critical junction for the
BB84 protocol. Alice and Bob shall compare their bases at this point, and discard
the classical bits corresponding to the qubits that they (respectively) encoded and
decoded in non-matching bases. In other words, if the bases for a given qubit agree
for them, then they want to keep the corresponding source bit value (Alice) or the
corresponding measurement bit result (Bob). Based on sheer probabilities, given
that Bob was guessing the basis from two possible options, Alice and Bob should
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have about 50% of original qubits involved in the roundtrip left. The deviations in
the Q# implementation can be large though, because as explained in the beginning,
due to hardware and simulator limitations, our rountripSize will be a relatively
low number. The comparison function CompareBases (basesAlice : Bool[],
bitsAlice : Bool[], basesBob : Bool[], bitsBob : Bool[]) is shown
in Listing 6.6.

function CompareBases(length : Int, basesAlice : Bool[],
bitsAlice : Bool[], basesBob : Bool[], bitsBob : Bool[]) : (
Bool[], Bool[]) {
mutable trimmedAliceBits = [false, size = 0];
mutable trimmedBobBits = [false, size = 0];

// compare bases and pick shared results
for i in 0..length -1 {

// if Alice and Bob used the same basis
// they can use the corresponding bit
if (basesAlice[i] == basesBob[i]) {

set trimmedAliceBits += [bitsAlice[i]];
set trimmedBobBits += [bitsBob[i]];

}
}

return (trimmedAliceBits , trimmedBobBits);
}

Listing 6.6 Comparison of Alice and Bob bases step of the BB84 protocol in Q#.

The function will trim the bit arrays held by Alice and Bob to only keep the
indices for which the corresponding basis choice was identical. Those are then
returned from the function for processing in the main branch of the code as a
tuple. There, they are reconstructed into twovariables:aliceRoundTripResult and
bobRoundTripResult. If there was no eavesdropper, those two arrays are expected
to be identical.

Step eight in Listing 6.1 is straightforward—append the results of the single
roundtrip for both Alice and for Bob to their respective mutable key arrays—
aliceKey and bobKey. Based on roundtrip configuration that was passed into the
orchestration operation, the procedure outlined in steps one to eight may repeat sev-
eral times, to let the key grow to larger sizes. We purposely left eavesdropper check
for later—to perform it once only, on a larger key.

Sniffing out a potential attacker on the communication channel is the last logi-
cal step in the protocol—and step nine in Listing 6.1, where it is also represented
by an invocation of an EavesdropperCheck (aliceKey : Bool[], bobKey :
Bool[]) operation.

operation EavesdropperCheck(aliceKey : Bool[], bobKey : Bool[]) :
(Double, Bool[], Bool[]) {

mutable trimmedAliceKey = [false, size = 0];
mutable trimmedBobKey = [false, size = 0];
mutable eavesdropperIndices = [0, size = 0];
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for i in 0..Length(aliceKey)-1 {
let applyCheck = DrawRandomBool(0.5);
if (applyCheck) {

set eavesdropperIndices += [i];
} else {

set trimmedAliceKey += [aliceKey[i]];
set trimmedBobKey += [bobKey[i]];

}
}
mutable differences = 0;
for i in eavesdropperIndices {

// if Alice and Bob get different result, but used same
basis

// it means that there must have been an eavesdropper (
assuming perfect communication)

if (aliceKey[i] != bobKey[i]) {
set differences += 1;

}
}
let errorRate = IntAsDouble(differences)/IntAsDouble(Length(

eavesdropperIndices));
return (errorRate, trimmedAliceKey , trimmedBobKey);

}

Listing 6.7 Eavesdropper check step of the BB84 protocol in Q#.

To facilitate the check for eavesdropper presence, Alice and Bob must now ran-
domly choose 50% of their remaining classical bits and sacrifice them by performing
public comparison. This can be expressed in Q# in a number of ways, but in our case,
we shall simply iterate through all the bits that Alice/Bob now possess and, using
our good friend DrawRandomBool(successProbability : Double), randomly
deciding whether a given bit should be used for eavesdropper check, or whether it
should be kept as part of the expected final key. If it should be kept, we add it to two
helper mutable arrays, trimmedAliceKey and trimmedBobKey, where the ultimate
keys will be located. On the other hand, if we determine that a bit ought to be used
for eavesdropper detection, we need to note down its index in yet another mutable
helper array, eavesdropperIndices.

Once the comparison bit indices are known and stored in eavesdropper
Indices, all that is left is to loop through that array and pick the corresponding
bit values out of Alice’s and Bob’s original key arrays for comparison. Leaving
quantum errors aside for simplicity of this discussion, if at this point there is any
difference between Bob and Alice, it means that there was an eavesdropper on their
quantum communication channel, as it should not be possible for them to possess
different classical bit value if they chose the same basis. Of course as we already
extensively discussed, Eve as the attacker could also guess the basis correctly and if
all three of them agreed on a basis, then no difference would be recorded. But Eve
will be wrong about 50% of time, which will then cause some discrepancies between
Alice and Bob, and this is exactly what they are after.
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Using the running total of recorded differences and the total of bits selected for
eavesdropping check, Alice and Bob can compute the error rate, which they can use
as a confidence indicator that no one intercepted their communication—captured as
a double in the errorRate variable. In this idealistic example, we shall use 0.0
as the error threshold—if that level is exceeded, meaning there was any difference
between the Alice’s and Bob’s bit values in the sampled set, the protocol will be
aborted. The operation then returns this error rate, as well as the trimmed keys.

The last, tenth step of Listing 6.1 is a helper function shown in Listing 6.8, which
does not contribute anyprotocol logic anymore, and existsmerely for our convenience
to summarize the outcome of the entire process and provide some useful output
information.

function ProcessResults(errorRate : Double, aliceBits : Bool[],
bobBits : Bool[],eavesdropperProbability : Double) : Unit {
Message($"Alice’s key: {BoolArrayAsBigInt(aliceBits)}");
Message($"Bob’s key: {BoolArrayAsBigInt(bobBits)}");

Message($"Error rate: {errorRate * IntAsDouble(100)}%");
if (errorRate > 0.0) {

Message($"Eavesdropper detected!");
}

if (EqualA(EqualB, aliceBits, bobBits)) {
Message($"Running the protocol with eavesdropping

probability {eavesdropperProbability} was successful.
");

} else {
Message($"Running the protocol with eavesdropping

probability {eavesdropperProbability} was
unsuccessful.");

}
Message("");

}

Listing 6.8 Helper function to display BB84 protocol results.

This final piece is a formality—we use it to print out the final keys, which
after the trimming operation, caused by the eavesdropper check, are going to
be (approximately) halved again. Due to the statistical nature of the protocol,
subsequent runs may yield keys of different results. This is not a problem per
se, though it is something we do not account for in our Q# implementation. It
is, however, possible to imagine an implementation that would continue to add
extra roundtrips, until a specific key size is reached. At this point, of course,
the keys are expected to be identical for both Alice and Bob, and ready to be
used to engage in cryptographic activities. As such ,the keys naturally must not
be revealed to anyone, nor can they be compared anymore. However, what the
helper function from Listing 6.8 does, is it additionally performs an explicit com-
parison of both keys—this is for our convenience to verify the correctness of all
the steps our Q# code executed. This comparison is facilitated by a built-in equal-
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ity check function EqualA<’T> (equal : ((’T, ’T) -> Bool), array1 :
’T[], array2 : ’T[]) from the Microsoft.Quantum.Arrays namespace.

Q# does not have a standard library functionality for serializing a boolean array
into a bit string, however printing a long series of zeroes and ones making up the
shared key would not be particularly readable anyway. Instead, we can use the
BoolArrayAsBigInt (a : Bool[]) function which can convert a bit array into
a corresponding big integer, which would be helpful for illustrative purposes.

The final piece left is to invoke the protocol—we do it by performing a call into
the main orchestration operation from Listing 6.1.

@EntryPoint()
operation Start() : Unit {

RunBB84Protocol(32, 16, 0.0);
}

Listing 6.9 Execution of the BB84 protocol in Q# without any configured eavesdropper.

The first trial run uses 32 roundtrips of batch size 16, which amounts for a total
of 512 qubits involved in the protocol. After halving the bits twice—once for basis
comparison, and once for eavesdropper check—we should expect a key of about 128
bit length to be remaining. In this particular run, the eavesdropper probability is set
to 0%, thus we expect the protocol to be successfully executed.

An example of a successful output should look as that from Listing 6.10.

Alice’s key: 4942281791115317360795040466615314050946
Bob’s key: 4942281791115317360795040466615314050946
Error rate: 0%
Running the protocol with eavesdropping probability 0 was

successful.

Listing 6.10 Sample output from running the code from Listing 6.9.

Once we activate the eavesdropper, with engagement probability 1, we should see
the failure of the protocol.

@EntryPoint()
operation Start() : Unit {

RunBB84Protocol(32, 16, 1.0);
}

Listing 6.11 Execution of the BB84 protocol in Q# with a certain eavesdropper participation.

The output would now resemble the one from Listing 6.12, obviously it will differ
a little bit from run to run due to probabilistic nature of the protocol.

Alice’s key: 17732650908031489952644984180751505962
Bob’s key: 16103973419327489609020364606533803818
Error rate: 25.517241379310345%
Eavesdropper detected!
Running the protocol with eavesdropping probability 1 was

unsuccessful.

Listing 6.12 Sample output from running the code from Listing 6.11.
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This is alignedwith our expectations—as discussed earlier, eavesdropper presence
on each qubit should create about 25% error rate and cause Alice and Bob to detect
its intrusive presence and be able to abort the protocol.

Finally, if we reduce the eavesdropper engagement to 50%, we should expect the
error rate to go down to about 12.5%.

@EntryPoint()
operation Start() : Unit {

RunBB84Protocol(32, 16, 0.5);
}

Listing 6.13 Execution of the BB84 protocol in Q# with eavesdropper probability set to 50%.

This should indeed be possible to be observed in the result, and at this point it
would be up to Alice and Bob to decide if they are confident enough in such result,
or should they restart the protocol from scratch.

Alice’s key: 5035180712029965406486729833895832034
Bob’s key: 5034534848983985497550214425192564900
Error rate: 13.432835820895523%
Eavesdropper detected!
Running the protocol with eavesdropping probability 0.5 was

unsuccessful.

Listing 6.14 Sample output from running the code from Listing 6.13.

6.3 B92 Protocol

Eight years after the BB84 quantum key distribution protocol was published, Charles
Bennett proposed its alternative variant [3], which later became known as the B92
protocol for quantum key distribution.

Bennett realized that a measurement that “fails to disturb each of two non-
orthogonal states also fails to yield any information distinguishing them”.As a conse-
quence, in the B92 scheme, he simplified the original BB84 approach by employing
two non-orthogonal states only, making up a single non-orthogonal basis, instead of
four quantum states forming two mutually unbiased bases. From that perspective,
B92 protocol really highlights how quantum key distribution protocols can guarantee
information security through the indistinguishability of non-orthogonal state [14].

The non-orthogonal basis proposed in B92 to encode a classical bit value x was
made up of states |0〉 and |+〉 from the Z and X-bases respectively is shown in (6.4).

|ψ〉 =
{

|0〉 when x = 0

|+〉 = 1√
2
(|0〉 + |1〉) when x = 1

(6.4)

Beyond this difference, BB84 and B92 are effectively the same protocol, and
from the physical realization perspective are interchangeable under the same physical
conditions [11]. Just like in the case of BB84, the usage of states originating from
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Z and X-bases is not mandatory, the protocol can work equally well using a pair of
non-orthogonal eigenstates from any two mutually unbiased bases.

The protocol steps would largely follow the BB84 steps outlined in Sect. 6.2. It
starts with Alice randomly generating an array of classical bits that will be used as the
basis for the shared key. Contrary to BB84, she no longer needs to keep track of the
bases she chooses, because she shall encode the random bits using the methodology
defined in Eq. 6.4—if she generates a random 0, she transforms the qubit into state
|0〉, and when she generates 1, the qubit will need to be transformed into |+〉. The
former can be achieved by simply not applying any gates to the qubit (or using the
no-op I gate), the latter by applying the H transformation.

As we will soon find out, the main disadvantage of B92 is that it is actually only
half as efficient as BB84, and thus to transfer a key of length n bits, Alice must
initially generate 8n bits—and she will naturally require as many qubits to encode
them.

Once generated, Alice sends over her qubits, now containing all the encoded
information, to Bob. While Alice operated on a single non-orthogonal basis only,
a hybrid Z and X-basis, Bob can only measure the qubits using orthonormal bases.
Because of that, he will perform the measurements the same way as he would have
done it in BB84, namely by randomly switching between the Z and X-bases—after
all he does not know how Alice encoded the data, so the best he can do is guess.
Just like in BB84, Bob will pick the correct basis roughly 50% of the time—and he
proceeds to measure the qubits and note down all the measurement results.

Each of the qubits in this scheme, can be described by three classical bits. The
first one, we shall refer to it as a, is the value that Alice encoded into the qubit. The
second one, and we will call it b, represents the basis that Bob randomly selected for
measurement. Imagine that when he needs to choose the basis for measurement Bob
generates a random classical bit (or flips the proverbial coin)—which is really the
value of b. If b = 0, he measures the qubit in the Z-basis, and if b = 1, he performs
the observation in the X-basis. Upon measurement, irrespective of the basis chosen,
Bob obtains a classical measurement result, which is the third classical bit we need
to be aware of—we will call it r .

Let us recap the scheme up to this point quickly. Alice generated a classical bit
a, encoded it into a qubit using the non-orthogonal basis which was a mix of Z and
X-bases and sent it over to Bob. Bob switches between the Z and X observables for
the measurement process based on the value of his randomly generated bit b and
obtains a classical result r . This procedure would be repeated 8n times for a key of
length n.

The next step in BB84 would be the basis comparison, though in B92 that makes
no sense since Alice’s basis is non-orthogonal. Instead, Bob publishes his classical
results r for each of the measured qubits. He can do that over a public channel. All
the values of r simply form a series of 0 and 1, each one corresponding to a specific
qubit.

As we know, Alice could have encoded the data into the qubit in two different
ways, as outlined in Eq. 6.4. For both of these options there are several possible



6.3 B92 Protocol 199

measurement outcomes that might have lead Bob to obtain the r values that he
actually got, so let us review them carefully:

• Alice generated a = 0 and thus encoded a state |0〉 into the qubit
– Bob generates b = 0 and thus measures in the correct Z-basis

· Bob measures r = 0. He cannot really say if Alice encoded a = 0, sent |0〉
and he measured in the correct basis, or whether she encoded a = 1, sent |+〉
and by measuring the qubit in the incorrect basis it simply collapsed to |0〉.

· Bob cannot ever measure r = 1 when he guesses the basis right—in this case
Alice always sends |0〉, and r = 1 would have meant here she sent |1〉

– Bob generates b = 1 and thus measures in the incorrect X-basis

· Bob measures r = 0. He cannot really say if Alice encoded a = 1, sent |+〉
and he measured in the correct basis, or whether she encoded a = 0, sent |0〉
and by measuring the qubit in the incorrect basis it simply collapsed to |+〉.

· Bob measures r = 1. He is now certain that Alice generated a = 0, sent him
|0〉 and it collapsed to |−〉 because he used the incorrect basis. The reason is,
she would have never sent |−〉 in the X-basis.

• Alice generated a = 1 and thus encoded a state |+〉 into the qubit
– Bob generates b = 0 and thus measures in the incorrect Z-basis

· Bob measures r = 0. He cannot really say if Alice encoded a = 0, sent |0〉
and he measured in the correct basis, or whether she encoded a = 1, sent |+〉
and by measuring the qubit in the incorrect basis it simply collapsed to |0〉.

· Bob measures r = 1. He is now certain that Alice generated a = 1, sent him
|+〉 and it collapsed to |1〉 because he used the incorrect basis. The reason is,
she would never sent |1〉 in the Z-basis.

– Bob generates b = 1 and thus measures in the correct X-basis

· Bob measures r = 0. He cannot really say if Alice encoded a = 1, sent |+〉
and he measured in the correct basis, or whether she encoded a = 0, sent |0〉
and by measuring the qubit in the incorrect basis it simply collapsed to |+〉.

· Bob cannot ever measure r = 1 when he guesses the basis right—in this case
Alice always sends |+〉, and r = 1 would have meant here she sent |−〉

Looking at all this combinations, we quickly recognize that the only possibility
for Alice and Bob to be able to assert that they both have the same bits to make
up their shared key, is in the situation when Bob’s measurement result was r = 1.
Therefore, they discard all the bits that correspond via their index to the qubits for
which Bob measured r = 0.

The scheme also tells us that Bob’s measurement result r = 1 could only occur
when Bob guessed the basis wrong, so for qubits for which:

{a = 0, b = 1, r = 1} (6.5)
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{a = 1, b = 0, r = 1}

Those are the qubits that Alice and Bob need to keep to make up the secret key.
The key for Alice will be the array of the remaining a bits, while for Bob it will be
the array of negated b bits (or 1 − a), because a and b are perfectly correlated but
have opposite values, forcing Bob to flip the value of each of his b bits.

To sum up, this entire process results in the number of available bits going down
from the initial 8n to about 2n. If it is still not obvious, the simple way of thinking
about it, is as follows. If Bob guesses the correct basis, the qubits will be discarded,
which will cut their pool in half. From the remaining 50%, he will be measuring in
the incorrect basis and so would obtain r = 1 only half of the time—when the qubit
collapses to 1. This again means halving of the available qubit pool.

The overview of the B92 protocol, without the explicit eavesdropper check, is
shown in Table 6.5.

With regards to the eavesdropper check, the procedure to follow in B92 would be
identical to the one we discussed for BB84. After the reconciliation process we just
covered, Alice and Bob still have about 2n bits remaining, which naturally means
that they can deploy n of them as an integrity check against a presence of a potential
malicious intermediary or other threat actors. What they need to engage in, is a
comparison of n of their {a, b} pairs, which can be executed over a public channel.
Their expectation would be to find that the correlation between them—as explained
earlier, they should have opposite values—remained intact, and if it does not, it would
hint at a potential adversary on the quantum communication link. From the practical
standpoint, this would be the trigger for Alice and Bob to abort the protocol and
restart from scratch.

Overall, B92 provides an interesting alternative to BB84. By utilizing a single
non-orthogonal basis, it benefits from a lower overall complexity level, at the price
of its halved efficiency, which, at roughly 25% for BB84, was not too high to begin
with. This leaves only 12.5% qubits to begin with error correction and privacy ampli-
fication [1], which will further impact the amount of usable transmitted data. These
are topics we generally omit in this book, as we limit ourselves to idealistic theo-
retical conditions, but nevertheless they will be part of the bigger picture in real-life
implementations.

It would not come as a surprise, when we say that the Q#-based sample B92
protocol implementation will largely follow the BB84 from Listing 6.2. We shall
therefore often rely on and cross-reference code listings from that section.

Just like we did in BB84, we shall repeat the setup with a single operation
that will be capable of orchestrating the entire protocol based on three input

Table 6.5 Overview of the B92 protocol

Alice bit a a = 0 a = 1

Alice state sent |0〉 |+〉
Bob bit b b = 0 b = 1 b = 0 b = 1

Bob basis Z X Z X

Bob measurement r 0 0 1 0 1 0

Keep bit? no no yes no yes no
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parameters—the total amount of roundtrips, the size of a roundtrip and the
probability of an attacker sniffing out the communication between Alice and Bob.
TheoperationRunB92Protocol (roundtrips : Int, rountripSize : Int,
eavesdropperProbability : Double) in its entirety is shown in Listing 6.15.

operation RunB92Protocol(roundtrips : Int, rountripSize : Int,
eavesdropperProbability : Double) : Unit {
mutable aliceKey = [false, size = 0];
mutable bobKey = [false, size = 0];
for roundtrip in 0..roundtrips -1 {

use qubits = Qubit[rountripSize];

// 1. Alice chooses her random bits
let aliceValues = GenerateRandomBitArray(rountripSize);

// 2. Alice encodes the values in the qubits using the
random bases

EncodeQubits(aliceValues , qubits);

// 3. Eve attempts to evesdrop based on the configurable
probability

Eavesdrop(eavesdropperProbability , qubits);

// 4. Bob chooses his bases
let bobBases = GenerateRandomBitArray(rountripSize);

// 5. Bob measures qubits using the random bases
let bobResults = DecodeQubits(bobBases , qubits);

// 6. Alice and Bob perform the comparison and throw away
unnecessary values

let (aliceRoundTripResult , bobRoundTripResult)
= ReconcileAliceAndBob(rountripSize , aliceValues ,

bobBases , bobResults);

// 7. Append both key from this roundtrip to the overall
key

// repeat however many times needed
set aliceKey += aliceRoundTripResult;
set bobKey += bobRoundTripResult;

}

// 8. Perform the eavesdropper check
let (errorRate, trimmedAliceKey , trimmedBobKey) =

EavesdropperCheck(aliceKey , bobKey);

// 9. Output the resulting keys and additional useful info
ProcessResults(errorRate, trimmedAliceKey , trimmedBobKey ,

eavesdropperProbability);
}

Listing 6.15 Skeleton of the B92 implementation in Q#.
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The code looks very similar to the BB84 orchestration operation from Listing
6.1, but there are some key differences. First of all, Alice does not need to keep
track of her bases anymore, hence a dedicated array keeping a record of the random
bases she chose is no longer needed—step one from BB84 is completely omitted.
Instead, Alice proceeds straight to generating a random array of bits—an array of
her a bits—which shall represent the bits she will send over to Bob to be used as the
foundation for them establishing their shared key.

This procedure is performed by GenerateRandomBitArray (length : Int)
operation, which is identical to the one from the BB84 protocol and which was
already listed in Listing 6.2, so we do not need to revisit it again here. The randomly
generated bits are stored in a local variable aliceValues.

Next step, step two in Listing 6.15, represents Alice encoding these randomly
generated bits into the batch of qubits, one a bit into one qubit, that shall make up
a given roundtrip. She does it with the help of an operation EncodeQubits (bits
: Bool[], qubits : Qubit[]) from Listing 6.16, which is somewhat similar
to the encoding operation from BB84, with the key difference being the usage of a
single non-orthogonal basis, instead of two different independent bases.

If the bit value that Alice wants to encode is 0, she keeps the qubit as is, because as
we already know, Q# guarantees that newly allocated qubits are in the computational
basis state |0〉. Conversely, if she is encoding 1, she applies the H gate to create the
state |+〉. The encoding operation mutates the qubits in place, and therefore no return
from the operation is necessary.

operation EncodeQubits(bits : Bool[], qubits : Qubit[]) : Unit {
for i in 0..Length(qubits)-1 {

let valueSelected = bits[i];
if (valueSelected) { H(qubits[i]); }

}
}

Listing 6.16 Encoding of qubits step of the B92 protocol in Q#.

Step three in Listing 6.15 corresponds to step four in the BB84 in Listing 6.1, and
it involves Evemounting an attack on the communication channel between the qubits
that are now (for our Q# code hypothetically, of course) in transit between Alice and
Bob. Eve will be allowed to tap into the qubit communication between Alice and Bob
based on the probability value which is an argument on our protocol operation. The
implementation here is identical to the one from BB84 protocol as shown in Listing
6.4, so we will not repeat it. Since Eve does not know which measurement basis to
use too, she will have to measure the qubits by guessing between the Z and X-bases.

Next part of the protocol requires Bob to receive the qubits, generate a random bit
array corresponding to the measurement bases Z and X, and perform the measure-
ments on the qubits accordingly. For our implementation of the B92, these are steps
four and five in Listing 6.15, and they happen to be identical as steps five and six
from the BB884 implementation in Listing 6.1. Namely, Bob shall generate his ran-
dom bit array using the GenerateRandomBitArray (length : Int) operation
as used in BB84 Listing 6.2, and then decode them the same way as in BB84, using
DecodeQubits (bases : Bool[], qubits : Qubit[]) operation which we
already saw in Listing 6.5.
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Next, at step six of Listing 6.15, the process deviates from BB84 again. Alice
and Bob should reconcile their data according to the procedure we outlined earlier—
based on the measurements results that Bob obtained, which we deemed as r . If Bob
measured r = 1,Alice should keep her randombit a, andBob should keep his random
base bit b. Since Bob knows that at this point a and b are perfectly correlated but
inverses of each other, he also flips his bits to make sure that he produces an identical
bit array to Alice. For all other cases, namely where r = 0, the corresponding a and
b bits must be discarded. This is expressed in Q# code with the function shown in
Listing 6.17.

function ReconcileAliceAndBob(length : Int, bitsAlice : Bool[],
basesBob: Bool[], bitsBob : Bool[]) : (Bool[], Bool[]) {
mutable aliceTrimmedBits = [];
mutable bobTrimmedBits = [];

for i in 0..length -1 {
let r = bitsBob[i];
let a = bitsAlice[i];
let b = basesBob[i];

if r {
set aliceTrimmedBits += [a];
set bobTrimmedBits += [not b];

}
}

return (aliceTrimmedBits , bobTrimmedBits);
}

Listing 6.17 Alice and Bob reconciliation step of the B92 protocol in Q#.

Thegoal is to obtain two sets of trimmedbits representing a sharedkey in array data
structures—aliceTrimmedBits forAlice and bobTrimmedBits forBob.Those are
then returned from the function as a tuple. Notice that because this callable does not
perform any quantum work, it does not need to be an operation, but is declared as a
function instead. The usage of the inline variables r , a and b is not necessary—we
could have written the code without the explicit variable allocations, by relying on
indexer accesses only, though this way it is a little more verbose and hopefully easier
to follow.

The final parts of B92 would again converge with BB84. Due to the fact that our
roundtrip sizes are relatively small, we will need to repeat the procedure outlined
so far a larger amount of times so that the produced keys have sizes that would be
usable for Alice and Bob.

The eavesdropper check operation, step eight in Listing 6.15, is the same as in
BB84, and we covered it in Listing 6.7. Obviously, it results in halving of the key that
remains in possession of Alice and Bob. This concludes the protocol—what follows
is a call to the helper function from Listing 6.8, which we are re-using from earlier
for providing the output of the B92 protocol execution.

The only thing left to do at this point, is to run the protocol using the entry operation
from Listing 6.15. We want to do this with different configurations and verify that
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its outcome is as expected—that identical keys are shared between the parties and
eavesdropper presence is successfully detected where needed.

Let us first invoke it without any eavesdropper presence, with 64 roundtrips and
a roundtrip batch size of 16. Notice that, as already discussed, the total amount of
involved qubits must be twice as large as in BB84 in order to obtain the same final
key size.

@EntryPoint()
operation Start() : Unit {

RunB92Protocol(64, 16, 0.0);
}

Listing 6.18 Execution of the B92 protocol in Q# without any configured eavesdropper.

The output of this operation should resemble that from Listing 6.19.

Alice’s key: 467581484336045150442635676860351522796979
Bob’s key: 467581484336045150442635676860351522796979
Error rate: 0%
Running the protocol with eavesdropping probability 0 was

successful.

Listing 6.19 Sample output from running the code from Listing 6.18.

Just as we experienced in BB84, once the eavesdropper is brought into the picture,
we should see the failure of the protocol. We can actually invoke the protocol twice
in a row in one execution, by setting the eavesdropper probabilities to 50 and 100%.

@EntryPoint()
operation Start() : Unit {

RunB92Protocol(64, 16, 0.5);
RunB92Protocol(64, 16, 1.0);

}

Listing 6.20 Execution of the B92 protocol in Q# with preconfigured eavesdropper probabilities.

The observed result should prove that we were able to sniff out the attacker’s
presence in both cases. Depending on how likely it was for the eavesdropper to
participate in the process, the detected error rate might be higher or smaller. In either
case, Alice and Bob should have aborted the protocol.

Alice’s key: 162188606146512819346158503968000105302714111422371
Bob’s key: 155978663887321065308367497951883701348926811467171
Error rate: 15.625%
Eavesdropper detected!
Running the protocol with eavesdropping probability 0.5 was

unsuccessful.

Alice’s key: 7728681265505279559099071734316686598191063923
Bob’s key: 1679692892896491706419107279380654957414073073
Error rate: 32.71889400921659%
Eavesdropper detected!
Running the protocol with eavesdropping probability 1 was

unsuccessful.

Listing 6.21 Sample output from running the code from Listing 6.20.
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Overall, despite some larger deviations on individual runs with regards to key
sizes and error rates—that are caused by the fact that efficiency of B92 is lower
than BB84, which is particularly visible in the small roundtrip sizes we deal with
here—the results should quite nicely align with those of the BB84 implementation
we did earlier.

6.4 EPR-Based Quantum Key Distribution

BB84 and B92 both require physical transmission of qubits from Alice to Bob.
This creates a natural attack vector, as the qubits in transit can be intercepted by a
potential adversary. On the other hand, entanglement seems to be perfectly suited
for distributing secret information such as encryption keys.

We are alreadywell aware that two actors could share sets of maximally entangled
particle pair upfront, each one making up a Bell state (EPR pairs). At that point
they can head off their separate direction and no longer need to have a quantum
communication channel available between themselves. In fact, if the entangled pairs
are provided by a third party (Charlie), Alice and Bob are never even required to be
in contact in the first place.

Later on, provided no decoherence effects happened and the entanglement
between their shared pairs remains stable,4 Alice and Bob can be guaranteed that
upon their respective measurements, they will receive perfectly correlated measure-
ment results. This already takes us far down the path of quantum key distribution.

The first EPR-based quantum key distribution protocol was proposed by Artur
Ekert in 1991, who suggested that the phenomenon of entanglement could facilitate
QKD without any associated element of reality [9]. In line with the naming schemes
we encountered so far, Ekert’s protocol became known as E91. A set of different spin-
off variants followed it, giving rise to a general class of quantum key distribution
protocols, the so-called EPR-based quantum key distribution protocols.

The scheme devised by Ekert addressed two major challenges of the BB84 and
B92 protocols. First of all, by relying on EPR correlations, the need for a quantum
communication channel between Alice and Bob, as the medium to share the key, is
no longer required, provided they both have a reliable alternative way of obtaining
the entangled particle pairs. And of course if there is no communication, there is no
channel to attack for an adversary.

Secondly, the secret key is never known by any of the parties upfront. In both
BB84 and B92, the initial random sequence of bits is created by Alice, encoded into
qubits, shipped off to Bob, and they proceed to establish the shared key from that.
In EPR-based quantum key distribution schemes, the secret does not really exist as
an objective element of reality on either side of the protocol until both participants
perform their measurements. From that perspective we can refer to EPR-schemes
not as shared secret distribution but shared secret generation methods [8]. This is

4 A big if indeed.
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important because if there is no key, there is nothing to steal—even if the EPR pairs
do travel through some quantum optical channel. On top of that, the randomness of
the secret is now underpinned by the correctness of quantum mechanism, instead of
a randomness promise that needs to be fulfilled by one of the parties (typically Alice)
engaged in the protocol.

Such characteristics of the EPR-based quantum key distribution protocols also
mean that they can benefit from techniques such as privacy amplification [7] and
other transmission enhancements, which in turn leads to overall better performance
and resistance to noise [6].

The EPR protocols, despite the lack of qubit exchange between Alice and Bob
during the execution protocol, are of course not free of attack possibilities. If the
entangled qubit pairs are obtained by Alice and Bob from a third party source, an
attacker, Eve, could have impersonated a trusted authority (Charlie) responsible for
producing those entangled pairs in the first place, or injected (swapped) its own qubits
into the communication channel between Alice and Bob and that EPR pair source.
Even if Alice and Bob produce the entangled pairs when they are physically present
together at some point in time, it is still possible for Eve to mount an attack at a later
time. For example, once Alice and Bob are separated from each other, Eve could still
gain temporary access to either Alice’s or Bob’s part of the EPR pair and attempted
to measure them—after all, in this scheme, access to one side is potentially enough.

Let us now go through the steps of an EPR-based quantum key distribution. Alice
and Bob begin with a set of n entangled qubit pairs in their possession. Each one is
controlling one of the qubits making up a given pair, with each pair in an identical
initial maximally entangled Bell state |�+〉.

|�+〉 = 1√
2

(
|00〉 + |11〉

)
(6.6)

Due to the nature of maximally entangled states, which we covered in Chap. 5,
regardless of whether Alice or Bob decides to measure their part of the entangled pair
first, it will force the other qubit making up the pair to produce perfectly correlated
measurement result upon its observation—as long as the chosen basis is the same for
both of the measurements. In the discussed case, since the entangled state is |�+〉,
it would really be the exact same measurement outcome—they would both produce
classical 0 or they would both produce classical 1. Thus, a set of such entangled
EPR pairs will, upon measurement, equip both participants with identical classical
bit sequences. For opposite correlated Bell states |�+〉 and |�−〉, the generated bit
sequences would be complementary to each other, and one of the parties would be
required to perform a bitflip corrective action at the end of the protocol.

When Alice and Bob are ready to have their shared key created, each of them
performs a measurement of the qubit in their control. Just like in BB84, they will
randomly toggle between two bases—the computational Z-basis {|0〉, |1〉} and the
X-basis {|+〉, |−〉}. If their randomly chosen basis happens to be the same for the
given EPR pair, they will indeed receive the same classical bit. If their bases are
different, they will only get the same result 50% of the time.
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Table 6.6 Overview of the EPR QKD protocol. For a simplified picture it is assumed that Alice
measures first

Alice basis Z X

Alice measurement |0〉 |1〉 |+〉 |−〉
Bob basis Z X Z X Z X Z X

Probability of correlation 1 0.5 1 0.5 0.5 1 0.5 1

After the completion of all measurements, as it was done in BB84, Alice and Bob
need to compare the measurement bases. This does not require any special security
measures and therefore they can perform this comparison over a public channel. They
will then proceed to discard all the qubit pairs for which their bases were different,
as the produced bit result is not deterministic. Statistically speaking, their bases’
choices will agree about half of the time, and therefore about 50% of their qubits
will need to be discarded. The remaining half of the qubits now forms a random key
that each of them has in their possession.

The summary of the protocol, with an assumption that it is Alice who performs
the first measurement (though this is not a constraint of the scheme) is shown in
Table 6.6.

The eavesdropper check follows the same principles as both BB84 and B92. Alice
and Bob will have to sacrifice half of their remaining qubits, further bringing down
the protocol efficiency to 25%, leaving them with only a quarter of the entangled
qubit pairs contributing to the actual shared secret key. Since the process in which
the key emerges relies on random basis guesses, Eve would have had to guess the
basis as well if she attempted to perform a silent measurement of any of the involved
qubits at any point, and she would therefore impact the correlations between the EPR
pair. If the discrepancy rate is higher than the arbitrary acceptable error rate, Alice
and Bobwould determine that there is a high probability of an eavesdropper presence
and they should abort the protocol and restart with a new set of entangled particles.

A complementary check for the eavesdropper activity would be for the parties to
perform a Bell inequality violation test [2]. Inequalities should always be violated if
the protocol was successful executed—otherwise the attacker must have disrupted
the system by introducing those missing elements of reality into it.

Our Q# implementation for EPR-based quantum key distribution will largely
follow the pattern we already established so far in this chapter when discussing
BB84 and B92 protocols. In this particular case, our main orchestrator operation
will be shown in Listing 6.22 where it is called RunEPRQKDProtocol (expected
KeyLength : Int, eavesdropperProbability : Double).

The roundtrip configuration parameters, familiar from BB84 and B92 Q# imple-
mentations are replaced here with a single expectedKeyLength. As we already
learnt, contrary to those protocols, the EPR-based quantum key distribution does not
require the exchange of qubits between the two participating parties. As such, “send-
ing” of qubits in chunks between Alice and Bob can be replaced with actions sequen-
tially executed against single qubits by them, which altogether makes the simulation
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of the protocol considerably less complicated. Sinceweknow that the efficiencyof the
protocol is 25%, we shall allocated a total of 4× expectedKeyLength qubit pairs.5

operation RunEPRQKDProtocol(expectedKeyLength : Int,
eavesdropperProbability : Double) : Unit {
// we require 4 * n EPR pairs to produce a key of length n (

on average)
let requiredQubits = 4 * expectedKeyLength;
mutable aliceRes = [false, size = 0];
mutable bobRes = [false, size = 0];

// 1. Alice and Bob choose their bases
let aliceBases = GenerateRandomBitArray(requiredQubits);
let bobBases = GenerateRandomBitArray(requiredQubits);

for i in 0..requiredQubits -1 {

// 2. create an entangled EPR pair
use (aliceQ, bobQ) = (Qubit(), Qubit());
PrepareEntangledState([aliceQ], [bobQ]);

// 3. Eve attempts to evesdrop based on the configurable
probability

Eavesdrop(eavesdropperProbability , [bobQ]);

// 4 Alice and Bob measure in their random bases
// Randomize who measures first
if (DrawRandomBool(0.5)) {

set aliceRes += [DoMeasure(aliceBases[i], aliceQ)];
set bobRes += [DoMeasure(bobBases[i], bobQ)];

} else {
set bobRes += [DoMeasure(bobBases[i], bobQ)];
set aliceRes += [DoMeasure(aliceBases[i], aliceQ)];

}
}

// 5. Compare bases
let (aliceKey , bobKey)

= CompareBases(aliceBases , aliceRes , bobBases , bobRes);

// 6. Perform the eavesdropper check
let (errorRate, trimmedAliceKey , trimmedBobKey) =

EavesdropperCheck(aliceKey , bobKey);

// 7. Output the resulting keys and additional useful info
ProcessResults(errorRate, trimmedAliceKey , trimmedBobKey ,

eavesdropperProbability);
}

Listing 6.22 Skeleton of the E91 implementation in Q#.

5 The efficiency will be 25% on average, while on individual runs it may be considerably lower
or higher, especially on smaller sample sizes, as the random bases chosen by Alice and Bob may
deviate from each other from run to run. For simplicity, we shall ignore these statistical deviations
and proceed in the code naively, without accounting for those effects.
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Unsurprisingly, a lot of the code steps outlined inListing 6.22 already look familiar
to the corresponding BB884 and B92 protocol code from Listings 6.1 and 6.15. That
is indeed the case, and we will focus specifically on the differences, while reusing
as much of the code that was already written and discussed as possible.

Similarly to BB84, Alice and Bob will need to operate on two bases in this
QKD variant, and therefore classic bit arrays corresponding to those bases are gen-
erated upfront by calls to the familiar helper operation, GenerateRandomBitArray
(length : Int), whichwe first introduced in Listing 6.2. A randomly drawn 0will
indicate the computational basis {|0〉, |1〉}, while a 1 will be mapped to the X-basis
{|+〉, |−〉}. This happens in step one in Listing 6.22.

Next, as step two, an entangled pair in state |�+〉 is created using the built-in Q#
standard library operation PrepareEntangledState (left :
Qubit[], right : Qubit[]) operation, from the Microsoft.
Quantum.Preparation namespace.

In step three of Listing 6.22, we execute the eavesdropper simulation, based on
the configurable probability. The implementation of that is identical to the one used
earlier, and the code comes from Listing 6.4. Note that in both BB84 and B92, we
only dealt with one set of qubits, that moved from Alice to Bob. In the case of
EPR-based quantum key distributions, the total amount of involved qubits is actually
double—because both Alice and Bob have their own sets. This also means that the
eavesdropper could potentially attempt to attack either of these two qubit collections.
Our implementation in Listing 6.22 arbitrarily decides that the eavesdropper is spying
on Bob’s qubit, by explicitly choosing his bobQubit as input into the eavesdropping
simulation operation, but in reality the same results would occur if we performed the
spying activities on either just Alice’s qubits, or, in fact, on both Alice’s and Bob’s
qubits together.

The next thing for Alice and Bob to do, is to measure their qubits in their random
bases, which is marked as step four in Listing 6.22. The order of measurement does
notmatter for EPR correlations, but to be able to verify that, we performmeasurement
order randomization on each qubit to make that very explicit. In real life, Alice and
Bob would be measuring while being spatially separated, most likely without any
particularly strict time coordination.

Alice and Bob measure their qubits using a helper DoMeasure (basisBit :
Bool, qubit : Qubit), which takes care of switching between the bases based
on the random basis bits. It returns a classical bit result, which is the appropriately
allocated to either aliceResor bobRes array. The operation is shown inListing 6.23.

operation DoMeasure(basisBit : Bool, qubit : Qubit) : Bool {
// - 0 will represent {|0>,|1>} computational (PauliZ) basis
// - 1 will represent {|->,|+>} Hadamard (PauliX) basis

let result = Measure([basisBit ? PauliX | PauliZ], [qubit]);
let classicalResult = ResultAsBool(result);
return classicalResult;

}

Listing 6.23 Measurement step of the E91 protocol implementation in Q#.
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The remaining steps five to seven in Listing 6.22 are identical to their counterparts
from the BB84 protocol in Listing 6.1.

First, Alice and Bob engage in comparing their bases and throwing away
those results that came from qubits that were measured in non-matching bases.
This is done with the CompareBases (basesAlice : Bool[], bitsAlice :
Bool[], basesBob : Bool[], bitsBob : Bool[]) operation, which is the
same as the one from Listing 6.6. This trims the length of the results arrays for
both Alice and Bob by roughly 50%. Next, they perform the eavesdropper check,
which is the same as used in our BB84 and B92 implementations, and uses the
operation defined in Listing 6.7, which again halves the size of the resulting bit
sequences. Finally, the protocol execution details and summary are printed out for
our convenience using the post processing helper function which was first declared
in Listing 6.8.

Testing of our implementation happens by invoking the main entry point opera-
tion from Listing 6.22. As in other sections in this chapter, we shall verify it using
parameterized eavesdropper presence set to 0, 50 and 100%. The test key length will
be 128 bits, meaning we will need to use a total of 512 qubit pairs.

@EntryPoint()
operation Start() : Unit {

RunEPRQKDProtocol(128, 0.0);
RunEPRQKDProtocol(128, 0.5);
RunEPRQKDProtocol(128, 1.0);

}

Listing 6.24 Execution of the E91 protocol in Q# with various preconfigured eavesdropper
probabilities.

The output of the program will cover all three eavesdropper variants and should
be roughly similar to the one shown in Listing 6.25—with, as expected, only the
execution without eavesdropper being considered successful.

Alice’s key as int: 82518729576956261354394580679305925891007001
Bob’s key as int: 82518729576956261354394580679305925891007001
Error rate: 0%
Running the protocol with eavesdropping probability 0 was

successful.

Alice’s key as int: 61101240891429193942196596614735175587949
Bob’s key as int: 148298585159193065860217011824224380622949
Error rate: 13.91304347826087%
Eavesdropper detected!
Running the protocol with eavesdropping probability 0.5 was

unsuccessful.

Alice’s key as int: 4883622076347109046131744712738312496430
Bob’s key as int: 3501640263020472772844256633916557337386
Error rate: 24.793388429752067%
Eavesdropper detected!
Running the protocol with eavesdropping probability 1 was

unsuccessful.

Listing 6.25 Sample output from running the code from Listing 6.24.
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Chapter 7
Algorithms

In the final chapter of this bookwe are going to take all of the knowledge accumulated
so far and put it all to good use—as we walk through some of the most important
quantum algorithms.

This chapter will also, inevitably, be a celebration of the amazing theoretical
achievements of some of the greatest minds in the field of quantum computing, and
a chance for us to really appreciate their incredible insight, as well as mathematical
beauty and innovative thinking behind their work.

7.1 Deutsch–Jozsa Algorithm

In computability theory a black-box function is one that has unknown implementa-
tion, and can only be reasoned about using its inputs and outputs. A related concept,
commonly used in computer science and in complexity theory, is one of an oracle,
which can be constructed to study the black-box function and its decision tree.

7.1.1 Deutsch’s Problem

In 1985, David Deutsch formulated his landmark black-box problem [9]. He imag-
ined an unknown function, which takes a single bit input and produces a single bit
output:

f : {0, 1} → {0, 1} (7.1)

Such function can be fully described by four possible cases, as outlined in
Table7.1. Deutsch then asked how many queries are needed to determine if the

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Table 7.1 Possible configurations for the Deutsch’s problem black-box function

x = 0 x = 1 Type

f(x) 0 0 Constant

f(x) 1 1 Constant

f(x) 1 0 Balanced

f(x) 0 1 Balanced

f(0)

f(1) f(1)

constant balanced constant

0 1

0 1 0 1

Fig. 7.1 Deutsch algorithm decision tree

function is constant or balanced, where we would consider a function to be constant
if f (0) = f (1), while it would be balanced if f (0) �= f (1).

At first glance the problem stated byDeutsch does not appear particularly interest-
ing or, as matter of fact, challenging. However, it constituted a massive leap forward
in both computation and complexity theories, as it marked the first known prob-
lem definition that could objectively be solved in a more efficient way on quantum
computational device, compared to a classical computer.

Given an unknown implementation of the function, the classical decision tree for
Deutsch’s problem can be broken down into two separate steps, as shown in Fig. 7.1.
It is irrelevant whether we first invoke f (0) and then f (1) or vice versa—both case
evaluations are needed to determine whether the function is constant or balanced.

In other words, two logical queries to the oracle are required to solve the answer.
Naturally, this reasoning aligns well with our intuition, which in turn simply reflects
what one could call common sense. The spectacular insight of David Deutsch was
that by taking advantage of a combination of superposition and interference effects
of quantum mechanics, a quantum computer could provide the answer to the same
problem in just a single step.

We already know that computations on a quantum computer must obey the laws
of quantum mechanics, and one of the primary rules is that any quantum state trans-
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formation must be unitary, and thus reversible. On the other hand, the black-box
function f (x) is not possible to be directly modelled using a single qubit on quan-
tum hardware, becuase in the cases where it is constant it is not reversible. A clever
solution to this is to not only construct the function with a single qubit corresponding
to the single bit on which the function operates, but to use an extra qubit to facilitate
reversibility.

Suppose we call our oracle Uf , then a general description of an oracle function
would be

Uf |x〉 = |x ⊕ f (x)〉 (7.2)

Taking into account the reversibility requirement, this needs be extended to two
qubits—as a result it requires at least a two-qubit quantum computer to run.

Uf(|x〉 |y〉) = |x〉 |y ⊕ f (x)〉 (7.3)

To prove that reversibility is satisfied in such transformation scheme, we can take
the output of Uf and apply Uf to it. This is shown in Eq. (7.4).

Uf(|x〉 |y ⊕ f (x)〉) = (7.4)

|x〉 |(y ⊕ f (x)) ⊕ f (x)〉 = |x〉 |y ⊕ ( f (x) ⊕ f (x))〉 = |x〉 |y ⊕ 0〉 =
|x〉 |y〉

The quantum circuit to solve Deutsch’s problem in a single logical query, which
can be used to construct a corresponding quantum program, is shown in Fig. 7.2.
It is not identical to the solution originally suggested by Deutsch [9] as that one
was probabilistic—it would provide the expected answer, “constant” or “balanced”,
only half of time, while the other half it would produce a result “inconclusive”. The
implementation variant we describe here is an improvement to Deutsch’s solution
which would return deterministic result in a single query, and which was published
by Cleve et al. [6].

The actual input value into the oracle is carried by the first qubit (the x), while the
second qubit will carry the reversible result (|y ⊕ f (x)〉). The extra qubit required
by some of the quantum algorithms in order to satisfy reversibility requirements is
referred to as auxiliary qubit.

We shall deal with the internals of the Uf oracle in a moment, but for now let us
focus on the rest of the circuit. We shall call the initial state of the system |ψ1〉 and

Fig. 7.2 Deutsch circuit
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it consists of two qubits in the default |0〉 state.

|ψ1〉 = |00〉 (7.5)

The next step is apply the bitflip X transformation to the second qubit.

|ψ2〉 = (I ⊗ X) |00〉 = |01〉 (7.6)

Then an Hadamard transformation is performed on both of the qubits making up
the circuit. The resulting state |ψ2〉 will be the input to the Uf oracle.

|ψ3〉 = (H ⊗ H) |01〉 = 1√
2

(
|0〉 + |1〉

)
1√
2

(
|0〉 − |1〉

)
(7.7)

We can quickly realize that these are of course nothing else than states |+〉 and
|−〉 respectively.

|ψ3〉 = |+〉 |−〉 (7.8)

Sincewealreadymentioned that thefirst qubit, currently in state |+〉, is responsible
for the input into the oracle, let us step back for a moment, forget that we already
have it in state |+〉 and treat it as a generic state |x〉, which would allow us to easier
reason about the underlying concept being relied on here. Applying the oracle Uf to
the such generalized state |x〉 |−〉 produces the following

Uf |x〉 |−〉 = Uf |x〉 1√
2

(
|0〉 − |1〉

)
= |x〉 1√

2

(
|0 ⊕ f (x)〉 − |1 ⊕ f (x)〉

)
=

(−1) f (x) |x〉 |−〉 (7.9)

As it turns out, this algebraic trickery is commonly used in quantum information
theory. Not only did it simplify our calculations, but it allowed us to encode the
information about the function evaluation, f (x), into the global phase. This technique
is therefore called a phase kickback.

We can now substitute |x〉 with |+〉. Thanks to that, after evaluating the oracle
against input state |+〉 |−〉, we can describe the state of our system, now at |ψ4〉, as:

|ψ4〉 = Uf |+〉 |−〉 = 1

2

(
(−1) f (0) |0〉 + (−1) f (1) |1〉) (|0〉 − |1〉) (7.10)

Obviously (−1)0 = 1 and (−1)1 = −1, so we can deduce that we have two out-
come possibilities here:

|ψ4〉 =
{

± 1
2 (|0〉 + |1〉)(|0〉 − |1〉) when f(0) = f(1)

± 1
2 (|0〉 − |1〉)(|0〉 − |1〉) when f(0) �= f(1)

(7.11)
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This is already very close to obtaining the result—the final step is to apply the
H ⊗ I transformation to |ψ4〉. We know thatH is its own inverse so it will transform
the first qubit back into the Z-basis eigenstate |0〉 or |1〉.

|ψ5〉 = (H ⊗ I) |ψ4〉 =
{

± |0〉 (|−〉) when f(0) = f(1)

± |1〉 (|−〉) when f(0) �= f(1)
(7.12)

The state of the first qubit, when measured, will reveal the answer to the problem
for us. The second qubit stays in state |−〉 and is uninteresting to us—as defined in the
circuit Fig. 7.2, we do not even need to measure it. The conclusion is therefore that:

|ψ5〉 = | f (0) ⊕ f (1)〉 (|−〉) (7.13)

This is a spectacular achievement, becausewemanaged to determine f (0) ⊕ f (1)
in a single function evaluation. This is of course something that a classical computer
would always need two logical queries for, and which is an excellent example of the
concept of quantum parallelism. As defined in Eq. (7.12), if the measurement of the
main qubit, which at this point is going to have a deterministic result, produces |0〉,
we deal with a constant function, andwhen it produces |1〉, we have a balanced one. It
is however worth emphasizing that to solve Deutsch’s problem a quantum computer
does not actually perform different function evaluations in parallel, but instead relies
on the interference phenomenon to let incorrect answers cancel themselves out.

We can also notice one final thing with the procedure of solving the Deutsch’s
problem—the measurement follows theH transformation, therefore it can also con-
ceptually be thought of as measurement of the output of the oracle—state |ψ4〉—in
the X, instead of Z-basis.

7.1.2 Deutsch–Jozsa Generalization

In 1992 David Deutsch published a follow-up paper [10], co-authored with Richard
Jozsa, which provided a generalization of the original simple Deutsch’s algorithm.
Thus, before we dive into the usual Q# implementation of the theory that was just
covered, let us first shift our attention to this generalized variant.

The Deutsch–Jozsa algorithm extends the original problem from a function with
a single bit input, to one that can accept n bits as arguments, such that:

f : {0, 1}n → {0, 1} (7.14)

The problem is then still formulated as having to determine if the function is con-
stant, orwhether it is balanced,with the condition that balancedmeans that for exactly
half of the possible x input arguments the function returns 0, while returning 1 for the
other half. The consequence of such formulation is that according to classical com-
putation theory, in the worst case scenario, as many as 2n−1 + 1 function evaluations
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may be need to obtain the provide the answer to the problem with 100% certainty.
On the other hand, using the principles of interference and quantum parallelism, a
quantum computer can still solve this in a single logical oracle evaluation.

In terms of defining the Deutsch–Jozsa problem as a black-box unitary transfor-
mation Uf , we would say it still performs a transformation

Uf(|x〉 |y〉) = |x〉 |y ⊕ f (x)〉 (7.15)

with the qualification that now x ∈ {0, 1}n and f (x) ∈ {0, 1}. In other words, |x〉
no longer corresponds to a single qubit, but instead can span n qubits. The entire
algorithm would then follow the exact same reasoning as the single bit variant, with
the only difference being an extended input qubit register in play, and thus the relevant
operations, such as the H transformations, are applied to this entire n qubit register.
The quantum circuit for the algorithm, a slightly modified version of Fig. 7.2, is
shown in Fig. 7.3.

The circuit starts with a qubit register of n qubits, and the auxiliary qubit, all in
the default state |0〉.

|ψ1〉 = |0〉⊗n |0〉 (7.16)

This is then followed by flipping the auxiliary qubit, like we did earlier, using the
X transformation.

|ψ2〉 = (I⊗n ⊗ X) |ψ1〉 = |0〉⊗n |1〉 (7.17)

Next, both the n qubit register and the auxiliary qubit are placed in a uniform
superposition using the H transformation. Applying H⊗n to an n size register is of
course nothing else but theWalsh–Hadamard transformation that we already covered
in Sect. 4.3. As a reminder

H⊗n |00 . . . 0〉 = 1√
2n

2n−1∑
x=0

|x〉 (7.18)

Therefore the next state |ψ3〉 is

|ψ3〉 = (H⊗n ⊗ H) |0〉⊗n |1〉 = 1√
2n

2n−1∑
x=0

|x〉 1√
2

(
|0〉 − |1〉

)
(7.19)

Fig. 7.3 Deutsch–Jozsa circuit
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For brevity we can rewrite the state of the auxiliary qubit into |−〉.

|ψ3〉 = 1√
2n

2n−1∑
x=0

|x〉 |−〉 (7.20)

Upon invoking the black-box oracle Uf , the state changes to:

|ψ4〉 = Uf |ψ3〉 = 1√
2n

2n−1∑
x=0

(−1) f (x) |x〉 |−〉 (7.21)

Finally, we apply the Walsh–Hadamard H⊗n transformation to the |x〉 qubit reg-
istry again. From this point on we will also no longer need to be interested in the
auxiliary qubit—it remains, as before, in state |−〉:

|ψ5〉 = (H⊗n ⊗ I) |ψ4〉 = 1√
2n

2n−1∑
x=0

(−1) f (x) · 1√
2n

2n−1∑
y=0

(−1)x ·y |y〉 |−〉 (7.22)

where

x · y = x0y0 ⊕ x1y1 ⊕ · · · ⊕ xn−1yn−1 (7.23)

A simplified variant of |ψ5〉 can be achieved by rearranging the terms a little, and
dropping the auxiliary qubit.

1

2n

2n−1∑
y=0

(
2n−1∑
x=0

(−1)x ·y+ f (x)

)
|y〉 (7.24)

This is now a state that is ready for measurement, but what is its significance?
The probability amplitude for measuring |0〉⊗n is

1

2n

2n−1∑
x=0

(−1) f (x) (7.25)

because for such case |y〉 = |0〉⊗n , so y = 0.
If the function f (x) was constant, the above probability amplitude reduces to 1

(when f (x) = 0) or to−1 (when f (x) = 1). In either case, the classical probability—
a squared amplitude—for reading out |0〉⊗n is equal to one when we deal with a
constant function. To phrase it differently, when a joint measurement of the main
register returns 0 for all of the qubits, we know with certainty that the black-box
operation was constant, in just a single operation.

Conversely, the probability amplitude (7.25) will reduce to 0 when the function is
balanced because the terms cancel each other out—we have equally many positive
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and negative terms in the sum. As a result, for a balanced function, the classical
probability of a joint measurement result to be |0〉⊗n becomes also zero. The con-
sequence is of course that as soon as even a single of the measured qubits in the
register produces a measurement result of 1, it reveals to us that the function f (x)
was balanced.

Despite dealing with quite an artificial and not particularly useful problem, the
Deutsch–Jozsa algorithm is quite a stunning example of a possible computational
speed-up that quantum devices may deliver. In this variant of the problem, a quantum
solution still provides an answer in a single logical query, compared to possibly as
many as 2n−1 + 1 function evaluations using a classical computational device.

7.1.3 Oracle Definitions

The theoretical discourse thus far has led us to the conclusion that both Deutsch and
Deutsch–Jozsa variants of the problem can indeed be efficiently solved on a quantum
hardware. That said, in order to fully implement the solution suitable for execution on
a quantum device, we still need to model the four different variants of the black-box
Uf function. We shall refer to them as fc1 and fc2, for the constant functions, and
fb1 and fb2 for the balanced ones.
For the basic Deutsch problem, given that we only operate on a single bit, we

can easily list all possible permutations (in fact we already did in Table7.1). The
functions behave as follows:

• fc1(0) = fc1(1) = 0
• fc2(0) = fc2(1) = 1
• fb1(0) = 0 fb1(1) = 1
• fb2(0) = 1 fb2(1) = 0

For the more sophisticated Deutsch–Jozsa formulation, the input is now x of n bit
length. The constant functions are still the same as before, but for the balanced ones
the situation becomes a little more complicated. For convenience of implementation
we can approach this by treating the balanced variants as being driven by an XOR
between all of the input bits. This would then mean that our balanced f (x) returns
0 unless x an odd number of 1s is found in x , in which case it returns 1.

• fc1(x0 . . . x(n−1)) = 0
• fc2(x0 . . . x(n−1)) = 1
• fb1(x0 . . . x(n−1)) = 0 when x0 ⊕ x0 ⊕ · · · ⊕ x(n−1) = 0
• fb1(x0 . . . x(n−1)) = 1 when x0 ⊕ x0 ⊕ · · · ⊕ x(n−1) = 1
• fb2(x0 . . . x(n−1)) = 1 when x0 ⊕ x0 ⊕ · · · ⊕ x(n−1) = 0
• fb2(x0 . . . x(n−1)) = 0 when x0 ⊕ x0 ⊕ · · · ⊕ x(n−1) = 1

We already know that Deutsch formulation is simply a special case of Deutsch–
Jozsa generalization, namely one where n = 1. Therefore it is enough for us tomodel
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Fig. 7.4 Deutsch–Jozsa
algorithm Uf
implementation for fc1

Fig. 7.5 Deutsch–Jozsa
algorithm Uf
implementation for fc2

Fig. 7.6 Deutsch–Jozsa
algorithm Uf
implementation for fb1 ...

n

only the Deutsch–Jozsa specific functions using quantum circuits, as it would cover
all the cases anyway.

In particular, the constant functions would be very simple. fc1 always produces 0,
hence we only need to apply I⊗n ⊗ I transformation to the qubits which are passed
into the oracle, as shown in Fig. 7.4. This, naturally, is semantically equivalent to
doing nothing. Notice that we specifically do not mark on the circuit which state the
input qubits will be in when Uf executes—instead we are only concerned with the
implementation of its function body.

Conversely, fc2 would flip the result bit, which on a quantum circuit would mean
executing the X transformation on the auxiliary qubit—I⊗n ⊗ X. This is visualized
in Fig. 7.5.

Since we already established that balanced functions would rely on XOR logic,
they can be implemented using a series of CNOT gates. fb1 would is pictured in
Fig. 7.6.

It’s twin, fb2, would be identical, except for an extra X applied to the auxiliary
qubit. This is shown in Fig. 7.7.

7.1.4 Q# Implementation

Equipped with all of this, we can now proceed to the Q# implementation of the
algorithms. Since we were just defining the Uf architecture using quantum circuits,
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Fig. 7.7 Deutsch–Jozsa
algorithm Uf
implementation for fb2 ...

n

we might as well start the Q# code with them. The circuits are not particularly
complicated so the corresponding code is also relatively simple. All four of them are
shown in Listing 7.1.

operation ConstantZero(x : Qubit[], y : Qubit)
: Unit is Adj {

}

operation ConstantOne(x : Qubit[], y : Qubit)
: Unit is Adj {

X(y);
}

operation BalancedEqual(x : Qubit[], y : Qubit)
: Unit is Adj {

for qubit in x {
CNOT(qubit, y);

}
}

operation BalancedNotEqual(x : Qubit[], y : Qubit)
: Unit is Adj {

for qubit in x {
CNOT(qubit, y);

}
X(y);

}

Listing 7.1 All four Deutsch–Jozsa algorithm Uf implementations in Q#.

Notice that for the cases where we applied I in the circuits, we can simply leave
the Q# operations doing nothing. An explicit mention of I helps on the circuit and
in algebraic model, but at runtime has not impact. The return type of the operations
can be Unit. All of the qubits that act as input are managed by the code outside of
these operations anyway, so they are all transformed in place and effectively act as
function output.

Next, comes the core part of the algorithm, which will follow the procedure
outlined in Fig. 7.3. The operation implementing the algorithm is defined in a way
where we can pass in two parameters—the n size and a reference to any of the four
Uf variants, represented by a delegate, and is shown in Listing 7.2.
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operation DeutschJozsaAlgorithm(n : Int, oracle :
((Qubit[], Qubit) => Unit)) : Bool {
use (x, y) = (Qubit[n], Qubit());
X(y);
ApplyToEach(H, x);
H(y);

oracle(x, y);

ApplyToEach(H, x);

let allZeroes = All(ResultIsZero , MultiM(x));
Reset(y);
return allZeroes;

}

function ResultIsZero(result : Result) : Bool {
return result == Zero;

}

Listing 7.2 Deutsch–Jozsa algorithm implementation in Q#.

Internally, the code would allocate the necessary qubits—both the core n-size
qubit register and the auxiliary qubit. Though they do not necessarily have to be split
into separate variables, for readability purposes, the register is represented by a qubit
array x , of size n, while the auxiliary qubit is separate from it under the y variable. The
subsequent steps follow the flow of the algorithm that we already covered, until we
reach the measurement process. At that point we need to find out whether all qubits
measure to |0〉—if yes, we deal with a constant function, otherwise the function
would be a balanced one. The measurement is based on the MultiM (targets :
Qubit[]) operation, which conveniently measures an array of qubits into an array of
Result, in the computational basis. Because the auxiliary qubit y is never measured,
it needs to be manually reset.

Overall such structure of the operation will allow us to invoke this algorithm for
all four black-box functions, and thanks to the parameterized n, it will also support
testing both the basic Deutsch algorithm for a single bit, and the Deutsch–Jozsa
generalization for larger input bit sizes.

The final thing needed is the orchestration code to execute all of these cases, which
is shown in Listing 7.3. It covers eight possible cases, four for Deutsch problem, and
four for Deutsch–Jozsa variant, with the latter invoked for n = 6 bits. The usage of
a loop in this orchestrator facilitates easy testing of the code against other values of
n as well. The algorithm result is ultimately converted into string form, which will
be equal to either “constant” or “balanced”, and which gets printed to the console
output.

@EntryPoint()
operation Main() : Unit {

for n in [1, 6] {
let constZero = DeutschJozsaAlgorithm(n, ConstantZero);
let constOne = DeutschJozsaAlgorithm(n, ConstantOne);
let balEq = DeutschJozsaAlgorithm(n, BalancedEqual);
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let balNotEq = DeutschJozsaAlgorithm(n, BalancedNotEqual);

Message($"n={n}");
Message($"Constant 0. Result: {Format(constZero)}.");
Message($"Constant 1. Result: {Format(constOne)}.");
Message($"Balanced. Result: {Format(balEq)}.");
Message($"Balanced opp. Result: {Format(balNotEq)}.");

}
}

function Format(result : Bool) : String {
return result ? "constant" | "balanced";

}

Listing 7.3 Deutsch–Jozsa algorithm Q# orchestration code.

After executing this program, we shall see the following output in the console,
confirming our expectations and the theoretical line of thought.

n=1
Constant 0. Result: constant.
Constant 1. Result: constant.
Balanced. Result: balanced.
Balanced opposite. Result: balanced.

n=6
Constant 0. Result: constant.
Constant 1. Result: constant.
Balanced. Result: balanced.
Balanced opposite. Result: balanced.

Listing 7.4 Deutsch–Jozsa algorithm Q# output.

7.2 Bernstein–Vazirani Algorithm

The Bernstein–Vazirani problem builds on the work done by Deutsch and Jozsa, and
was introduced by Ethan Bernstein and Umesh Vazirani [3]. It relies on the exact
some circuit design for the algorithm as the Deutsch–Jozsa circuit we pictured in
Fig. 7.3, but it defines a different problem that this oracle-based circuit is capable of
answering.

7.2.1 Bernstein–Vazirani Problem

The problem is formulated as follows. Given a black-box function

f : {0, 1}n → {0, 1} (7.26)
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such that f (x) = s · x , where s is a constant vector of {0, 1}n and s · x is a scalar
product, find the bits making up s. In other words, the function takes an n bit input,
and produces a single bit output, which is a bitwise product of the input bits with
unknown bit array s, and the task is to find that s.

Classically, the solution to this problem is rather tedious, as it requires n steps.
For example for a four bit input, we would need to query the function with inputs of
1000, 0100, 0010 and 0001, each of which would help us determine a different bit
of s. Merging of those results will then uncover the value of s. On the other hand,
using a quantum computer, the value of s can be found in a single logical query.

Because the quantum circuit for Bernstein–Vazirani algorithm is identical to the
generalized Deutsch–Jozsa algorithm, almost all of the theoretical reasoning from
Sect. 7.1 can be reused. We can begin here using the Deutsch–Jozsa state |ψ4〉 from
Eq. (7.21), which describes the overall system state after the Uf oracle application.
This is the state that exhibits the phase kickback behavior, and it is integral to the suc-
cess of the Bernstein–Vazirani algorithm too. To avoid collisions with the equations
from Sect. 7.1, we will use |ϕn〉 for state notation here.

|ϕ1〉 = 1√
2n

2n−1∑
x=0

(−1) f (x) |x〉 |−〉 (7.27)

At this pointweknowalready that the trailing auxiliary qubit can be safely dropped
from any consideration as it will stay in state |−〉. Additionally, in the Bernstein–
Vazirani problem statement, f (x) = s · x . Taking both of these into account, we can
simplify the state that is interesting to us into |ϕ2〉:

|ϕ2〉 = 1√
2n

2n−1∑
x=0

(−1)s·x |x〉 (7.28)

Let us now expand part of the state |ϕ2〉 for readability.
2n−1∑
x=0

(−1)s·x |x〉 = (7.29)

(|0〉 + (−1)s1 |1〉) ⊗ (|0〉 + (−1)s2 |1〉)⊗ · · · ⊗ (|0〉 + (−1)sn |1〉)

Looking at it from that angle, something really important stands out. Namely, if
a given qubit is in a state |+〉, then its corresponding sn must be equal to 0, because
(−1)0 = 1, so the term (|0〉 + (−1)s1 |1〉) resolves to (|0〉 + |1〉). Conversely, when
the qubit is in state |−〉, then sn must be equal to 1.

Therefore, all we should be interested in at this point to perform an X-basis
measurement—something that can be achieved by applying the H⊗n to state |ϕ2〉,
followed by the measurement in the Z-basis. TheH⊗n transformation produces state
equal to the one in Eq. (7.24), but that is effectively equal to |s〉, so measuring the
input qubits now reveals the value of s in a single logical function evaluation.
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Fig. 7.8 Bernstein–Vazirani
algorithm Uf
implementation for s = 101

The quantum circuit representing the inner workings of the oracle, to satisfy
the requirements of the Bernstein–Vazirani algorithm, is going to be similar to the
balanced case for Deutsch–Jozsa algorithm from Fig. 7.6. In this case we will have a
dot product between the auxiliary qubit and the relevant nth qubit, so a set ofCNOT
gates, applied only where the secret has bit value 1. A specific example for a secret
equal to 101 is shown in Fig. 7.8.

7.2.2 Q# Implementation

At this point we have all the theory needed to implement a Q# version of Bernstein–
Vazirani algorithm. For reasons that will become apparent in a moment, we will
define the initial implementation in a single operation only. To be more precise, we
will not treat the oracle as a separate operation, like we did that in Deutsch–Jozsa Q#
code, but rather wewill inline the oracle implementation into the rest of the algorithm
code. This of course is hardly corresponding to a real life application, and is not a
best programming practice, though it will allow us to keep things simple for now.

The code is shown in Listing 7.5 and follows the general Deutsch–Jozsa circuit
from Fig. 7.3, enriched with the inlined oracle described by Fig. 7.8. This specific
oracle circuit was an example for the case where s = 101, however using a simple
loop, we can however generalize this and facilitate any secret within an arbitrarily
chosen bound. The chosen bound is three bits, and the algorithm can be tested for
all of them—the significance of that is that there are 23 = 8 secrets to be verified.
What is worth mentioning is that the amount of qubits in the main registry |x〉 must
be large enough to hold the secret s. In this example this is three (qubits, and bits,
respectively)—however, if the secret cannot be encoded into the allocated qubits, the
algorithm would not work.

@EntryPoint()
operation Main() : Unit {

let bitSize = 3;
for intSecret in 0 .. 7 {

let secret = IntAsBoolArray(intSecret , bitSize);
use (x, y) = (Qubit[bitSize], Qubit());
X(y);
ApplyToEach(H, x);
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H(y);

// oracle
for i in 0 .. Length(x) - 1 {

if secret[i] {
CNOT(x[i], y);

}
}

ApplyToEach(H, x);
let result = MultiM(x);
Reset(y);
let intResult = ResultArrayAsInt(result);
Message($"Expected secret: {intSecret}, found secret: {

intResult}");
}

}

Listing 7.5 Simple implementation of Bernstein–Vazirani algorithm in Q#, with inlined oracle
code.

A secret is represented by a boolean array obtained by converting the integer itera-
tion index, 0–7, using the standard Q# IntAsBoolArray (number : Int, bits
: Int) conversion function from the Microsoft.Quantum.Convert namespace.
The oracle part applies the CNOT between the given qubit and the auxiliary qubit
when the corresponding secret bit is 1. Finally, the secret is read out by performing a
measurement over the qubits making up the |x〉 part of the system—the input register.
The measurement is done with MultiM (targets : Qubit[]) operation, same
as we did this in Deutsch–Jozsa algorithm implementation.

The final part of the code outputs the read out secret, compared to the expected
secret—naturally, they should be equal. Since the source for computing the secret
was the iteration index integer, the measurement results are converted into an integer
as well using another function from the Q# standard library, ResultArrayAsInt
(results : Result[]). This makes it much simpler to verify the outcome of the
protocol—and the output of this code should be the same as in Listing 7.6.

Expected secret: 0, found secret: 0
Expected secret: 1, found secret: 1
Expected secret: 2, found secret: 2
Expected secret: 3, found secret: 3
Expected secret: 4, found secret: 4
Expected secret: 5, found secret: 5
Expected secret: 6, found secret: 6
Expected secret: 7, found secret: 7

Listing 7.6 Output of the basic implementation of Bernstein–Vazirani algorithm in Q#.

Of course such structuring (or lack thereof) of code is not particularly elegant, so it
would make sense to rewrite it a program where the oracle is a standalone operation.
Such extracted oracle, where the inputs are the secret, as Bool[], the main qubit
register x and the auxiliary qubit y, is shown in Listing 7.7. Notice that because
the secret is an input into the oracle, we can avoid explicitly hardcoding it into the
internals of the oracle implementation.
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operation Oracle(secret : Bool[], x : Qubit[], y : Qubit) : Unit
is Adj + Ctl {
for i in 0 .. Length(x) - 1 {

if secret[i] {
CNOT(x[i], y);

}
}

}

Listing 7.7 Bernstein–Vazirani algorithm implementation in Q#—a standalone oracle.

The algorithm itself will be now moved from the program’s entry point into its
own dedicated operation, similar to what we set up for Deutsch–Jozsa in Listing 7.2.
As input it will take the expected registry size n, which will decide how many qubits
to allocate in to the main register, and the reference to the oracle. This allows the
caller to pass in various variants of the oracle, which is very helpful in testing the
algorithm against different implementations of the Uf .

operation BernsteinVazirani(n : Int,
oracle : ((Qubit[], Qubit) => Unit is Adj + Ctl))
: Result[] {

use (x, y) = (Qubit[n], Qubit());
X(y);
ApplyToEach(H, x);
H(y);

oracle(x, y);

ApplyToEach(H, x);

let result = MultiM(x);
Reset(y);
return result;

}

Listing 7.8 Bernstein–Vazirani algorithm implementation in Q#, with externally provided oracle.

The next natural step would be to bring the two last code chunks together using an
orchestrator, and invoke the algorithm for various secret compositions. However, this
is where things get slightly more challenging—the signatures of our two operations
are not compatible with each other. The oracle’s input arguments are (secret :
Bool[], x : Qubit[], y : Qubit), while the algorithm expects the oracle as
(Qubit[], Qubit) => Unit, so without the secret parameter. The solution is to
create a third operation which will use Q#’s partial function application feature,
and will allow us to prepare the oracle in the desired state. As a result, we are still
able to parameterize the secret, but we can also pass the oracle into the algorithm’s
implementation as if the secret was hardcoded in the first place.

function PrepareOracle(secret : Bool[]) : ((Qubit[],Qubit) =>
Unit is Adj + Ctl) {
return Oracle(secret, _, _);

}

Listing 7.9 Bernstein–Vazirani algorithm implementation in Q#, oracle preparation.
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The final step is to add the orchestration code, that will use similar iterative logic
to test all secrets between 0 and 7, and which will glue all of the above pieces
together. The output of this revised version of the Bernstein–Vazirani algorithm
implementation will be the same as in Listing 7.6.

@EntryPoint()
operation Main() : Unit {

let bitSize = 3;
for intSecret in 0 .. 7 {

let secret = IntAsBoolArray(intSecret, bitSize);
let oracle = PrepareOracle(secret);
let result = BernsteinVazirani(bitSize, oracle);
let intResult = ResultArrayAsInt(result);
Message($"Expected secret: {intSecret}, found secret: {

intResult}");
}

}

Listing 7.10 Revised implementation of Bernstein–Vazirani algorithm in Q#.

7.3 Grover’s Algorithm

Grover’s algorithm [17] was developed in 1996 by Indian-American computer sci-
entist Lov Grover1 who, using some particularly innovative algebraic techniques,
found the first efficient quantum informational algorithm for searching through an
unstructured data set.

We can state the problem for Grover’s search algorithm in the following way.
Given a black-box function

f : {0, 1}n → {0, 1} (7.30)

find the single input x ∈ {0, 1}n such that f (x) = 1.
In other words, the Grover’s algorithm requires an oracle able to determine

whether a given sequence of bits is the result of the search, something that the oracle
conveys using a single bit output 1 (for a match) and 0 for non-match. Of course
such formulation generalizes the algorithm very well, and in such way it can now be
applied to a very wide array set of problems—the black-box is simply fed possible
results, and tests whether the given input is the solution. A subtle but important thing
to remark here—as Bera [2] points out, the oracle does not need to know the answer,
it only needs to be able to recognize it.

The first physical implementation of Grover’s algorithm was achieved by Chuang
et al. [5], using their two-qubit nuclear magnetic resonance quantum computer.

1 Interestingly, it was one of the examples of a major contribution to the field of quantum computing
made from outside of academia. Grover was long affiliated with Cornell University, however at the
time the algorithm was developed, he worked exclusively at Bell Labs.
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Classically, for N elements, a search through an unsorted data set has a complexity
of O(N ). Grover showed, that a quantum computer can solve the same problem with
the algorithmic complexity O(

√
N ), resulting in quadratic speed up. In terms of raw

steps to be evaluated, a classical brute-force approach,2 where every item needs to
be tested to verify if it is possibly the solution, would yield the answer in an average
of N

2 checks. In worst case scenario, the answer may even come in N − 1 queries. In
Grover’s algorithm, the logical step count for a quantum computer is approximately
π
4

√
N .
While, in terms of complexity theory, quadratic speed-upmay not offer a dramatic

performance boost, it is still quite significant. Consider attempting to find a single
specific 32-bit unsigned integer. There are N = 232 = 4 294 967 295 of them, so a
classical algorithm requires on average:

4 294 967 295

2
≈ 231 = 2 147 483 648 (7.31)

steps. On the other hand, Grover’s algorithm needs far fewer steps:

π

4

√
4 294 967 295 = π

4
× 216 ≈ 51 472 (7.32)

In this account, we shall assume that we work with data sets whose length is
proportional powers of two—namely that N = 2n . This will make it easy to scale
our reasoning process—for example, for three qubits, the data set will be able to
accommodate eight possible data points, for four it would be sixteen, for five twenty-
five and so on. In reality for data that does not correspond to powers of two, some
padding would be required.

The original paper fromGrover [17] used a phone book example—finding the per-
son by their phone number. Other sources have often referred to Grover’s algorithm
as database search. While these analogies work well from illustrative standpoints,
they are hardly practical in terms of real world applications, given the memory and
I/O limitations of current quantum hardware. Not only would it be difficult to fit the
working dataset in them, asmachines with large, stable qubit counts are not available,
the mere fact that the data would need to be preloaded into quantum computer in the
first place has the O(N ) complexity already.

However, as Mermin [21] points out, Grover’s algorithm can potentially be very
useful to work on problems where the data set would be created in the quantum
computer during the algorithm’s execution, such as for example variousmathematical
problems or physical simulations.

2 For the sake of simplicity we are going to assume the classical method for searching through
unsorted dataset requires traversing the entire space of possible solutions. This is not always the
case, as there can be classical probabilistic algorithms, which, for example, can look for most
plausible solution candidates first, or which may exclude entire groups of answers.
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7.3.1 Grover’s Oracle

When implementing Grover’s algorithm, one can rely on two types of oracle func-
tions. The first one, often referred to as boolean oracle, relies on flipping the sign of
the auxiliary qubit to hold the answer. Such oracles are typically denoted as Uf in
literature, and ultimately need to rely on a similar phase kickback trick as Deutsch–
Jozsa algorithm, which is facilitated by the auxiliary qubit being in state |−〉. The
second type of oracles are the phase oracles, which flip the phase of the qubits using
controlledZ gates. Because the phase in the main register |x〉 is manipulated directly,
no additional auxiliary qubits are needed. This class of oracles is commonly denoted
as Uω, where ω corresponds the solution that is being searched for. The two oracle
types are often used synonymously which can be confusing—in this study, we shall
explicitly use the Uω phase oracle.

Overall, we can describe the unitary transformation Uω as:

Uω |x〉 =
{

|x〉 if f (x) = 0

− |x〉 if f (x) = 1
=

{
|x〉 if x �= ω = 0

− |x〉 if x = ω = 1
(7.33)

where |x〉 can encompass n qubits. We can rewrite it into a more concise, generic,
definition for the oracle as:

Uω |x〉 = (−1) f (x) |x〉 (7.34)

Let us illustrate this with a practical example. Consider a data set of size N = 8,
spanning across three-qubit system, in a uniform superposition:

1√
8

(
|000〉 + |001〉 + |010〉 + |011〉 + |100〉 + |101〉 + |110〉 + |111〉

)
(7.35)

We can plot these probability amplitudes on a diagram. Each of the possible four
measurement outcomes has an associated probability amplitude of 1√

8
and, according

to the Born rule, a corresponding classical probability of 12.5%. This is shown in
Fig. 7.9.

Now let us now imagine that our oracle Uω flags |100〉 as the correct answer |ω〉,
thus flipping the sign of the associated amplitude, and leaving the others unchanged.
This leads us to state

1√
8

(
|000〉 + |001〉 + |010〉 + |011〉 − |100〉 + |101〉 + |110〉 + |111〉

)
(7.36)

Now each of the eight possible measurement results still has the classical prob-
ability of 12.5%, but the expected solution state |ω〉 = |100〉 has the associated
probability amplitude that is different from the other potential outcome states. This
effect of the oracle is shown in Fig. 7.10.
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Fig. 7.9 Probability
amplitudes of the eight
possible states between |000〉
and |111〉 when the system is
in a uniform superposition
state
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Fig. 7.10 Probability
amplitudes when the system
is in a uniform superposition
state, after the state |100〉
received a phase flip
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As we already know, in order to achieve any computational advantage over clas-
sical computing, the input into the oracle should already be the superposition of all
possible states. This of course makes sense from another perspective too—since at
the beginning of the algorithm, we have no idea where specifically the answer |ω〉
is located, a uniform superposition with each possibility given equal weight, seems
like the best logical place to start. Therefore, the initial step in Grover’s algorithm
will be the H⊗n transformation.

|ψ1〉 = H⊗n |x〉 (7.37)
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With a data set of N elements, this can be expanded into

|ψ1〉 = 1√
N

N−1∑
x=0

|x〉 (7.38)

The next step will be to query the oracle Uω, passing in |ψ1〉 as the input state.
The oracle will shift the phase of the solution according to the rules we outlined in
Eq. (7.33). This leads to a general system state:

|ψ2〉 = Uω |ψ1〉 = 1√
N

N−1∑
x=0

(−1) f (x) |x〉 (7.39)

Because the phase shift is applied only to the solution |ω〉, we can rewrite the state
|ψ2〉 to better illustrate the effect of the oracle.

|ψ2〉 = − 1√
N

|ω〉 + 1√
N

∑
x∈{0,1}n
x �=ω

|x〉 (7.40)

Such reformulation emphasizes that we now moved from a state of equal super-
position, with each possible outcome described by the same positive amplitude, to
a state where the correct answer state |ω〉 now has a negative amplitude, while all
the other incorrect answers states remain with the positive amplitudes—exactly how
we visualized this in Fig. 7.10. While this appears quite promising, phase difference
are in principle not observable, because the classical probabilities still remain the
same. However, the brilliant innovation of Grover was that he realized that there a
exists a general mechanism that allows to convert phase difference into amplitude
difference, thus impacting the probability of measuring the correct result.

7.3.2 Inversion About the Mean

Grover used a mathematical tool called inversion about the mean to achieve this. Let
us consider the example from Fig. 7.9 again. In that case, we dealt with eight possible
measurement results, each one described by a probability amplitude 1√

8
. Since they

are all equal to each other, their mean value m is also the same:

m = 1√
8

≈ 0.354 (7.41)

However, as soon as the oracleUω acts on the system, and the state |ω〉 acquires a
phase sign different from the other possible measurement outcomes, the mean value
m of the amplitudes is different.
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m =
6 × 1√

8

8
= 3

√
2

16
≈ 0.265 (7.42)

All values v in the data set can be inverted about the mean m of that data set. The
procedure does not change the mean value, the sum of all components of the data
set remains the same, and the relative distance to the mean is also still the same for
each of the data points. Inversion about the mean, however, does allow to increase
the distance between the selected value and the other values in the data set, making
it stand out more than before.

The formula to obtain the inverted result v′ is

v′ = m + (m − v) = 2m − v (7.43)

If we apply the formula to the mean we just computed in Eq. (7.42) and use
amplitude v = − 1√

8
corresponding to answer state |ω〉 = |100〉, we arrive at

v′ = 2 × 3
√
2

16
+ 1√

8
= 5

√
2

8
≈ 0.884 (7.44)

This boosted the classical probability for reading out the correct result from
≈ 0.3542 = 12.5% to ≈ 0.8842 ≈ 78.1%! Additionally, each of the remaining
amplitudes—all of them equal to v = 1√

8
, need to go through the same process

as well, to ensure the mean remains the same. Since |ω〉 = |100〉 experienced a
drastic increase in the amplitude value, all other amplitudes should be decreased
proportionally.

v′ = 2 × 3
√
2

16
− 1√

8
=

√
2

8
≈ 0.177 (7.45)

Overall, Fig. 7.11 shows the effect of the inversion about the mean on the prob-
ability amplitude distribution in a three qubit system, given the initial distribution
equal to that which was defined in Fig. 7.10.

While this makes sense logically, we need to find the appropriate algebraic mech-
anism to achieve the same result when working with quantum states in a quantum
computer. Thankfully, the same inversion about the mean procedure can be applied
to vector states, with the obvious change that the formula would no longer operate on
numbers but instead would have a matrix representation and would perform vector
transformations. The generic vector-based formula would be

V′ = V(2M − I) (7.46)

whereM is the matrix that finds the mean of the vector’s components, I is the identity
matrix and V and V′ are multi dimensional vectors. Equipped with this knowledge,
we are well positioned to find the next steps of the Grover’s algorithm.
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Fig. 7.11 Probability
amplitudes after inversion
about the mean amplified the
amplitude for |100〉 and
proportionally lowered all
the other ones
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7.3.3 Grover Diffusion Operator

Inversion about themean procedure in a quantum algorithm can be generally realized
using a conditional phase shift outlined in Eq. (7.47), applied against the balanced
superposition of states.

|x〉 →
{

|x〉 when x = 0n

− |x〉 otherwise
(7.47)

In other words, we would want every computational state except for |00 . . . 0〉
to receive a phase shift of −1. We can use that, as well as the prescription from
Eq. (7.46) to define the inversion about the mean operator Uψ as

Uψ = H⊗n(2 |0〉⊗n 〈0|⊗n − I⊗n)H⊗n (7.48)

Notice that thisworks becauseH is its own inverse, so surrounding 2 |0〉⊗n 〈0|⊗n −
Iwith twoH⊗n effectively results in un-computing and computing of a superposition.
The above equation can be further simplified into

Uψ = (2 |ψ〉 〈ψ | − I⊗n) (7.49)

which forms the final inversion about the mean operator, often referred to as Grover
diffusion operator. The general matrix form of Uψ , for N possible states is:

Uψ =

⎡
⎢⎢⎢⎣

2
N − 1 2

N . . . 2
N

2
N

2
N − 1 . . . 2

N
...

...
. . .

...
2
N

2
N . . . 2

N − 1

⎤
⎥⎥⎥⎦ (7.50)
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The diffusion transformation performs what we call an amplitude amplification,
and it relies on constructive interference to boost the probability amplitudes for the
expected solution |ω〉, while at the same time, thanks to destructive interference,
reducing the probability amplitudes for all of the other invalid answers.

Together, the oracle Uω and the diffusion transformation Uψ combine to make up
the so-called Grover iteration G:

G = UψUω (7.51)

Application of the Grover iteration allows us to achieve the effect we sketched
out on Fig. 7.11. For two qubit systems (N = 4), the probability of measuring the
expected result reaches 100% after just one Grover iteration. For larger data sets,
including the three qubit (N = 8) one we used as an example, further G transfor-
mations, beyond the initial one, are needed to amplify the probabilities. The amount
of iterations required for maximization of the probability amplitude of the correct
solution is R, and depends on data set size N and amount of possible solutions M .

R ≤ π

4

√
N

M
(7.52)

Grover iterations are effectively rotations in the space spanned by the system state
vector |ψ〉 and the state of the solution to the problem |ω〉 (or uniform superposition
of solution states, in case there are more than one). Because of that, past the R point,
the usefulness of Grover iterations start to deteriorate rapidly, as the phase difference
get smaller while amplitude differences are getting larger and larger. In other words,
subsequentG transformations start to cause the probability amplitudes to drop, until
they reach state in which the probability of reading out the correct answer is close to
zero. From that point on, the rotations start to approach the solution state again. This
cyclical, oscillating nature of Grover iteration, using N = 16 is shown in Fig. 7.12.
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Fig. 7.12 Probability of reading the result correctly from a four qubit (N = 16) data set, after
specific number of Grover iterations
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It is important to remember that, all things considered, Grover’s algorithm is still
probabilistic, and even though the probabilities can be very high, it does not guarantee
the deterministic results. The formula from Eq. (7.52) can help us determine when
to stop the iterations within a single (first) oscillation—it is possible to reach higher
correct answer probabilities on some of the subsequent oscillations, though that
increases complexity of the search and negates the possible quadratic speed up.

The repeated Grover iterations mark the final part of Grover’s algorithm. If we
apply theG transformations R times to state |ψ2〉 from Eq. (7.40), we will arrive at a
final system state |ψ3〉. Measurement of |ψ3〉 would collapse to the desired state |ω〉
with very high probability.

|ψ3〉 = (UψUω)R |ψ2〉 = GR |ψ2〉 ≈ |ω〉 (7.53)

7.3.4 Review of Algorithm Steps

At this point we can review the overall recipe for Grover’s algorithm, for problems
with a single solution M = 1 (for problems with multiple solutions, the R bound
would be different):

1. Prepare input state |x〉 = |0〉⊗n

2. ApplyH⊗n transformation to create a uniform superposition of all possible states
3. Apply Grover iteration G to the system R ≤ π

4

√
N times

a. Apply the oracle Uω

b. Apply the inversion about mean transformation Uψ

4. Measure the input register |x〉 to obtain the result |ω〉 with very high probability

A general quantum circuit for Grover’s algorithm, with a single solution match,
is shown in Fig. 7.13.

One thing we have not defined thus far are the internal implementations of both
the oracle Uω and the inversion about mean transformation Uψ . Both of them can

Fig. 7.13 Grover’s algorithm quantum circuit
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be implemented with the aid of the controlled phase shift gate CZ, which we first
introduced in Sect. 4.6, spanning all n qubits.

Let us first cover the Uω. The process for using the CZ gate to flip the sign on the
solution is outlined below.

1. Convert the solution that is searched for into its binary representation. It should
have the binary length as the size of the qubit register |x〉

2. Use the binary representation of the solution as a binary mask. For every solution
j th bit that is equal to 0, apply the X transformation to the corresponding qubit
in the register.

3. Apply CZ to flip the phase of the state |11 . . . 1〉
4. Apply the adjoint of the operation from step two. This is effectively undoing the

step two transformation with the phase flip moving from the last term onto the
solution

An example three qubit circuit following the procedure we just described, for the
oracle Uω with |ω〉 = |100〉 as the solution, is shown in Fig. 7.14.

The diffusion transformation Uψ can be realized via the following sequence of
gates:

Uψ = H⊗nX⊗nCZ⊗nX⊗nH⊗n (7.54)

To better illustrate this, we can go through Uψ step by step in a basic n = 2
qubit example. Such a simple two qubit system is very useful to study here, because
already after a single amplitude amplification Uψ , the probability of reading out the
solution flagged by the oracle increases to 100%. Consider the following uniform
superposition state, where |10〉 was marked by the phase oracle Uω as the solution:

|ψ1〉 = 1

2

(
|00〉 + |01〉 − |10〉 + |11〉

)
(7.55)

First, we apply (H ⊗ H):

|ψ2〉 = (H ⊗ H) |ψ1〉 = 1

2

(
|00〉 − |01〉 + |10〉 + |11〉

)
(7.56)

Followed by (X ⊗ X):

|ψ3〉 = (X ⊗ X) |ψ2〉 = 1

2

(
|00〉 + |01〉 − |10〉 + |11〉

)
(7.57)

Fig. 7.14 Sample circuit for
Uω oracle, marking |100〉 as
the answer
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Then a two-qubit CZ flips the sign on the |11〉 term:

|ψ4〉 = CZ |ψ3〉 = 1

2

(
|00〉 + |01〉 − |10〉 − |11〉

)
(7.58)

Then we undo the earlier transformations by first applying (X ⊗ X):

|ψ5〉 = (X ⊗ X) |ψ4〉 = 1

2

(
− |00〉 − |01〉 + |10〉 + |11〉

)
(7.59)

And finally (H ⊗ H) again, which leads us to the final state with a certain mea-
surement outcome corresponding to the |10〉—and that is of course the answer that
was initially indicated by the oracle.

|ψ6〉 = (H ⊗ H) |ψ4〉 = − |10〉 (7.60)

Naturally, as we already mentioned, this works so efficiently only for a two-
qubit state, and for larger ones more Grover iterations would be needed, however
it is still an elegant illustration of how the process of inverting about the mean
works against quantum states. Notice that we started in Eq. (7.55) that had four
probability amplitudes 1

2 ,
1
2 ,− 1

2 and
1
2 on all the four possiblemeasurement outcomes

respectively. The mean amplitude was therefore 1
4 . The Grover diffusion procedure

resulted in all of the wrong terms, which were previously 1
4 above the mean, to

be decreased by 1
2—so that they ended up 1

4 below the mean. This resulted, very
conveniently for us, for all of them receiving an amplitude 0. The correct term |10〉,
on the other hand, was previously 3

4 below the mean—flipping it 3
4 above themmade

it reach the amplitude value 1 and thus probability ofmeasurement equal to 1. Despite
all of that, the mean amplitude remained unchanged at 1

4 .
To summarize, the amplitude amplificationUψ corresponds to the example quan-

tumcircuit shown in Fig. 7.15,which is specifically constructed for a three-qubit case.

7.3.5 Q# Implementation

With all these pieces covered, we are well positioned to test out the logical behavior
of Grover’s algorithm by implementing it using Q# code. We will start by writing

Fig. 7.15 Circuit for
executing amplitude
amplification Uψ in Grover’s
algorithm. Three qubits are
shown but the pattern can be
extended to any register
size n
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the code for the individual operations making up the Grover iteration—the oracleUω

and the diffusion transformation Uψ , as those are standalone, self-contained parts.
The code for the oracle is shown in Listing 7.11 and follows the sample circuit

Fig. 7.14, with the major difference being that instead of being hardcoded to mark
a specific answer, it can facilitate any predefined solution, of any size n. The core
work of the oracle is of course theCZ gate spanning the entire qubit register. Because
QDK does not provide a built-in n-qubit CZ operation, we can use the Controlled
functor and the regular Z gate to achieve the same result. Additionally, because the
oracle performs a set of conditional bitflips, and then performs the adjoint operation
to undo those transformations, we can make use of Q# conjugation feature to make
the code elegant and terse.

operation Oracle(solution : Int, qubits : Qubit[]) :
Unit is Adj {
let n = Length(qubits);

within {
let markerBits = IntAsBoolArray(solution , n);
for i in 0..n-1 {

if not markerBits[i] {
X(qubits[i]);

}
}

} apply {
Controlled Z(Most(qubits), Tail(qubits));

}
}

Listing 7.11 Q# implementation of the oracle for Grover’s algorithm.

The oracle makes use of a helper function IntAsBoolArray (number : Int,
bits : Int) from the Microsoft.Quantum.Convert namespace to convert the
solution that the oracle knows into its binary representation. Note that the returned
arrayuses a little-endian format, so for example the number 4wouldbecome[False,
False, True] not [True, False, False]. Then the oracle uses this bit array as
a mask to apply the X transformations where needed. For simplicity we assume that
the bit size n of the solution is smaller or equal to the length of the qubit array.

In order to separate the step of preparing the oracle with the solution, from its
invocation as part of the Grover’s algorithm and the individual Grover iterations, we
will use partial function application as shown in Listing 7.12.

function PrepareOracle(solution : Int) : ((Qubit[]) => Unit is
Adj) {
return Oracle(solution , _);

}

Listing 7.12 Partial application of Grover’s oracle to set the desired solution.

Another small feature worth mentioning is the usage of
the Most<’T>(array : ’T[]) and Tail<’T> (array : ’T[]) functions
which help split the qubits register into two blocks, one being an array containing all
but the last element, and the other being just the last element itself. Those are then
passed to the Controlled functor to perform the multi-qubit CZ transformation.
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The inversion about the mean operation can also benefit from the
same within...apply conjugation pattern as the oracle. The Q# implementation,
following the circuit from Fig. 7.15 is shown in Listing 7.13.

operation Diffusion(qubits : Qubit[]) : Unit is Adj {
within {

ApplyToEachA(H, qubits);
ApplyToEachA(X, qubits);

} apply {
Controlled Z(Most(qubits), Tail(qubits));

}
}

Listing 7.13 Q# implementation of the amplitude amplification procedure for Grover’s algorithm.

With the oracle and diffusor operations available, we can now construct the oper-
ation that will execute the entire Grover’s algorithm. This operation is shown in
Listing 7.14. As input, it will take the n bit size of the problem space, so that we
can allocate the relevant amount of qubits and determine the correct iteration limit,
as well as the oracle prepared according to the partial application logic from Listing
7.12. The Grover iterations will be limited by the variable r, which is the Q# code
equivalent to the formula from Eq. (7.52).

operation Grover(n : Int, oracle : (Qubit[]) => Unit is Adj) : Int {

let r = Floor(PI() / 4.0 * Sqrt(IntAsDouble(2 ^ n)));

use qubits = Qubit[n];
ApplyToEach(H, qubits);

// Grover iterations

for x in 1 .. r {

oracle(qubits);

Diffusion(qubits);

}

let register = LittleEndian(qubits);
let number = MeasureInteger(register);
return number;

}

Listing 7.14 Grover’s algorithm in Q#.

The code follows the Grover circuit from Fig. 7.13. To make it more readable, the
measurement process wraps the qubits in the LittleEdian register and uses that to
perform a measurement of a single integer value, instead of reading out individual
classical bits from the qubits. Thismakes itmuch easier to analyze the results, because
such approach is symmetric to how we prepared the oracle (in Listing 7.11), where
the solution was input as an integer as well. The oracle itself is also passed into the
algorithm as an argument, namely as a delegate with the (Qubit[]) => Unit is
Adj) signature. This will allow for the algorithm to be invoked with various oracles,
and thus to test the search process against different solutions.

The final part of the process is to define an orchestration operation that will do
just that—execute the algorithm a number of times and output the results for us to
see and verify. The orchestration code using n = 8 is shown in Listing 7.15.
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@EntryPoint()
operation Main() : Unit {

let bitSize = 8;
for solution in 0..2^bitSize - 1 {

let oracle = PrepareOracle(solution);
let result = Grover(bitSize, oracle);
Message($"Expected to find: {solution}");
Message($"Found: {result}");

}
}

Listing 7.15 Grover’s algorithm orchestration code.

The orchestration uses the bit size n of the problem space to loop through all the
possible results—in this case 0–255, and prepares a corresponding oracle. In each
case, the Grover’s algorithm is invoked, and the outcome of the search is printed out
to the console. The output should be similar to the (trimmed) one shown in Listing
7.16, which should also act as validation of our solution.

Expected to find: 0
Found: 0
Expected to find: 1
Found: 1
Expected to find: 2
Found: 2
...
Expected to find: 253
Found: 253
Expected to find: 254
Found: 254
Expected to find: 255
Found: 255

Listing 7.16 Grover’s algorithm sample output.

7.4 Quantum Fourier Transform

7.4.1 Roots of Unity

Let us begin this section by introducing the concept of roots in mathematics. In
general, an nth root of a number k is a number z that, when multiplied by itself n
times, yields k.

zn = k (7.61)

A classical example could be k = 4, which has two second (n = 2) roots—either
z = −2 or z = 2.

Roots get particularly interesting, once we constraint k by only allowing k = 1,
which allows us to work with the so-called root of unity. For roots of unity, the
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convention is to use ω in place of z, so we shall also switch to that notation from
this point on. This is still seemingly rather unremarkable, because on the surface,
the first root (n = 1) of unity is ω = 1 and the second root (n = 2) of unity are only
ω0 = 1 and ω1 = −1. However, from the third root onwards, and thanks to usage of
complex numbers, things become a lot more entertaining.

For n = 3, there are three roots of unity:

ω0 = 1 = e
0π i
3 (7.62)

ω1 = −1 + i
√
3

2
= e

2π i
3

ω2 = −1 − i
√
3

2
= e

4π i
3

Consequently, for n = 4, we can find four roots of unity, and those are easy to do
because the imaginary number itself i , also becomes a fourth root. We can also see
a pattern start to emerge3:

ω0 = 1 = e
0π i
4 (7.63)

ω1 = i = e
2π i
4

ω2 = −1 = e
4π i
4

ω3 = −i = e
6π i
4

Overall, the general formula for the N th root of unity that can be spotted here is:

ωk = e
2kπ i
N (7.64)

The roots of unity are a de facto rotations around a circle divided into N parts—
each time we multiply a root of unity by itself, we get a rotation 1

N of the way around
the circle.

We will be needing this in a moment.

7.4.2 Discrete Fourier Transform

Fourier Transform, whichwas originally developed by Frenchmathematician Joseph
Fourier, is a linear transformation function that can be used to convert the function’s
time-domain representation to its frequency-domain representation. It’s discrete vari-
ant, Discrete Fourier Transform, has achieved extraordinary success as it allowed
discovery and extraction of frequency data from all kinds of signals. Because of that,

3 We intentionally do not reduce the fractions to ensure the pattern really is visible.
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it has found a very wide spectrum of applications in fields ranging frommathematics,
music and sound engineering, through spectroscopy, to digital image processing.

The mathematical definition of DFT is as follows. Given an input set f of N
complex numbers, DFT maps it to another complex set h so that:

h j = 1√
N

N−1∑
k=0

fke
2π i jk
N (7.65)

We can spot here that e
2π i
N is actually the primitive root of unity from Eq. (7.64),

a fact that will allow us to simplify the math a lot.

h j = 1√
N

N−1∑
k=0

fkω
jk (7.66)

Additionally, we can also model DFT as a mapping of a vector f to a vector h. If
we represent the number sets in such vector format, we can express DFT as a N × N
matrix UDFT.

⎡
⎢⎢⎢⎢⎢⎣

h[0]
h[1]
h[2]

...

h[N − 1]

⎤
⎥⎥⎥⎥⎥⎦

= UDFT

⎡
⎢⎢⎢⎢⎢⎣

f [0]
f [1]
f [2]
...

f [N − 1]

⎤
⎥⎥⎥⎥⎥⎦

(7.67)

Taking Eqs. (7.64) and (7.66) into account, we arrive at the matrix form of the
DFT, which consists of a combination of powers of N th roots of unity:

UDFT = 1√
N

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ω0 ω0 ω0 ω0 . . . ω0

ω0 ω1 ω2 ω4 . . . ω(N−1)

ω0 ω2 ω4 ω6 . . . ω2(N−1)

ω0 ω3 ω6 ω9 . . . ω3(N−1)

...
...

...
. . .

...
...

ω0 ω(N−1) ω2(N−1) ω3(N−1) . . . ω(N−1)(N−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(7.68)

The fastest algorithmic implementation of DFT is Fast Fourier Transform [7],
which reduces the complexity of computing the classical DFT from O(N 2) to
O(NlogN ), where N is the data size. Themain limitation of FFT is that it is restricted
for N signal sizes that are power-of-two, so data padding may be required. Regard-
less of this dramatic computational speed-up provided by FFT, as pointed out by
Zygelman [28], the resources needed for computation still grow exponentially, if the
input list grows exponentially. As a result, trying to compute DFT for all permuta-
tions of the binary input N = 2n , one arrives at very rapid exhaustion of resources
on classical computers.
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7.4.3 Quantum Fourier Transform

Quantum Fourier Transform resembles closely the Digital Fourier Transform and
provides an incredible—exponential—computational speed up over the Fast Fourier
Transform. The initial version of the quantum variant of FFT was developed in
1994 in IBM by Peter Shor [23], as part of his work on the factoring algorithm.
Soon after, another IBM mathematician, Don Coppersmith, developed an improved
version that required O(log2N ) steps, thus achieving the exponential speedup over
its classical counterpart [8]. The technique became a critical component of Shor’s
factoring algorithmand has since found other useful application scenarios in quantum
computer science.

Let us see here how DFT can be modeled as quantum state transformation, so that
we can apply it in a quantum program. Quantum Fourier Transform UQFT is effec-
tively identical transformation toDiscrete FourierTransform [22]. Ifweonly consider
basis states and ignore the possible superpositions for now, it can be described by
rewriting Eq. (7.66) into braket notation and updating the sum to be done over 2n ,
because that is the amount of possible states to be encoded into n qubits as shown in
Eq. (7.69) (where |x〉 is a basis state).

UQFT |x〉 = 1√
2n

2n−1∑
y=0

ωxy |y〉 (7.69)

To extrapolate it onto general superposition state, we can recall that in general we
can express an arbitrary n qubit superposition state |ψ〉 using the following formula:

|ψ〉 =
2n−1∑
j=0

x j | j〉 (7.70)

In other words, the quantum state is characterized by 2n complex-numbered prob-
ability amplitudes x j . The sum of all amplitudes x j must naturally be equal to one.
We also know that an arbitrary quantum state transformation U, acting on this gen-
eralized state |ψ〉, would need to produce a new superposition state, so it would map
| j〉 to |k〉 and x j to yk

U |ψ〉 = U
2n−1∑
j=0

x j | j〉 =
2n−1∑
k=0

yk |k〉 (7.71)

Taking all of this into account,we can combineEqs. (7.69) and (7.71) together such
that the resulting Quantum Fourier Transform would enact state evolution where the
amplitudes of the original input state are related to the amplitudes of the superposition
output state by the Discrete Fourier Transform.
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As a result, we arrive at the final definition of Quantum Fourier Transform, acting
upon an arbitrary superposition state |ψ〉.

UQFT |ψ〉 = 1√
2n

2n−1∑
j=0

2n−1∑
k=0

xkω
jk | j〉 (7.72)

It can also be calculated that

UQFTUQFT
† = 1 (7.73)

where UQFT
† is the Hermitian adjoint of UQFT. This of course means that the UQFT

transformation is unitary, and thus suitable for usage as a quantum state transforma-
tion during a computation process on a quantum hardware.

The matrix representation for the QFT transformation would follow that of the
DFT one, defined in Eq. (7.68). With a few simplifications applied, it looks like this:

UQFT = 1√
2n

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 . . . 1
1 ω1 ω2 ω4 . . . ω(2n−1)

1 ω2 ω4 ω6 . . . ω(2n−2)

1 ω3 ω6 ω9 . . . ω(2n−3)

...
...

...
. . .

...
...

1 ω(2n−1) ω(2n−2) ω(2n−3) . . . ω

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(7.74)

This is probably still quite abstract, so what could help to illustrate QFT, would be
to calculate the QFT matrices for one and two qubit cases. For a single qubit (n = 1)
we deal with a tiny data set of size N = 21 = 2, and we can calculate the second
root of unity using Eq. (7.64).

ω = e
2iπ
2 = eiπ = −1 (7.75)

We can now substitute that into the QFT matrix, and results in the following
representation of a single qubit Quantum Fourier Transform:

UQFT1 = 1√
2

[
1 1
1 −1

]
(7.76)

Quite surprisingly, this ends up being exactly the structure of theHmatrix, which
tells us that for a single qubit Quantum Fourier Transform is the Hadamard transfor-
mation. This is, however, only a special case, and for larger qubit sizesUQFTn �= H⊗n .

For n = 2, we arrive at

ω = e
2iπ
4 = e

iπ
2 = i (7.77)



7.4 Quantum Fourier Transform 249

which leads us the UQFT2 matrix

UQFT2 = 1

2

⎡
⎢⎢⎣
1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎤
⎥⎥⎦ (7.78)

We can proceed to inspect the effects of this transformation on two qubit compu-
tational basis states |00〉, |01〉, |10〉 and |11〉.

UQFT2 |00〉 = 1

2
(|00〉 + |01〉 + |10〉 + |11〉) = (7.79)

1√
2
(|0〉 + |1〉) ⊗ 1√

2
(|0〉 + |1〉)

UQFT2 |01〉 = 1

2
(|00〉 + i |01〉 − |10〉 − i |11〉) = (7.80)

1√
2
(|0〉 − |1〉) ⊗ 1√

2
(|0〉 + i |1〉)

UQFT2 |10〉 = 1

2
(|00〉 − |01〉 + |10〉 − |11〉) = (7.81)

1√
2
(|0〉 + |1〉) ⊗ 1√

2
(|0〉 − |1〉)

UQFT2 |11〉 = 1

2
(|00〉 − i |01〉 − |10〉 + i |11〉) = (7.82)

1√
2
(|0〉 − |1〉) ⊗ 1√

2
(|0〉 − i |1〉)

A certain pattern should be visible in this—namely that UQFT2 on two qubits
produces a tensor product of single qubit superposition states, were the terms are
equivalent to the Hadamard transformation. We can give it a more formal description
be generalizing it onto any n number of qubits.

UQFT | j1 . . . jn−1 jn〉 = (7.83)

1√
2n

(
|0〉 + e2π i

jn
21 |1〉

)
⊗

(
|0〉 + e2π i(

jn−1
21

+ jn
22

) |1〉
)

⊗

· · · ⊗
(
|0〉 + e2π i(

j1
21

+···+ jn−1
2n−1 + jn

2n ) |1〉
)

The definition of UQFT we managed to establish so far is helpful to algebraically
illustrate its effects on quantum states, but cannot directly be applied as a single logic
gate. We can, however, construct a circuit, made entirely out of one- and two-qubit
gates, which will perform the Quantum Fourier Transform and be appropriate for
usage on quantum hardware.
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Fig. 7.16 QFT circuit for four qubits

The main building block of the circuit is the rotation gateRϕ
z which we introduced

in Sect. 4.5, used in the controlled fashion over pairs of qubits, with rotation angles
depending on the amount of qubits involved in the QFT process. We can also recall
from that part of the book, that it is common to express Rϕ

z with rotation angles of
π
2 and π

4 as, S and T gates respectively.
The QFT circuit for four qubits is shown in Fig. 7.16.
Let us walk through the individual steps. We start off in state:

| j1〉 ⊗ | j2〉 ⊗ | j3〉 ⊗ | j4〉 (7.84)

After the initial H gate applied to the qubit | j1〉, and using the mathematical
formalism of H introduced in Eq. (4.13), the system state changes to:

1√
2

(
|0〉 + e2π i

j1
21

)
⊗ | j2〉 ⊗ | j3〉 ⊗ | j4〉 (7.85)

Next, a controlled S is applied between the first and second qubits, leading us to
state:

1√
2

(
|0〉 + e2π i(

j1
21

+ j2
22

)
)

⊗ | j2〉 ⊗ | j3〉 ⊗ | j4〉 (7.86)

A controlled T gate follows, applying a further rotation to | j1〉:
1√
2

(
|0〉 + e2π i(

j1
21

+ j2
22

+ j3
23

)
)

⊗ | j2〉 ⊗ | j3〉 ⊗ | j4〉 (7.87)

Finally, the controlled rotation R
π
8
z produces:

1√
2

(
|0〉 + e2π i(

j1
21

+ j2
22

+ j3
23

+ j4
24

)
)

⊗ | j2〉 ⊗ | j3〉 ⊗ | j4〉 (7.88)

Similar procedure needs to be applied to the other qubits, each one receiving one
less controlled rotation than the previous one. The second qubit will receive a gate
sequence H, controlled S and controlled T, creating a system state:

1√
2

(
|0〉 + e2π i(

j1
21

+ j2
22

+ j3
23

+ j4
24

)
)

⊗ (7.89)
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1√
2

(
|0〉 + e2π i(

j2
21

+ j3
22

+ j4
23

)
)

⊗
| j3〉 ⊗ | j4〉

Next, we apply the H and controlled S to the third qubit:

1√
2

(
|0〉 + e2π i(

j1
21

+ j2
22

+ j3
23

+ j3
24

)
)

⊗ (7.90)

1√
2

(
|0〉 + e2π i(

j2
21

+ j3
22

+ j4
23

)
)

⊗
1√
2

(
|0〉 + e2π i(

j3
21

+ j4
22

)
)

⊗
| j4〉

And finally, the last, fourth, qubit receives only the H transformation.

1√
2

(
|0〉 + e2π i(

j1
21

+ j2
22

+ j3
23

+ j4
24

)
)

⊗ (7.91)

1√
2

(
|0〉 + e2π i(

j2
21

+ j3
22

+ j4
23

)
)

⊗
1√
2

(
|0〉 + e2π i(

j3
21

+ j4
22

)
)

⊗
1√
2

(
|0〉 + e2π i

j4
21

)

This is a very promising result, because it is almost exactly the QFT output
state which we defined in Eq. (7.83), with the only difference being the probability
amplitudes, which are in the wrong order compared to what we were expecting. We
can fix that using the SWAP gates—by swapping pairs of qubits | j1〉 with | j4〉 and
| j2〉with | j3〉. This is also the reason for including these swap operations in the circuit
on Fig. 7.16. Note that the amount of swaps needed corresponds to the amount of
qubits involved—at most, n

2 swaps will be necessary.
The final system state after the successful swapping of terms is:

1√
2

(
|0〉 + e2π i

j4
21

)
(7.92)

1√
2

(
|0〉 + e2π i(

j3
21

+ j4
22

)
)

⊗
1√
2

(
|0〉 + e2π i(

j2
21

+ j3
22

+ j4
23

)
)

⊗
1√
2

(
|0〉 + e2π i(

j1
21

+ j2
22

+ j3
23

+ j4
24

)
)

Thefinal thingworth noting is that the approach discussed here assumes big endian
sequencing of qubits. However, from programming perspective the opposite—little
endian, which would simply use an inverted order of qubits—is a more natural and
more commonly used method of working with bit registers in higher level languages.
Q# provides built-in implementation for both big endian and little endian variants,
and it is at the programmer’s discretion to choose the method more appropriate for
their use case.
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7.4.4 Q# Implementation

The basic Q# implementation of a QFT is at this point not going to be particu-
larly challenging, given that we have precise circuit definition. We will start with a
hardcoded four-qubit variant, mimicking Fig. 7.16.

In order to be able to see the effects of the QFT, we need to initialize the qubit
register to some non-zero value instead of executing it on the |0000〉 state. To
achieve that, we use the helper operation SetValue (value : Int, qubits :
Qubit[]) shown in Listing 7.17.

operation SetValue(value : Int, qubits : Qubit[])
: Unit is Adj + Ctl {

ApplyToEachCA(
CControlledCA(X),
Zipped(IntAsBoolArray(value, Length(qubits)^2), qubits)

);
}

Listing 7.17 Helper to initialize a qubit register to a specific integer value

The helper uses the built-in Q# core operation
CControlled<’T> (op : (’T => Unit)), which allows us to
conditionally apply a given operation if the given classical bit is set to true.
In this case, we apply X which effectively results in the register being initialized to
the specific integer value.

The Q# code for a four qubit big endian QFT is shown next, in Listing 7.18.
Since the code is fixed to four qubits, we can just hardcode the register indices when
applying the relevant rotations, making the code very straight-forward. Notice that as
discussed in Sect. 4.5, we use R1(theta : Double, qubit : Qubit) instead of
Rz(theta : Double, qubit : Qubit) for rotation about the z-axis—thismeans
we are not changing the global phase. At the end, the operation uses a debug helper
function DumpMachine<’T> (location : ’T) which is useful to visualize the
effects of the QFT on the state of the system when running on the simulator. Addi-
tionally, since the qubits are not measured, they are manually reset. Obviously in real
world application these last two lines would be omitted.

operation FourQubitQFT_BE_Manual(initialValue : Int) : Unit {
use qubits = Qubit[4];
SetValue(initialValue , qubits);

H(qubits[0]);
Controlled S([qubits[1]], qubits[0]);
Controlled T([qubits[2]], qubits[0]);
Controlled R1([qubits[3]], (PI()/8.0, qubits[0]));

H(qubits[1]);
Controlled S([qubits[2]], qubits[1]);
Controlled T([qubits[3]], qubits[1]);

H(qubits[2]);
Controlled S([qubits[3]], qubits[2]);
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H(qubits[3]);

SWAP(qubits[2], qubits[1]);
SWAP(qubits[3], qubits[0]);

DumpMachine();
ResetAll(qubits);

}

Listing 7.18 Manual QFT implementation in Q# for four qubits using big endian qubit register.

The hardcoded logic can relatively easily be generalized into a param-
eterized operation invoking the necessary amount of controlled R1 (theta
: Double, qubit : Qubit) rotation gates, with appropriate rotation angles,
and performing the required swaps depending on the size of the qubit reg-
ister. In fact, Q# already contains an excellent built-in helper operation to
reverse the register order,SwapReverseRegister (register : Qubit[]) in the
Microsoft.Quantum.Canon namespace. The generalized approach for n qubits is
shown in Listing 7.19.

operation QFT_BigEndian_Manual(initialValue : Int) : Unit {
use qubits = Qubit[BitSizeI(initialValue)];
let length = Length(qubits);
SetValue(initialValue , qubits);

for i in 0..length -1 {
H(qubits[i]);
mutable power = 1;
for j in i+1..length -1 {

Controlled R1([qubits[j]], (PI() / PowD(2.0,
IntAsDouble(power)), qubits[i]));

set power += 1;
}

}

SwapReverseRegister(qubits);

DumpMachine();
ResetAll(qubits);

}

Listing 7.19 Generalized QFT implementation in Q# for n qubits.

The size of the qubit register is dynamically computed based on the bit size of
the initial value set in the register. This is calculated using the Q# standard library
function BitSizeI (a : Int) from the Microsoft.Quantum.Math namespace.
The usages of S andT gates are now completely replaced with calls to R1 (theta :
Double, qubit : Qubit), with the rotation angles determined on-demand using
powers of two.

As nice as this code is to read and marvel, it is also equally unnecessary. That is
because, not surprisingly, Q# ships Quantum Fourier Transform implementations
out-of-the box. Therefore, in order to perform a big endian QFT in Q#, all we
need to do is wrap the qubit array into a BigEndian register and call QFT (qs
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: BigEndian) operation from the Microsoft.Quantum.Canon namespace. This
is shown in Listing 7.20.

operation QFT_BigEndian_Framework(initialValue : Int) : Unit {
use qubits = Qubit[BitSizeI(initialValue)];
SetinitialValue(initialValue , qubits);
let register = BigEndian(qubits);

QFT(register);

DumpMachine();
ResetAll(qubits);

}

Listing 7.20 Using the framework big endian QFT implementation in Q# for n qubits.

The result of the operations shown in Listings 7.19 and 7.20 is identical, with
the obvious advantage that the latter is part of the framework and does not need to
be written. If we were to execute any of them for a four qubit register, for example
by initially setting the register to integer 10 (|1010〉), we would also get the effects
identical to the operation listed in 7.18.

Finally, in case of working with the little endian register, we simply need to
reverse the qubit order from Listing 7.18 when applying the controlled rotation
sequences. Similarly as before, the manual implementation of the algorithm can
be replaced with the framework-based one, QFTLE (qs : LittleEndian). The
additional change includes using a built-in operation ApplyXorInPlace (value :
Int, target : LittleEndian) from the Microsoft.Quantum.Arithmetic
namespace to initialize the register with a specific value. This has the same effect
as our custom SetValue(value : Int, qubits : Qubit[]) operation, but is
readily available in the Q# standard library and works with little endian registers.

operation QFT_LittleEndian_Framework() : Unit {
use qubits = Qubit[4];
let register = LittleEndian(qubits);
ApplyXorInPlace(8, register);

QFTLE(register);

DumpMachine();
ResetAll(qubits);

}

Listing 7.21 Using the framework little endian QFT implementation in Q# for n qubits.

7.5 Quantum Phase Estimation

In Chap.2 we introduced the linear algebra concepts of eigenvectors and eigenvalues.
An eigenvector x of a matrix A is a vector that changes only by a scalar λ when the
linear transformation represented by this matrix is applied to it. This has the general
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mathematical form of

Ax = λx (7.93)

Quantum phase estimation (QPE) is the eigenvalue problem in the context of
quantummechanics. All quantum state transformations must be unitary, so wewould
customarily denote them asU, the length of the quantum state vector is always equal
to 1 and, of course, it would typically be written in the braket notation. This leads us
to the following way of expressing the eigenvalues of a unitary operators in quantum
mechanics

U |u〉 = e2π iθ |u〉 (7.94)

where θ is the phase of the system, and takes values in the range of 0 ≤ θ ≤ 1. In
other words, a unitary quantum state transformation U acting on its eigenvector |u〉,
will produce the same quantum state vector |u〉 along with an eigenvalue e2π iθ , and
the QPE algorithm allows us to estimate this phase θ for an arbitrary U.

The problem has a wide spectrum of application in physics and technology, such
as computing the ground state energy of a system or reducing the dimensionality
of feature vectors in machine learning [18]. It is also an essential routine used as a
building block in many other quantum algorithms such Shor’s factoring algorithm
or the quantum algorithm for linear systems of equations. Since the original QPE
algorithm, which was developed by Kitaev [19], it has been revised and improved in
a number of ways in terms of performance and circuit efficiency, for example by a
group fromMicrosoft Research [25]. The implementation discussed here is a revised
quantum phase estimation algorithm reported by Cleve et al. [6].

7.5.1 Core Theory

The core idea behind quantum phase estimation lies behind the fact that we assume
we can express, with reasonable accuracy, the phase as n bits:

e2π iθ = e2π i0.θ1θ2...θn (7.95)

We can only speak about phase estimation because it is possible for θ to be a
value that cannot be exactly represented with a fixed amount of bits—for example it
could be an irrational value, such as

√
2
2 . Because of this, when working with phase

estimation algorithm, we will require to operate on two qubit registers, of sizes n and
m respectively. The first register that will hold n qubits will determine the upper limit
on the accuracy of the solution and the success probability for finding the phase cor-
rectly. The second register of sizem and will accommodate the initial input state |u〉.

Another prerequisite for the algorithm is the assumption that we have access to a
blackbox unitary operator U, which is capable of both preparing the initial state |u〉
and executing controlled U2 j

operations for 0 ≤ j ≤ n − 1.
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A key thing to realize here is that we really need U2 j
because that is the way to

reach the phase representation from Eq. (7.95).

U2 j |u〉 = e2π i2
j θ |u〉 = e2π i0.θ1θ2...θn |u〉 (7.96)

A different way of looking at it is to consider what happens when U acts on its
eigenvectors j amount of times [2]. To put it simply, a series of U ranging from U20

to U2 j−1
can be used to arrive at the correct value for the phase.

U2 j |u〉 = U2 j−1U |u〉 = U2 j−1e2π iθ |u〉 = · · · = e2π i2
j θ |u〉 (7.97)

These are exactly the ideas explored by the quantum phase estimation algorithm.

The circuit for quantum phase estimation algorithm is shown in Fig. 7.17. It is
easiest to start exploring the algorithm by setting n = 1 and seeing how the system
state changes.

|0〉 |u〉 (7.98)

By placing the first register (in this case single qubit) in the superposition, we
arrive at:

1√
2

(
|0〉 + |1〉

)
|u〉 = 1√

2

(
|0〉 |u〉 + |1〉 |u〉

)
(7.99)

The controlled U then produces:

CU
1√
2

(
|0〉 |u〉 + |1〉 |u〉

)
= (7.100)

Fig. 7.17 QPE circuit
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1√
2

(
|0〉 |u〉 + e2π iθ |1〉 |u〉

)
= 1√

2

(
|0〉 + e2π iθ |1〉

)
|u〉

Because |u〉 is the eigenstate ofU it is unaffected by it, and the phase information
“spilled” into the first register and is now part of the single qubit state that we have
there.

Weare nowwell positioned to generalize togetherEqs. (7.96), (7.97) and (7.100) to
provide the formal algebraic description of the quantum phase estimation algorithm.
The procedure starts with a system state |ψ1〉:

|ψ1〉 = |0〉⊗n |u〉 (7.101)

This is followed by placing the first register in a uniform superposition by applying
H⊗n to it.

|ψ2〉 = (H⊗n ⊗ I⊗m) |ψ1〉 = 1√
2n

2n−1∑
k=0

|k〉 |u〉 (7.102)

Next, n controlled U2 j
operations are applied to |ψ2〉. This leads, as we already

saw in the simple example with a single qubit, to the encoding of phase information
into the first register.

|ψ3〉 = U2 j |ψ2〉 = 1√
2n

(
|0〉 + e2π i2

n−1θ |1〉
)

⊗ (7.103)

(
|0〉 + e2π i2

n−2θ |1〉
)

⊗ · · · ⊗
(

|0〉 + e2π i2
0θ |1〉

)
⊗ |u〉

The state |ψ3〉 can be written more concisely as:

|ψ3〉 = 1√
2n

2n−1∑
k=0

e2π iθk |k〉 |u〉 (7.104)

At this point the second register become no longer needed, since it stays in state
|u〉. Moreover, if we compare Eqs. (7.104) and (7.83) we will realize that the first
register is now in a state that is the product of a Quantum Fourier Transform. Because
in quantummechanics all transformations are unitary, we can always apply an adjoint
operation to revert a given state, which is exactly the algebraic trickery needed next.

By employing an adjoint of QFT, we are able to take the first register state from
Eq. (7.104) to the state where the register actually contains an estimation of the phase
we were looking for—|θ̃〉.

UQFT
†

(
1√
2n

2n−1∑
k=0

e2π iθk |k〉
)

= |θ1〉 ⊗ |θ2〉 ⊗ · · · ⊗ |θn〉 = |θ̃〉 (7.105)

A Z-basis measurement of the first register will now reveal to us the value of θ .
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7.5.2 Q# Implementation

We can begin the Q# implementation of the algorithm by defining the oracle U
and equipping it with a capability of being invoked as many times as needed, to
correspond to the power-of-2 requirement that we have. A definition of such basic
U, acting on a single qubit only, is provided in Listing 7.22. It could be used to wrap
any single qubit unitary transformation, which is passed into the operation as the op
argument. The other two arguments represent the power for which the oracle needs
to be invoked and the qubits to act on.

operation U(op : (Qubit) => Unit is Adj + Ctl, power : Int,
qubits : Qubit[]) : Unit is Adj + Ctl {
for _ in 1 .. power {

op(qubits[0]);
}

}

Listing 7.22 A simple single qubit QPE oracle applying the desired power of U.

Notice that we defined the oracle with the controlled specialization so that it can
be used as a controlled operation.

Unsurprisingly, Q# already provides a built-in implementation of
quantum phase estimation algorithm, as the QuantumPhaseEstimation
(oracle : DiscreteOracle, targetState : Qubit[], control
Register : BigEndian) operation from the Microsoft.Quantum.
Characterization namespace. It is only available for the big endian regis-
ter, but the qubit order can always be reversed into the little endian format if
needed. The built-in functionality relies on the DiscreteOracle user defined type
from Microsoft.Quantum.Oracles namespace, which is a wrapper for (Int,
Qubit[]) => Unit is Adj + Ctl) delegate. For this reason, in order to be
compatible with the DiscreteOracle wrapper user defined type, the signature of
our oracle from Listing 7.22 takes an array of qubits as input, even though it only
needs to act on one of them.

Notice, however, that theU operation defined by us is still not directly usable with
the DiscreteOracle because of the extra op delegate parameter. We will be using
the partial application feature with it, to prepare the U oracle with various single qubit
operations which will serve as testing candidates. The oracle preparation function,
to be used with partial application, is shown in Listing 7.23.

function PrepareOracle(op : (Qubit) => Unit is Adj + Ctl) :
((Int, Qubit[]) => Unit is Adj + Ctl) {
return U(op, _, _);

}

Listing 7.23 Preparing the oracle Listing 7.22 with any arbitrary single qubit operation using Q#
function application feature.

The output from the PrepareOracle (op : (Qubit) => Unit is Adj +
Ctl) is a delegate that can be passed into DiscreteOracle. From this point on,
we can take two possible paths—and in fact we will take both of them, comparing
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the outcomes. We could either rely on the built-in core quantum phase estimation
functionalities of the QDK or we could implement the circuit Fig. 7.17 manually. Let
us first begin with the manual procedure, which is shown in Listing 7.24.

operation ManualEstimation(
eigenstate : Qubit,
oracle : ((Int, Qubit[]) => Unit is Adj + Ctl),
precision : Int) : Double {

use qubits = Qubit[precision];
let register = LittleEndian(qubits);

ApplyToEach(H, qubits);

for i in 0 .. precision - 1 {
Controlled oracle([qubits[i]], (2^i, [eigenstate]));

}

Adjoint QFTLE(register);

let phase = IntAsDouble(MeasureInteger(register)) /
IntAsDouble(2^precision);

return phase;
}

Listing 7.24 Manual implementation of the QPE from circuit Fig. 7.17.

The operation ManualEstimation (eigenstate: Qubit, oracle:
((Int, Qubit[]) => Unit is Adj + Ctl), precision : Int) takes a
qubit in an eigenstate as an input (recall that we are using single qubit gates in
this example, so a single qubit eigenstate is appropriate), the oracle delegate and
the precision integer, which will dictate the size of the result register, as well as
the amount of iterations (and thus powers) of application of the controlled oracle.
The result register is allocated and placed into a superposition, followed by the
sequence of controlled oracle calls, determined by the required precision, using the
Controlled functor.

Next, an adjoint QFTLE (qs : LittleEndian operation from the
Microsoft.Quantum.Canon namespace is executed. While we do want to
focus on manual QPE algorithm implementation here, we already covered manual
QFT in Sect. 7.4 so there is no need to repeat it again.

Finally, the phase is obtained bymeasuring the register in the little endian format.
It will contain the phase value in radians, and depending on the precision, so, really,
the amount of controlled operations invoked, we need to divide it accordingly.

The QDK facilitated QPE is shown in Listing 7.25. The main difference is
that the built-in quantum phase estimation algorithm produces the result in the
big endian register so prior to measurement with the MeasureInteger(target
: LittleEndian) we need to manually reverse the qubits to be compatible with
little endian bit order.

operation BuiltinEstimation(
eigenstate : Qubit,
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oracle : ((Int, Qubit[]) => Unit is Adj + Ctl),
precision: Int) : Double {

use qubits = Qubit[precision];
QuantumPhaseEstimation(DiscreteOracle(oracle), [eigenstate],

BigEndian(qubits));
let phase = IntAsDouble(MeasureInteger(LittleEndian(Reversed(

qubits)))) / IntAsDouble(2^precision);
return phase;

}

Listing 7.25 Implementation of the algorithm in Q# using the built-in QPE feature.

Both of the solutions should produce the exact same output, and it should be fairly
easy to verify. Good candidates for testing are quantum gates Z, S and T. As we
covered already in Sect. 4.5, they have a special relationship, namely T4 = S2 = Z.
Additionally they all add a phase to the quantum state |1〉:

Z |1〉 = − |1〉 = eiπ |1〉 (7.106)

S |1〉 = i |1〉 = e
π i
2 |1〉

T |1〉 = e
π i
4 |1〉

Because QPE allows us to estimate the phase in the form of e2π iθ , we should be
able to find:

θZ = 1

2
θS = 1

4
θT = 1

8
(7.107)

To be able to compare the manual implementation and the built-in one, we define
one other helper operation, that will take the prepared oracle and the relevant eigen-
state as input and execute both flows. The output of this orchestrator can then be
used to find out whether we made any mistakes in our theoretical reasoning. Since
the biggest value we need to find, 8, requires three bit representation, we can set 3
as the precision level.

operation TestPhaseEstimation(
oracle : (Int, Qubit[]) => Unit is Adj + Ctl,
eigenstate : Qubit,
expectedPhase : Double) : Unit {

let libPhase = BuiltinEstimation(eigenstate , oracle, 3);
let manualPhase = ManualEstimation(eigenstate , oracle, 3);

Message($"Expected: {expectedPhase}");
Message($"Library: {libPhase}");
Message($"Manual: {manualPhase}");
Message("");

Reset(eigenstate);
}

Listing 7.26 Orchestrating both variants of QPE implementation for comparison purposes.
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Finally, we need to invoke the orchestrator operation for Z, S and T. This will
also be the entry point to our program.

@EntryPoint()
operation Main() : Unit {

use eigenstate = Qubit();

TestPhaseEstimation(
PrepareOracle(Z),
PrepareEigenState(eigenstate), 0.5);

TestPhaseEstimation(
PrepareOracle(S),
PrepareEigenState(eigenstate), 0.25);

TestPhaseEstimation(
PrepareOracle(T),
PrepareEigenState(eigenstate), 0.125);

}

operation PrepareEigenState(eigenstate : Qubit) : Qubit {
X(eigenstate);
return eigenstate;

}

Listing 7.27 Testing QPE for Z, S and T using the orchestrator from Listing 7.26.

Running it should confirm our expectations regarding the values of θZ , θS and θT .

Expected: 0.5
Library: 0.5
Manual: 0.5

Expected: 0.25
Library: 0.25
Manual: 0.25

Expected: 0.125
Library: 0.125
Manual: 0.125

Listing 7.28 Output of the code from Listing 7.27.

7.6 Shor’s Algorithm

Shor’s algorithmwasfirst developed byPeter Shor in 1994 [23], and further refined by
him in 1997 [24]. It is to this day the most spectacular example of a computational
advantage that can be unlocked through quantum computing. It allows factoring
integers with exponential speed-up compared to the best known classical alternative,
the general number field sieve algorithm. The algorithm consists of classical pre-
processing, a quantum core and classical post-processing.

Thanks to number theory we know that we can reduce the problem of factoring
the product of two prime numbers to the problem of finding the period of a related
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periodic function. Based on this, Shor utilized the procedure of Quantum Fourier
Transform, and, more generally, quantum phase estimation, which lies at the heart
of his algorithm, to perform a very efficient period estimation. It suffices to say
that Shor’s proposal sparked a massive interest in the field of quantum computing,
and provided a research momentum that is still noticeable even today, almost three
decades later.

Shor’s algorithm was implemented on a physical quantum hardware for the first
time by Chuang et al. in 2001, who successfully factored the number 15 [26] using
seven spin- 12 nuclei in amolecule as quantum bits, manipulated through nuclearmag-
netic resonance. In 2012, factoring of the number 21 was achieved [20], and remains
the highest number factored using the full Shor’s algorithm on a physical quantum
device. A simplified variant of Shor’s algorithm, designed to work exclusively with
composite numbers given by products of the Fermat primes, has been shown by
Geller and Zhou [12] who demonstrated factoring of 51 and 85 using only 8 qubits.
Improvements related to the amount of resources needed by Shor’s algorithm include
work by Beauregard [1], Zalka [27] and Gidney [13].

The reason why factorization of integers is a problem of such significance, is
that we know4 that due to the exponential nature of the involved complexity, it is an
insurmountable challenge for classical computers. Because of that, factors of very
large integers are used to underpin and to effectively guarantee the security of many
cryptographic schemes used today, in particular the public-private RSA (Rivest–
Shamir–Adleman) cryptosystem, which secures most of the data transmission on the
Internet. It then follows, that using Shor’s procedure, a sufficiently powerful quantum
device,with appropriate error-correction and enough stability, could theoretically one
day be used to break such cryptosystems that are relying on integer factorization—a
particularly attractive proposition for certain (mostly evil) actors, and a dooming
catastrophe for most of others.

Realistically speaking, we are far from breaking RSA with its 2048-bit (or larger)
long keys. The current best estimation for breaking RSA integers, given the noise
levels of today’s quantum hardware, is provided by Gidney and Ekerå at 20 million
qubits and 8h run time for the procedure [14]. Capacity-wise this of course far
exceeds any quantum computer we can even imagine building in the near future,
even though this estimation may go down by possible orders of magnitude as the
error correction levels and fidelity improves. At the same time, it still illustrates the
dramatic exponential speed up over classical methods, as it is roughly estimated that
factoring RSA 2048 bit integer with a typical desktop computer, would take a 1015

years [4], which is longer than the age of the Universe.
An interesting approach suggested recently by Gouzien and Sangouard [15]

involves the use of temporally and spatially multiplexed memory in the computer
architecture such that qubit states can effectively be stored when they are unpro-
cessed, which in turn dramatically reduces the number of compute qubits required
as part of the QPU. With such approach, they estimated 2048-bit RSA integer to be
factored in 177 days using a processor made up of 13436 physical qubits.

4 Technically speaking there is no proof for that, though no efficient solutions have been found.
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7.6.1 Period of a Function

Suppose we would like to factor number 15. The example is not particularly difficult,
because it is obvious that

15 = 5 × 3 (7.108)

however, because it is so basic, we should be able to follow it very easily. Let us
consider the following function

f (x) = ax (mod N ) (7.109)

where a can take the values of {2, 3, . . . , N − 1} and is relatively prime to N . Two
numbers are relatively prime5 to each other when their greatest common divisor,
which can be calculated using a classical algorithm, such as Euclid’s algorithm, is
equal to one.

gcd(a, N ) = 1 (7.110)

Now, if we begin evaluating the function with x = 0 we obviously get

f (0) = a0 (mod N ) = 1 (7.111)

regardless of the value of a. The period r of this function, for a specific relatively
prime pairs of a and N is then the smallest number x > 0, such that

f (n) = 1 (7.112)

We can use this knowledge to actually factor an N = 15. Suppose we start by
setting a = 13 and carry on evaluating the values of the function f (x) according to
Eq. (7.109). This is illustrated on Fig. 7.18. We can quickly spot that

f (4) = 1 (7.113)

and a pattern of repetition emerged at the intervals of four, such that

f (4) = f (8) = f (12) = f (16) = 1 (7.114)

indicating that the period of this function is r = 4.
The next step is to check if the period r is an even or an odd number, as we can

only continue when it is even, which is the case for our us, since r = 4. Additionally,
we need to make sure that the following condition is not satisfied by our r

a
r
2 = −1 (mod N ) (7.115)

5 They are also often referred to as co-primes.
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Fig. 7.18 Periodic function f (n) = 13n (mod 15)

Finally, number theory says that nontrivial factors of N will be two numbers p
and q such that

p = gcd(a
r
2 + 1, N ) (7.116)

q = gcd(a
r
2 − 1, N )

In our case that will be

p = gcd(132 + 1, 15) = gcd(170, 15) = 5 (7.117)

q = gcd(132 − 1, 15) = gcd(168, 15) = 3

And indeed, both 5 and 3 happen to be non-trivial factors of 15.

7.6.2 Quantum Order Finding

The circuit for the quantum part of the Shor’s algorithm, allowing an efficient
estimation of the period r , is shown in Fig. 7.19. If it looks familiar, it is not a
coincidence—the quantum part of the Shor’s algorithm is a de facto quantum phase
estimation problem, and we already studied an almost identical circuit in Fig. 7.17.
The important aspect here is that the bottom register is initialized to state |0 . . . 1〉,
and we will get to reasons behind that in a moment.

The top register, to which we will refer as the source register, needs to be of
size n = 2m, where m corresponds to the bit size of the number being factored. For
example, number 15 is a four bit integer, so n = 8. Just as discussed in the quantum
phase estimation section earlier, its size will influence the precision of the solution.
The bottom register, which we will refer to as the target register, will have the size
m and will not be measured.
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Fig. 7.19 Period estimation within Shor’s algorithm

The execution of the routine on the quantum hardware requires us to be able to
construct the unitary operator U such that

U |x〉 =
{

|ax (mod N )〉 when 1 ≤ x ≤ N − 1

|x〉 otherwise
(7.118)

In addition, we need to be able to use this operator in a way that supports modular
exponentiation. Thankfully, as we learnt in Sect. 7.5, when applying the same opera-
tion multiple times, the resulting composite operation ends up being exponentiation
of the original one.

Un |x〉 = ∣∣anx (mod N )
〉

(7.119)

AsFano andBlinder [11] point out, itmay seem like a calculationof the period is an
insurmountable challenge due to the enormous amount of permutations required for
each of the candidate values within U. As it turns out, the quantum solution exploits
the eigenstates

∣∣u j
〉
of the operator U, which are given by Nielsen and Chuang [22]

∣∣u j
〉 = 1√

r

r−1∑
k=0

e− 2π i jk
r

∣∣ak (mod N )
〉

(7.120)

This can be tested by applying U to
∣∣u j

〉
, which will lead us to the corresponding

eigenvalue λ j

U
∣∣u j

〉 = U
(

1√
r

r−1∑
k=0

e− 2π i jk
r

∣∣ak+1 (mod N )
〉) = e

2π i j
r

∣∣u j
〉

λ j = e
2π i j
r

(7.121)

where 0 ≤ j ≤ r − 1.
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At this point, we know we are able to use such eigenstate, and, by applying the
phase estimation procedure from Eq. (7.105), to estimate the value of j

r . However, it
seems that if we are able to prepare the eigenstate

∣∣u j
〉
, we need to know the value of

r in the first place, which seemingly defeats the purpose of executing the algorithm
at all.

What can be exploited here, is that the sum of all the eigenstates of U satisfies the
following

1√
r

r−1∑
j=0

∣∣u j
〉 = |1〉 (7.122)

namely, all the phase differences cancel out, leaving only |1〉, which of course is
trivial to prepare as input into the algorithm and which is then used in the phase
estimation procedure. We need to emphasize that it is indeed the state |1〉 encoded
using m qubits e.g. |000 . . . 01〉, not and entire register with every qubit set to |1〉,
e.g. |111 . . . 11〉

Since the outcome of the phase estimation produces the eigenvalue j
r instead of

r , it still need some post processing in order to extract the actual integer value of
r . This can be done using the continued fractions algorithm, which allows us to
explicitly extract values of j and r from the phase estimation result. For example,
if the measured phase has the value of 0.333 . . ., the algorithm can calculate j = 1
and r = 3.

Let us walk through the quantum steps with N = 15 and a = 13 as an example.
Since we need 4 bits to express 15, we setm = 4 and n = 8 and start with the system
state |ψ1〉

|ψ1〉 = |00000000〉 ⊗ |0001〉 (7.123)

where the second register uses 4 qubits to encode |1〉. After the H⊗8 transformation
is applied to the entire top register, we arrive at the usual superposition state

|ψ2〉 = 1√
256

255∑
k=0

|k〉 |0001〉 (7.124)

Next,we allow theUgate (or a series of its applications) to enact the transformation
corresponding to the function f (x) = ax (mod N ) leading us to

|ψ3〉 = 1√
256

255∑
k=0

|k〉 ∣∣13k (mod 15)
〉

(7.125)

The state |ψ3〉 can re-written into a more verbose form by expanding the sum into
individual terms and by using the full number notation instead of binary represen-
tation inside the kets. This approach helps to highlight that we now deal with the
entangled registers, and the periodic function really stands out clearly.
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|ψ3〉 = 1√
256

(
|0〉 | f (0)〉 + |1〉 | f (1)〉 + · · · + |255〉 | f (255)〉

)
= (7.126)

1
16

(
|0〉 |1〉 + |1〉 |13〉 + |2〉 |4〉 + |3〉 |7〉 + |4〉 |1〉 + |5〉 |13〉 + · · · + |255〉 |7〉

)
=

1
2

(
|0〉 + |4〉 + · · · + |252〉

)
|1〉 + 1

2

(
|1〉 + |5〉 + · · · + |253〉

)
|13〉 +

1
2

(
|2〉 + |6〉 + · · · + |254〉

)
|4〉 + 1

2

(
|3〉 + |7〉 + · · · + |255〉

)
|7〉

After applying the inverse Quantum Fourier Transform to this state we can mea-
sure, with equal probability distribution, one of four possible outcomes—|0〉, |64〉,
|128〉 or |192〉. The corresponding phase is then the measurement result divided by
28 = 256 giving us possible phases 0, 0.25, 0.5 and 0.75, which can then be used
as input into continued fraction expansion. We can see from here that two of these
values will not be usable. In the case of 0, we will calculate r = 1 which is invalid.
On the other hand, 0.5will expand to 1

2 instead of
2
4 because j and r are not coprimes,

which in turns leads us to estimating a factor of r (r = 2) instead of proper period r
value. The other two possible measurement outcomes will give us correct values of
r = 4. Once we have the correct period, the quantum part of the algorithm ends.

7.6.3 Summary of Steps

Before we move to implementing the algorithm in Q#, let us now recap the steps of
the Shor’s algorithm to factor an integer N .

1. Pick a random a in the range of 1 < a < N
2. Find the greatest common divisor c between a and N .

• if c �= 1 we have managed to guess the factor
• if c = 1, we know that c and a are coprimes and the algorithm can continue

3. Using quantum logic, find the phase j
r of a quantum version of f (x) = ax

(mod N )

4. Using classical logic based on continued fraction expansion, estimate r from j
r

• if r is odd or a
r
2 = −1 (mod N ), break the procedure and move on to a

different a
• otherwise, the algorithm can continue

5. Using classical logic, calculate the factor guesses p and q with Eq. (7.116), and
check whether they are non-trivial e.g. they are larger than 1 and smaller than N

• if p or q are non-trivial, we have found the factor
• otherwise, break the procedure and move on to a different a
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7.6.4 Q# Implementation

In order not to bloat the implementation logic of the algorithm in Q# we shall use
hardcoded values of the number to be factored and the coprime used to begin the
calculation with. We will set them, according to our earlier discussion to a = 13 and
N = 15, as this will allow us to easily compare the program outcomewith the theory.
This approach can naturally be, with relatively modest effort, extended by the reader
into a version that iterates over larger set of candidate a in the range of 1 < a < N ,
and which supports dynamic values of N as program input.

The overall application is structurally crafted around three callables corresponding
to different steps of Shor’s algorithm and is shown in Listing 7.29. This procedure
is executed repeatedly using the repeat...until Q# loop, until at least one non-
trivial factor is found or, to cap the execution time of the program, a maximum of
five attempts are processed. If any are discovered, the factors are then printed out
and the program terminates.

@EntryPoint()
operation Main() : Unit {

// N and a are hardcoded for simplicity
let N = 15; // number to factor
let a = 13; // coprime

mutable factors = [];
mutable attempt = 0;
repeat {

set attempt += 1;
let estimatedPhase = EstimatePhase(a, N);
let estimatedPeriod = CalculatePeriodFromPhase(

estimatedPhase , N);
set factors = CalculateFactors(a, N, estimatedPeriod);

} until not IsEmpty(factors) or attempt >= 5;

for factor in factors {
Message($"Non trivial factor discovered: {factor}");

}
}

Listing 7.29 Overall structure of the Shor program, according to the steps defined in Sect. 7.6.3.

The quantum logic is encapsulated in the operation EstimatePhase (a : Int,
N : Int), which executes phase estimation and gives us back the value of j

r . Next,
the phase is passed into a classical function CalculatePeriodFromPhase (phase
: Int, N : Int) which utilizes continued fraction expansion to calculate the
value of r . Finally, another classical function CalculateFactors (a : Int, N
: Int, r : Int) validates the correctness of r and converts the estimated r into
the actual p and q factor candidates.

The phase estimation logic is shown in Listing 7.30. It is based on the QPE that is
already built into the Q# standard library and follows the approach that we covered
in Listing 7.25. As we mentioned already, due to the fact that library based phase
estimation operates on big endian qubit registers, we need to manually reverse the
qubits to be compatible with our preferred little endian bit order. The register sizes
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are determined by the bit size of the number N . Because the target register is never
measured, it needs to be reset at the end of the operation.
operation EstimatePhase(a : Int, N : Int) : Int {

// size of the registers is determined by bitsize of number to factor

let numToFactorBitSize = BitSizeI(N);
if numToFactorBitSize > 8 {

fail "Maximum supported integer size is 8 bit.";

}

// init target register to number 1

use target = Qubit[numToFactorBitSize];
X(target[numToFactorBitSize -1]);

let oracle = DiscreteOracle(PrepareOracle(a, N, _, _));

use source = Qubit[2 * numToFactorBitSize];

// run quantum phase estimation

QuantumPhaseEstimation(oracle, target, BigEndian(source));
let phaseResult = MeasureInteger(

LittleEndian(Reversed(source))
);

Message($"Phase: {IntAsDouble(phaseResult)

/ IntAsDouble(2^(2 * numToFactorBitSize))}");

ResetAll(target);
return phaseResult;

}

Listing 7.30 Phase estimation in Q#, as part of Shor’s algorithm.

The transformation U is constructed around the MultiplyByModularInteger
(multiplier : Int, modulus : Int, multiplier : LittleEndian)
operation from the Microsoft.Quantum.Arithmetic namespace, which already
implements the required unitary operation |ax (mod N )〉6 and is shown in List-
ing 7.31. The exponentiation is ensured by running the multiplier through the
ExpModI (expBase : Int, power : Int, modulus : Int) function from
the Microsoft.Quantum.Math namespace. Because of how Q# core libraries
define parameters on the built-in quantum phase estimation operation (the require-
ment to wrap the logic of U with the DiscreteOracle user-defined type), we
need to use the partial callable application feature to ensure the signatures match
appropriately.

operation PrepareOracle(a : Int, N : Int, pow : Int, target :
Qubit[])
: Unit is Adj + Ctl {
let multiplier = ExpModI(a, pow, N);
let register = LittleEndian(target);
MultiplyByModularInteger(multiplier , N, register);

}

Listing 7.31 The Q# code for the Un |x〉 = |anx (mod N )〉 transformation as part of Shor’s
algorithm.

6 I am indebted to Cassandra Granade for this solution, used in the initial implementation of Shor’s
algorithm in QDK samples [16].
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Next the continued fraction expansion is used to convert the obtainedmeasurement
result into j

r integer-based representation, as shown in Listing 7.32. Yet again, to our
convenience, the continued fraction algorithm is built into the core Q# libraries,
as ContinuedFractionConvergentI (fraction : Fraction, denomBound
: Int) function from the Microsoft.Quantum.Math namespace, allowing us to
determine the denominator r from the fraction j

r .

function CalculatePeriodFromPhase(measurementResult : Int, N :
Int) : Int {
// convert value like 0.75 to 3/4
let input = Fraction(measurementResult , 2^(2 * BitSizeI(N)));
let phase = ContinuedFractionConvergentI(input, N);
Message($"Estimated value for r is

{AbsI(phase::Denominator)}");
return AbsI(phase::Denominator);

}

Listing 7.32 Continued fraction expansion in Q# code, as part of Shor’s algorithm.

The final building block is a dedicated function shown in Listing 7.33, which
determines whether the estimated r needs to be discarded and a subsequent attempt
is needed. This happens when r is 0, r is odd or a

r
2 = −1 (mod N ). When none

of these conditions is satisfied, the factor candidates p and q are calculated using
Eq. (7.116) and verified that they are non-trivial.

function CalculateFactors(a : Int, N : Int, r : Int) : Int[] {
if r == 0 {

Message("r is 0");
return [];

}

if r % 2 != 0 {
Message("r is odd");
return [];

}

let aToHalfR = a ^ (r / 2);
if aToHalfR == N - 1 {

Message($"{a}^({r}/2) = -1 mod {N}");
return [];

}

// period is valid, find factor candidates based on gcd
let candidates = [

GreatestCommonDivisorI(aToHalfR + 1, N), // p
GreatestCommonDivisorI(aToHalfR - 1, N)]; // q

// filter out trivial factors
let filter = IsNonTrivialFactor(N, _);
return Filtered(filter, candidates);

}
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function IsNonTrivialFactor(N : Int, i : Int) : Bool {
return i > 1 and i < N and N % i == 0;

}

Listing 7.33 Q# code to calculate factors based on the estimate r , as part of Shor’s algorithm.

At this point we should be to test the program and verify its output. Running the
program several times can confirm that, and should produce the output similar to
that in Listing 7.34. If we are unlucky we may see the invalid value of phase 0, and
a retry attempt that followed it.

Phase: 0.75
Estimated value for r is 4
Non trivial factor discovered: 5
Non trivial factor discovered: 3

Listing 7.34 Sample output of the Q# implementation of the Shor algorithm when factoring 15.
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Chapter 8
Where to Go Next?

We have managed to reach the end of this book, which means that this particular
journey is inevitably nearing its conclusion. At the same time, and these words are
accompanied by great optimism, hopefully for the reader this ending only marks
a beginning of a fascinating and rewarding adventure with quantum technologies.
There are quite a few possible ways to go further from here, and the present author
will humbly allow himself to suggest several possible options.

The core field of our interest in this study, quantum computing, enjoys a wide
spectrum of superb texts, so there are countless excellent follow-up reading propo-
sitions. One of the great minds of quantum information science, David Mermin,
provides a very light-hearted, yet comprehensive, tour through quantum computing
concepts [14], which is a must read for anyone studying this topic. Yanofsky and
Mannucci [25] target their unique book specifically at computer scientists and cover
quantum computing from that perspective. Rieffel and Polak [20] dive deeply into
the principles of quantum computing, and cover more advanced topics such as error
correction, fault tolerance or decoherence, in a very digestible way. Zygelman [27]
does a spectacularly efficient job of going from the most basic concepts to design of
quantum hardware in about 200 pages, and on his way includes countless links to
Wolfram Mathematica® notebooks that illustrate the theory covered.

For the readers willing to continue more in the direction of the field of quantum
information theory, a magnificent further reading could be Schumacher and West-
moreland [23], who do an excellent job of covering both typical aspects of quantum
theory in a novel, yet structured way, as well as in linking those to concepts of quan-
tum information science. The textbook of John Watrous [24], based on his lectures,
is already a classic in teaching the theory of quantum information.

For awide range ofmore advanced texts covering topics such as quantummachine
learning [22], quantum error correction [11], quantum cryptography [7] or quantum
search algorithms [19], to only name a few, the Quantum Science and Technology
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series from Springer is an indispensable source of valuable information, presented
with great attention to detail.

And of course, it is impossible not to mention the phenomenal “Mike and Ike”
textbook by Nielsen and Chuang [15], one of the great texts in physics history. It is an
advanced reading, that requires full cognitive attention and can get overwhelming for
beginners. At the same time, the textbook is delightful to follow and lends itself well
to being enjoyed at one’s preferred pace. It also is incredibly detailed, and, despite
its age, is still a de facto complete compendium of quantum computing.

For readers interested in diving deeper into theQ#world, there is no better resource
than the official Azure Quantum and Q# documentation.1 Contrary to many other
technical resources online, it is extremely well maintained, and contains a lot more
in-depth information about the runtime and the language that we had a chance to
cover in this book. It is also the recommended place to keep an eye on the latest
developments in Azure Quantum and the changes related to both the software and
the hardware make up of the platform.

The official Microsoft QDK samples repository on GitHub [6] is full of unique
and valuable examples of solving specific quantum problems with the QDK. Finally,
Granade and Kaiser [8] have an excellent Q#-specific book, approaching quantum
computing from an original and entertaining angle, with a caring and thoughtful
style.

We onlyminimally touched upon the core principles of quantummechanics in this
book. Readers enthusiastic about pursing this path further might find the textbook
by Kok [9] to be an attractive proposition, as, using his tremendous teaching skills,
he manages a comprehensive introduction into quantum mechanics using only basic
algebra. A similar approach is the theme of the textbook by Zubairy [26], who does a
fantastic job of exhaustive discussion onbasics of quantummechanics, based onhigh-
school level mathematics only. Fano and Blinder [4] provide an excellent account of
quantummechanics in an end-to-end fashion, with special focus on concepts relevant
to quantum computing. For a more advanced presentation a published lecture series
by Basdevant [1] is an excellent choice.

Finally, the history and development of quantum mechanics, as well as its
philosophical consequences are another formidably interesting space. An excellent
account of the early development of quantum mechanics, with narrative that reads
like a thriller, is given by Kumar [10]. The most definitive work chronicling the con-
ceptual creation of quantum theory is the six volume series byMehra andRechenberg
[13], beaming with detailed information, and spanning over 5000 (!) pages.

Friebe et al. [5] is arguably the most well-rounded, structured introduction into
philosophy of quantum physics. Laloë [12] uses a very unique mix of mathematics
and philosophy, when he poses a question whether we really understand quantum
mechanics. Plotnitsky, whose eloquent writing style is second to none, covers the
nature of quantum-theoretical thinking [17], tackles the epistemological and ontolog-
ical nature of reality [18] and attempts to decipher Bohr’s texts [16]. In his editorial

1 https://docs.microsoft.com/en-us/azure/quantum/.
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contribution to The Frontiers Collection series of Springer, Schlosshauer [21] talks to
some of the greatest physicists of recent times about a rich collection of topics such
as the measurement problem or the consequences of Bell’s inequalities, obtaining,
as expected, an entertainingly wide spectrum of answers, anecdotes and opinions. A
similarly absorbing set of quantum theoretical and philosophical debates by a group
of esteemed French physicists can be found in another title from the same series,
compiled by the editors Zwirn and d’Espagnat [3]. Finally, readers interested in the
consequences of Bell’s theorem would undoubtedly be delighted with another pub-
lication from The Frontiers Collection series, a fascinating compendium of essays
published to commemorate 50 years since Bell’s discovery, edited by Bertlmann and
Zeilinger [2].
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